
Applications of Binary Search 

 
The basic idea of a binary search can be used in many different places. In particular, any time 

you are searching for an answer in a search space that is somehow “sorted”, you can simply set a 

low bound for the value you’re looking for, and a high bound, and through comparisons in the 

middle, successively reset either your low or high bound, narrowing your search space by a 

factor of 2 for each comparison. This is especially useful in situations where you can calculate an 

increasing function forwards easily, but have difficulty calculating its inverse directly. Since the 

function is increasing, guessing allows you to narrow down your search range for the possible 

answer by half. In essence, after each guess, you know which direction to “go.” 

 
Example #1: Crystal Etching 

 
Consider the problem of calculating how many seconds a crystal should be “etched” until it 

arrives at a given frequency. (This is actually a real problem I worked on at a summer job…) 

 

In particular, the crystals start at an initial frequency, let’s call this f1 and they must be placed in 

an etch bath until they arrive at a target frequency, f2. Both of these values, f1 and f2 are known. 

 

Furthermore, you are given constants a, b and c that can be used to calculate the relationship 

between f1 and f2. The formula is as follows: 
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The only unknown in this formula is t, the number of seconds for which the crystal must be 

etched. 

 

The difficulty with this problem is solving the equation for t. No matter what you try, it’s 

difficult to only get one copy of t in the equation, since t appears in both an exponent and a linear 

term. 

 

But, a quick analysis of this specific function, along with a bit of common sense, indicates that as 

t rises, the value on the right-hand side of the equation also rises. In particular, since the 

constants a, b and c are always positive, that function on the right is a strictly increasing function 

in terms of t. 

 
This means that if we make a guess as to what t is and plug that guess into the right-hand side, 

we can compare that to what we want for our answer on the left, and correctly gauge whether or 

not our guess for t was too small, OR too big. 

 



This is a perfect situation for the application of binary search, so long as we can guarantee an 

upper bound. Luckily, in the practical setting of this problem, I knew that no crystal would ever 

be etched for more than 10000 seconds. (This was WAAAY over any of the actual times and a 

very safe number of use as a high bound.) I also knew that each crystal had to be etched for at 

least one second. (Actually, if we ignore the second term on the right, we can very easily get a 

nice upper bound as well.) 

 

From there, we successively try the middle point between high and low, resetting either high (if 

our guess was too high) or low (if our guess was too low). 

 

Example #2: A Careful Approach 

 
This problem is taken from the 2009 World Finals of the ACM International Collegiate 

Programming Contest that was held in Stockholm, Sweden. 

 

The essence of the problem is that you are given anywhere from 2 to 8 planes that have to land. 

Each plane has a valid “window” within which in can land. The goal is to schedule the planes in 

such a way that the gap between all planes’ landing times is maximized. 

 

For example, if Plane1 has a window from t = 0 to t = 10, Plane2 has a window from t = 5 to t = 

15 and Plane3 has a window from t=10 to t = 15, then Plane1 could land at t=0, Plane2 could 

land at t = 7.5 and Plane3 could land at t=15. If Plane2 moves its time any earlier, then the gap 

between Plane1 and Plane2 gets below 7.5 and if it moves its time later, then the gap between 

Plane2 and Plane3 goes below 7.5. Thus, 7.5 is the largest gap we can guaranteed between each 

of the planes. 

 

Two Problem Simplifications 

 
First, let’s just assume we knew which order the planes were going to land. 

 

A second simplification will help us as well: 

 

Rather than write a function that returns to us the maximum gap between plane landings, why 

don’t we write a function that is given an ordering of the planes AND a gap value and simply 

returns true or false depending on whether that gap is achievable or not. 

 

Here’s how to do it: 

 

1) Make the first plane land as early as possible. 

2) Make the subsequent plane land exactly gap minutes later (if this time is within its range), if it 

is not, then make it land after that time, as soon as possible. If this can’t be done, then the 

arrangement is impossible. If it can, then continue landing planes. 

3) Repeat step two if there’s another plane to land. 

 



This is what is known as a greedy algorithm. If a method exists to land all the planes with the 

given gap, then this method will work, since we land each plane as EARLY as possible given the 

constraints. Any alternate schedule gives less freedom to subsequent landing planes. 

 

How Can We Still Solve the Original Problem? 

 
Now, the question is, HOW can we solve the original problem, if we only know how to solve 

this easier version. 

 

We can deal with simplification number one by simply 

 

TRYING ALL ORDERINGS OF THE PLANES LANDING!!! 

 

Now, if we have a function that returns true if a gap can be achieved and false otherwise, can’t 

we just call that function over and over again with different gaps, until we solve for the gap 

within the nearest second? (This is what the actual question specified. Furthermore, the numbers 

in the input represented minutes, thus, 7.5 should be expressed as 7:30, for 7 minutes and 30 

seconds.) 

 

Thus, once again, we have the binary search idea!!! 

 

Set our low gap to 0, and our high gap to something safe, and keep on narrowing down the low 

and high bounds on the maximum gap until they are so close we have the correct answer to the 

nearest second! 

 

 


