
Network Flow 

 
The network flow problem is as follows: 

 

Given a connected directed graph G with non-negative integer weights, (where each edge 

stands for the capacity of that edge), and two distinguished vertices, s and t, called the 

source and the sink, such that the source only has out-edges and the sink only has in-

edges, find the maximum amount of some commodity that can flow through the network 

from source to sink. 

 

One way to imagine the situation is imagining each edge as a pipe that allows a certain 

flow of a liquid per second. The source is where the liquid is pouring from, and the sink 

is where it ends up. Each edge weight specifies the maximal amount of liquid that can 

flow through that pipe per second. Given that information, what is the most liquid that 

can flow from source to sink per second, in the steady state? 

 

Here is an example of an “empty” flow graph: 

 
Here is an example of some flow going through the flow graph specified above: 

 



In the picture on the previous page, the first number on each edge represents the current 

flow going through that edge and the second value represents the capacity of the edge, the 

maximum amount of flow that could be going through that edge. In this picture above, 

we have 19 units of flow going from the source (S) to the sink (T). 

 

In order for the assignment of flows to be valid, we must have the sum of flow coming 

into a vertex equal to the flow coming out of a vertex, for each vertex in the graph except 

the source and the sink. This is the conservation rule. Also, each flow must be less than 

or equal to the capacity of the edge. This is the capacity rule. The flow of the network is 

defined as the flow from the source, or into the sink. For the situation above, the network 

flow is 19.  

 

Cuts 

A cut is a partition of vertices (Vs, Vt)  such that the s  Vs and t  Vt. An edge that goes 

from u to v is a forward edge if u Vs and v  Vt. If the opposite is true, then it is a 

backward edge. Also let F equal the flow of a network. 

 

For any cut, define the flow across the cut to be the sum of the flows of the forward edges 

minus the sum of the flows of the backwards edges. 

 

The flow across any cut equals the flow of a network. 

 

In our previous example, the flow was 19. Consider the flow across the cut Vs = {s, a, b}. 

We have three forward edges with flows of 8, 4, and 15 and two backward edges with 

flows of 1 and 7. Summing, we have 8+4+15-1-7 = 19, as desired. Basically, we have a 

total of 27 units going from “the side with S” to “the side with T” and 8 units going from 

“the side with T” to the “the side with S”, for a net positive flow of 19 units from “the 

side with S” to “the side with T.” 

 

Note the following observations: 

 

1) The sum of the flows of all the vertices in Vs is the flow of the network because this 

sum is 0 for all non-source vertices in Vs, and equal to the flow at the source. 

 

2) We need only to show that the flow NOT across Vs is 0. This is true simply because no 

edge in Vs leads into s. They all lead to each other. Thus, the net flow of all the edges 

within Vs is 0, because for two different vertices in Vs we add and subtract the same flow 

for an edge. 

 

We can use this to show that the flow of a network can not exceed the capacity of any 

cut. 

 

Simply put, our best case is if we don't have any edges with flow from “the side with T” 

to the “side with S.” In this case, we are simply left with forward edges, each with a 

particular capacity. The sum of these capacities is the capacity of the cut, and an upper 

bound on the flow of that cut. 



Finding the Maximum Flow in a Flow Network 

We will use two ideas to help us determine whether or not a flow is maximum. Namely, 

we must show that absolutely no more flow could be added, no matter how we adjust 

each edge. The ideas we will look are residual capacity and augmenting paths. 

 

The residual capacity of an edge from vertex u to vertex v is simply its unused capacity - 

the difference between its capacity and its flow in the direction of the edge. In the 

opposite direction (from v to u), this value is defined as the flow of the edge. The idea 

with this second statement is that if flow is going from u to v, there’s no reason we can’t 

“unsend” those units of flow. Mathematically, this means subtracting from the flow in the 

forward direction. 

 

Also, the residual capacity of a path is defined as the minimum of the residual capacities 

of the edges on that path. This particular value is the maximum excess flow we can push 

down that particular path. Thus, an augmenting path is defined as one where you have a 

path from the source to the sink where every edge has a non-zero residual capacity. 

Namely, where for every edge on the path 

 

flow is less than capacity for each forward edge, AND 

flow is greater than 0 for each backward edge. 

 

In our example below, consider the following path: 

 

s → a → c → b → t 

 

The forward edges on this path are sa, ac, and bt. 

The backward edge is cb. 

 
Thus, the minimum residual capacity of the path is 4, which is the limit given to us by cb, 

since we can “push back” at most 4 units of flow from vertex c to vertex b. From s to a, 

we could push forward up to 5 units of flow, from a to c we could push 10 units of flow, 

and from b to t we could also push up to 5 units of flow. Thus, our limiting factor for this 

specific augmenting path is edge cb, where we can push back at most 4 units of flow.  



