Problem B: The Jumping Knight of Square County
Filename: bsmall, blarge
Time Limit: 8 seconds

Square County can be modeled of as an n by n grid of squares. Each individual square has a level
of elevation, so visually, traveling in Square County involves jumping between rectangular blocks
with square bases. (Each block has dimensions 1 x 1 x h, where h is its elevation.)

Instead of police officers, real live Knights typically save the day when any problems occur in
Square County. As everyone knows, Knights positioned on grids can jump in an L-shape only.
Thus, a knight at the square at (r, ¢) can jump to (r-2, c-1), (r-2, c+1), (r-1, c-2), (r-1, c+2), (r+1, c-
2), (r+1, c+2), (r+2, c-1) or (r+2, c+1). The only other restrictions are that the Knights are NOT
allowed to leave the county (go outside the bounds of the grid) and that each Knight has a
maximum limit for how far they can jump up or down in elevation on a single jump. This maximum
limit is the same for all Knights.

Of course, when there is a problem, we want a Knight to travel to where the problem has occurred
as soon as possible.

The Problem

Write a program to help figure out the shortest number of jumps any Knight has to take to arrive
at a problem location on the grid, and which Knight can arrive in that shortest number of jumps.
Knights can occupy any square on the grid except other squares that have knights.

The Input
The first line of input will consist of a single positive integer, ¢ (c < 15), representing the number

of input cases to process. The first line of each input case will contain three positive integers, n (5
< n < 1000), representing that the grid for the input case has dimensions n by n, k (1 <k < 100),
representing the number of knights for the input case, and m (1 < m < 10,000), representing the
maximum height all knights can jump up or down. The following n lines will contain n space
separated integers each, representing the elevation of each square on the corresponding row on the
grid. Each of these integers is guaranteed to be in between 0 and 10,000, inclusive. The following
k lines of input describe the initial position of each of the k knights. The i (1 <i <k) of these lines
will contain two space separated integers ri and ¢i (1 < rj, ¢i<n), representing the initial location,
row followed by column, of the i knight. The last line of input will contain two space separated
integers rp, and cp, representing the row and column respectively, of where the problem has
occurred. (Note: At most two cases will have n = 1000, for the rest n < 100.)

Partial Credit Input (40%)

Here are the additional restrictions for the partial credit cases:
c<10

k=1

5<n<l15

All other bounds will be the same as previously described.



The Output
If no knight can travel to the location of the problem, output -1 on a line by itself for the input case.

Otherwise, output two integers, j, the fewest number of jumps necessary for any knight to travel
to the location of the problem, and id, the minimum numbered knight who can travel to the location
of the problem in j jumps. Thus, if more than one knight can make it to the location of the problem
in the fewest number of jumps, you must report the knight with the smallest identification number
(described earliest in the input).

Sample Input
3

515

3 100 22 100 12
27 100 7 12 100
100 8 100 17 19
100 22 15 100 100
100 100 100 24 100
11

5 4

5 3 10

3 100 22 100 12
27 100 7 12 100
100 8 100 17 19
100 22 15 100 100
100 100 100 24 100
11

5

3

4

1 98

1 100 100 100 100
100 100 100 100 100
100 100 100 100 100
100 100 100 100 100
100 100 100 100 100
11

55

(SIS, ISR

Sample Output
51

32

-1

Note: The desired path in the first case is (1, 1) — (3,2) — (2,4) — (4,3) —> (3,5) — (5, 4). The
values in these cells are 3, 8, 12, 15, 19 and 24, respectively. In the second case, there are paths
from two different knights of length 3: (1,3) — (3,4) — (4,2) — (5, 3) and (1, 5) — (3, 4) — (4,
2) — (5, 3). Of these, we prefer the knight at (1, 5) because its ID number is 2, and that is lower
than the other knight, which has ID number 3. Also note that the second case in the sample input
isn’t valid for the small input.



