

Problem C: Sum of Divisors

Filename: *sumdiv*

Time limit: 2 *seconds*

There are two things Arup likes: divisors and adding things. So, it's no surprise that he's decided to pose this problem to you:

Given the prime factorization of an integer, determine the **sum** of all of its divisors.

Since the number he might give you is big, please just report the sum modulo 10^9+7 .

The Problem

Given the prime factorization of an integer, determine its sum of divisors, modulo 10^9+7 .

The Input

The first line of input will contain a single positive integer, c ($1 \leq c \leq 25$), representing the number of input cases to process. Each of the input cases follow.

The first line of each input case is a single integer, k ($1 \leq k \leq 10$), where k represents the number of unique prime factors of the input integer for the case.

The following line contains $2k$ space-separated integers: $p_1, e_1, p_2, e_2, \dots, p_k, e_k$, representing that integer expressed is $(p_1)^{e_1}(p_2)^{e_2} \dots (p_k)^{e_k}$.

It is guaranteed that $p_i < p_{i+1}$ for all $1 \leq i \leq k - 1$, $p_k < 10^9$ and that each p_i ($1 \leq i \leq k$) is a prime number. Furthermore, $1 \leq e_i \leq 10^5$ for all $1 \leq i \leq k$.

The Output

For each test case, on a line by itself, output the sum of divisors of the input integer modulo 10^9+7 .

Sample Input

```
2
2
2 2 3 1
3
2 5 41 6 101 3
```

Sample Output

```
28
121832668
```