Now, let's augment this path: 

 

 
 

Hopefully it should be clear that if we find an augmenting path, adding the minimal 

residual capacity of that path to each edge on that path yields another valid flow. In 

essence, what we are doing is simply adding some fluid to a particular path in the 

network. On a backwards edge, we are actually taking away fluid. Intuitively, what 

using a backwards edge is doing is “fixing” a previous mistake. Before we added this last 

piece of flow, we had been sending 4 units of flow from B to C, and then C to D, where it 

was essentially getting stuck. So, by directing those 4 units from B to T (instead of 

through C), we were able to free up 4 more units to come from S to A to C to D. If one 

doesn’t use any backwards edges in their search for augmenting paths, they lose the 

ability to “fix” errors that naturally occur when we guess suboptimal augmenting paths. 

Essentially, there’s no way to know in advance what all the augmenting paths with no 

backward edges might look like. But, the algorithm allows us to correct our mistakes as 

we go, by taking backwards edges and this is the essence of how it works. 

 

Now, we will show that if a flow network has no augmenting path, then it has a cut of 

maximum capacity. 

 

If no augmenting path exists, then that means for all paths from source to sink, there is at 

least one edge without any residual capacity. Now, consider partitioning the vertices 

according to this rule: Place in Vs all vertices v that DO have augmenting paths from the 

source s. Then place all other vertices in Vt. (Note that the sink t must be in this set since 

there is no augmenting path to t.) 

 

Now, consider all the edges with respect to this cut. Clearly, NONE of these edges have 

any residual capacity. If they did, then we would have added the vertex that they reach to 

the set Vs. Thus, for this particular cut, the flow at each forward edge is to its capacity 

and the flow at each backwards edge is 0. As we showed before, this situation represents 

the maximal flow possible. 

 



Now, based upon the fact that augmenting paths can always be used to increase flow, and 

that the minimum capacity of a cut constrains the maximal flow, we can now claim the 

following: 

 

The Max-Flow, Min-Cut Theorem: The value of the maximal flow in a flow network 

equals the value of the minimum cut. 

 

 

With our example, we can see that there is no augmenting path from s to t. If there were, 

it would have to go through b and utilize edge bt. But all three edges leading to bt have 

no residual capacity. 

 

Now, consider forming the set of vertices that do have augmenting paths from s. This set 

includes {s, a, c, d} As mentioned before, it is impossible to reach b on an augmenting 

path since all edges leading to b are at full capacity already. 

 
Now, if we look at this cut, we find that the maximal value of this cut is the sum of the 

capacities of the edges ab, db, and dt which is 12+7+4 = 23. (Notice that we did not add 

or subtract anything for edge bc with capacity 9, since it is a backwards edge.) 

 



Ford-Fulkerson Algorithm 

The Ford-Fulkerson Algorithm is a basic consequent of the work above. In its simplest 

form, we do the following: 

 

While there exists an augmenting path 

 Add the appropriate flow to that augmenting path 

 

We can check the existence of an augmenting path by doing any graph traversal on the 

network (with all full capacity edges removed.) Typically, DFS is used for Ford-

Fulkerson. This graph, a subgraph with all edges of full capacity removed is called a 

residual graph. 

 

It is difficult to analyze the true running time of this algorithm because it is unclear 

exactly how many augmenting paths can be found in an arbitrary flow network. In the 

worst case, each augmenting path adds 1 to the flow of a network, and each search for an 

augmenting path takes O(E) time, where E is the number of edges in the graph. Thus, at 

worst-case, the algorithm takes O(|f|E) time, where |f| is the maximal flow of the network.  

 
The Edmonds-Karp Algorithm 

This algorithm is a variation on the Ford-Fulkerson method which is intended to increase 

the speed of the first algorithm. The idea is to try to choose good augmenting paths. In 

this algorithm, the augmenting path suggested is the augmenting path with the minimal 

number of edges. (We can find this using BFS, since this finds all paths of a certain 

length before moving on to longer paths.) The total number of iterations of the algorithm 

using this strategy is O(VE). Thus, its total running time when storing the graph as an 

adjacency matrix is O(V3E).  

 

 

 



Applications of Network Flow 

 
Obvious applications of network flow involve physical situations, such as a set of pipes 

moving water, or traffic in a network. For these situations, the translation of the input 

data into an appropriate graph is fairly intuitive. 

 

However, a vast majority of the applications of network flow pertain to problems that 

don't seem to involve the physical movement of items through networks. 

 

While we don't have time to look at all the types of applications of network flow, we will 

analyze one specific problem, bipartite matching, that can be solved using network flow, 

along with a few extra sample problems that can be solved with network flow. 

 
Bipartite Matching 

The bipartite matching problem is as follows: 

 

Input: two mutually exclusive sets of equal size U and V, along with a list of ordered 

pairs of the form (u, v) where u  U and v  V, indicating pairs of members, one of each 

set that can be "paired" together. 

 

Output: True, if there exists a way to pair up each item in U with an item in V such that 

each item in both sets appears in exactly one pairing, and false otherwise. 

 

Solution: Let n = the size of each input set. Set up a graph with 2n+2 vertices. Create one 

vertex for each item in each set and add source and sink vertices. Add an edge from the 

source to each item in set U with capacity 1. Add an edge from each item in set V to the 

sink with capacity 1. Add an edge between each item in set U and set V that are in the set 

of ordered pairs with capacity 1. Calculate the maximal flow of this network. If the 

answer is n, then a complete matching exists, otherwise a complete matching doesn't 

exist. If you want the matching, keep track of each "edge" added during each iteration of 

the algorithm. (Note: some edges change as well.) 

