
COP 4516 Spring 2020 Week 11 Team Contest #3 Solution Sketches 
 

 

Dinner Games 

Let f(n) be the number of ways the trio can pay for dinner. If John pays the first bill, f(n-10) ways 

remain to pay the rest. If Nick pays the first bill, f(n-5) ways remain to pay the rest. Finally, if 

Stephen pays the first bill, f(n-2) ways remain to pay the rest. Thus, recursively, we have: 

 

f(n) = f(n-10) + f(n-5) + f(n-2) 

 

Work out the first 10 cases (0 through 9) by hand, store these in an array, and then build up the 

rest of the cases (DP). Alternatively, write a recursive solution and memoize - nearly identical to 

Fibonacci, just with different base cases and a different recurrence. 

 

 

Mixed Set 

Since k ≤ 106, it's good enough just to generate the permutations in lexicographical order, using 

backtracking. Given a particular permutation, just try to add the next possible value. If you can, go 

with it, if you can't skip it (this is the backtracking) and go to the next value. Keep track of how 

many valid permutations you've passed until you get to the appropriate rank. At this point, set up 

your recursion to return true so that no further changes are made. It's key to only store ONE COPY 

of any permutation and change that one copy as you march through trying each permutation, as 

opposed to storing each permutation. The latter hogs up memory and slows down the solution. 

 

 

Paint Me 

First, get the total possible area of the rooms to paint. Note that you're not painting the 

ceiling…Then add up all the doors and windows and subtract this out. Finally, use integer division 

and mod to calculate the final answer. If we need to paint 1000 sq. ft. and each can paints 16 sq. 

feet, since 1000%16 != 0, the number of cans of paint we need is 1000/16 + 1. Alternatively, if we 

were painting 96 sq. feet, since 96%16 == 0, we just need 96/16 sq. ft. The formula I showed you 

in class previously for ceiling of y/x is (y+x-1)/x. 

 

 

Railroad 

Let dp[i][j] be true if you can form the first i+j cars of the merged car sequence with the first i cars 

from the first train and the first j cars from the second train. To solve the recurrence, we check to 

see if the (i-1) index car in train 1 matches the i+j-1 index car in the big train, AND dp[i-1][j] is 

true. If both things are true, then dp[i][j] is true. Basically we can form the larger sequence in this 

case by taking the last car from train 1. Alternatively, check if the (j-1) index car in train 2 matches 

the i+j-1 index car in the big train, AND dp[i][j-1] is true. If both are true, then we can set dp[i][j] 

to true. At the end, we just check to see if dp[n][m] is true where the first train has n cars and the 

second has m cars. 

 

 

 



Scientist 

We want to match scientists to virus outbreaks, and want the maximum matching. Thus, we can 

set up a network flow graph to solve the problem. We create a vertex for each scientist and each 

virus outbreak. We add an edge from the source to each scientist with capacity 1. We add an edge 

from each virus outbreak to the sink with capacity 1. Then, we add an edge between each scientist 

and virus outbreak, if that scientist can extinguish that virus outbreak. In order for a scientist to be 

able to extinguish a virus outbreak, the scientist must be able to reach it, AND that virus must be 

on its list of viruses that scientist can extinguish. We can check the former via BFS or DFS (the 

most we have to run is 26 from the scientists, which will run pretty fast), and the latter is just a 

lookup, probably most easily implemented via a Boolean array or bitmask. 

 

 

Teamwork 

We define f(n) = maximum sum ending at the cow at index n. (In code, we start our indexes at 0.) 

Consider calculating f(n) for an arbitrary value n: 

 

We would like to try all possible groups for our "last" group of contiguous cows. These groups 

could be: 

 

{n} or {n-1, n} or {n-2, n-1, n} or … {n-k+1, n-k+2, n-k+3, …, n} 

 

Namely, given the input restrictions, the group size must be in between 1 and k, inclusive. Consider 

the situation where the last group of cows is {m+1, …, n}. In this situation, our maximum sum of 

skill levels would be: 

 

   f(m) + (n - m)*max(skill[m+1], skill[m+2], …, skill[n]) 

 

Basically, we get the best answer for any split of the first m cows and add to it the maximum cow 

from index m+1 to n multiplied by the number of cows in that range, which is n - m. 

 

Thus, we want the maximum value of the expression above, for all valid m, of which there are at 

most k. 

 

In terms of run time, we have an outer loop that runs n times, once for calculating the function f(i) 

for each different value of i. To calculate f(i) for a single value i, we have a second loop that runs 

upto k times. Thus, our run time is at least O(nk). Notice that the maximum bounds are n = 104and 

k = 103, so we already have a run-time around 107. This is doable, but we can't add a third nested 

loop. The key here is that we must be able to calculate the maximum of a set of values in O(1) 

time. The easiest way to do this is build the last group from smallest to largest, keeping a running 

maximum. (So, for example, if our list is 8, 3, 7, 6, 9, 4, 5, and we are calculating f(6), we currently 

store a max = 5, then when add 4 to our last group, our max stays at 5. When we add 9 to our last 

group, our max changes to 9, these changes occur in O(1) time and right after we finish them, we 

can calculate f(m) + (n - m)*max(skill[m+1], skill[m+2], …, skill[n]), in O(1) time. 


