Computer Science II Program #5: Dynamic Programming
Input: Standard in, Output: Standard out

Note: This assignment will have three programs. You may choose to do any two of them. Each will be worth 50 points. You may NOT submit all three. If you do, the grader will randomly choose which two to grade.
Problem A: Counting Subsequences (countseq.java)
Given a sequence of letters as well as subsequence from the original list, you are to count how many times the particular subsequence occurs.

Given a sequence c0, c1, … cn-1 of letters, we define a subsequence index list to be some ordered list of integers a0, a1, … am-1. The corresponding subsequence is the string c[a0]c[a1]…c[am-1]. For example, given the string, s = “engineering”, the subsequence defined by the index list 1, 3, 4 and 6 is “nine”, since s[1] = ‘n’, s[3] = ‘i’, s[4] = ‘n’, and s[6] = ‘e’. The number of times a subsequence occurs in a given sequence is simply the number of unique index lists that generate the given subsequence. For the problem at hand, there are two occurrences of the subsequence “nine”. One is the given one and the other is generated by the index list 1, 3, 4 and 5.

The Input

The first line of the input will contain a single positive integer, n, representing the number of test cases in the file. The following n lines will contain 1 test case each. Each of these lines will have two non-empty strings of lowercase letters separated by a space. The first of these strings is the given input sequence while the second string will be the subsequence for which to search. It is guaranteed that the length of the first string is 1000 or less and that the length of the subsequence is less than or equal to the length of the given sequence. Furthermore, it’s guaranteed that the subsequence appears at least once in the sequence.
The Output

For each test case, output a single line with the number of occurrences of the given subsequence. The cases will be such that this value is less than 1018.

Sample Input

2

engineering

nine

sallysellsseashells

sell

Sample Output

2

21
Problem B: Cheerleader Tower (cheer.java)
You are the new coach of the cheering leading squad and you want to put your Computer Science background to use! You’ve decided that you want to create the tallest cheerleading tower possible from the cheerleaders on your squad. For each member, you have two pieces of information: how much they weigh, and how much weight they can hold above them. For example, if we had three cheerleaders with the following weights and holding capacities:

A: (120, 300)

B: (200, 600)

C: (140, 250)

We could put all three in a tower with B on the bottom, A in the middle and C on top. Note that by definition, you must hold yourself up so in this configuration, person A is supporting 260 pounds (120 + 140) and not just 140 pounds. This is why person B must be on top. (Note that if person A could support exactly 260 pounds, this configuration would also be possible, but it wouldn’t be if she could only support 259 pounds.)
Obviously, given a larger list, it probably won’t be possible to stack all members on a single tower. But, your goal will be to figure out the maximum number of people that can be stacked onto one tower as described.

The Input

The first line of input will consist of a single positive integer, n, representing the number of test cases. The test cases follow. The first line of each test case will have a single positive integer, m(m ≤ 1000), representing the number of cheerleaders on that particular squad. The following m lines will contain two positive integers, w(w ≤ 300) and c(c ≤ 300000), each representing the weight and carrying capacity of the ith cheerleader.

The Output

For each test case, output a single line with the maximum number of cheerleaders that can be placed on a single tower for that case.

Sample Input

2

4

300 500

299 600

200 480

100 101

3

200 504

204 345

120 181

Sample Output

3

2
Problem C: Stick Splitting (sticks.java)
Given a stick of length n, the cost of cutting it into two sticks is n. Your goal will be to determine the minimal cost of taking a given stick of a particular length and making k cuts at given places on the stick. For example, if the original stick is of length 10 and we need to make cuts at 2, 5 and 6 inches from one end, then, if we cut in order, our cost is 10 + 8 + 5 = 23. But, if we cut in the middle first, our cost is 10 + 5 + 5. We can also achieve 20 by cutting at the 6 inch mark (cost 10), followed by cutting at the 2 inch mark (cost 6) and finally the 5 inch mark (cost 4).
The Input

The first line of input will consist of a single positive integer, n, representing the number of test cases. The first line of each test case will contain a single positive integer, L (L ≤ 10000), the length of the original stick for the case. The first integer on the second line of each test case will contain a single positive integer, c(c ≤ 100), representing the number of cuts that need to be made on the stick. The following c integers on the line represent the distance from the left end of the stick that a cut needs to be made. Each of these values will be separated by a space. These values will be distinct and in sorted order. Each will be greater than 0 and less than L.

The Output

For each test case, output a single positive integer representing the minimal cost of making the cuts outlined.

Sample Input

2

100

3 25 50 75

10

3 2 5 6

Sample Output
200
20
Deliverables

You must turn in two files over WebCourses2/Canvas. You may turn in any two of the three following files:
1) countseq.java, a source file containing your solution to problem A.

2) cheer.java, a source file containing your solution to problem B.

3) sticks.java, a source file containing your solution to problem C.

Make sure to observe good programming style and to comment your code. 10% - 20% of your grade will depend on these issues.