 

 

 

 

 

 

 

 

 
 

 



Instance of Bipartite Matching 
Set of companies:{Google,Microsoft, Facebook, Amazon, Lockheed} 

Set of students: {Amanda, Belinda, Cameron, David, Elyse} 

 

Set of offers: {(Google, Belinda), (Google, Elyse), (Microsoft, Amanda), (Microsoft, 

Cameron), (Facebook, Amanda), (Facebook, David), (Facebook, Elyse), (Amazon, 

Amanda), (Amazon, Elyse), (Lockheed, Belinda) } 

      
Second Instance of Bipartite Matching 

Set of boys: {Bob, Dave, Fred, Harvey} 

Set of girls: {Alice, Carol, Elaina, Giselle} 

Set of ordered pairs: { (Bob, Elaina), (Bob, Giselle), (Dave, Elaina), (Fred, Alice), (Fred, 

Carol), (Fred, Giselle), (Harvey, Giselle) } 

 

   
Note: More generally, if we relax the restriction on the sizes of the two sets being 

equal, we can calculate the maximum number of pairs that we can form by running 

a Network Flow algorithm on a graph of the form described above. 

 

 

 

 



Indirect use of bipartite matching 

In some problems we might be asked to pick a maximum number of items so that no two 

items from two distinct sets “conflict”. So, perhaps set A is Mrs. Weaver’s class and set 

B is Mr. Gordon’s class. We want to get the maximum number of kids in a single group 

from both classes so that no two kids hate each other. All the kids in each class like the 

other kids in their class, but they may hate some of the kids in the other class. For this 

type of scenario, it helps to solve the opposite problem: 

 

Find the maximum number of pairs of kids, one from each class, such that each pair hates 

each other. 

 

Note that in finding this maximum matching, which is equal to the maximum flow 

through the network created by linking edges between pairs of kids that hate each other, 

we are showing that for each of these pairs, at most one kid can be chosen. Since this 

matching is maximum, we CAN’T add a new pair to it. Thus, this means it’s safe to add 

ALL the other kids not involved in any pair AND then add one person from each of these 

pairs. Thus, the total number of students we can choose is equal to the total number of 

kids in both classes minus the maximum number of pairs we can create who hate each 

other. 

 

Cow Steeplechase Problem (from USACO) – Utilizes bipartite matching indirectly 

Given a list of horizontal line segments (none of which intersect each other) and vertical 

line segments (none of which intersect each other), calculate the minimum number of line 

segments that must be removed, so that no two lines intersect each other, or alternatively, 

the most number of line segments that mutually don't intersect one another. 

 

Solution 

We can create a bipartite matching solution. Our goal is to match horizontal line 

segments to vertical line segments in such a way that each pair intersects. We know that 

if we have a set of these intersecting pairs, at the very least, one item in each pair must be 

removed. Thus, what we really want is the maximum matching. Once we have this (say 

there are 7 matching pairs in our maximal matching), then we have proof that 7 of the 

segments must be removed. No other matching forces us to remove more. Thus, that how 

many we are forced to remove to create no intersecting line segments. Alternatively, we 

can calculate the maximum set of segments we can have without any two intersecting by 

taking the total number and subtracting out this maximum matching. 

 



Network Flow for other matching problems 

In other matching problems, we aren’t always making “one to one” matchings. Instead, 

we might be matching several items in several groups to other items grouped together 

differently. In the two example problems shown below, the capacities of our edges are 

not always one, and these capacities indicate the number of items from one set that we 

can match elsewhere. These sorts of problems take many different forms, so it’s best just 

to understand the basic structure of setting up an flow graph and be flexible to edit that 

structure for each new problem that you see. 

 

 

Example Problem: Grand Dinner Problem (from ACMUVA) 

N teams attend a dinner. Team i has ti members. There are M tables at the dinner, with M 

≥ N. Table i can has si chairs. We wish to seat all teams such that no two team members 

are at the same table, so that we maximum students getting to meet members of other 

teams. Can we do so? 

 

Solution using Network Flow 

Create a flow network with N + M + 2 vertices. Create one vertex for each team and one 

for each table. Create extra source and sink vertices. Create edges from the source to each 

team with a capacity of ti. Create edges from each table vertex to the sink vertex with 

capacity si. Finally, add edges from each team to each table, with capacity 1, since each 

team can provide at most one person per table. Run the network flow algorithm. If the 

maximal flow equals the sum of the number of team members, the seating can be done. 

Otherwise, it can not be. 

 



Museum Guard Problem: 2009 South East Regional 

A museum employs guards that work in 30 minute shifts: 12am - 12:30am, 12:30am-

1am, ..., 11:30pm-12 am. Each guard has a list of times he/she can NOT work. (For 

example, a particular guard might not be able to work from 3:30 am to 7:30am and from 

4:29pm to 8:01pm. In this case, the guard could work the 3am-3:30am and 7:30am-8am 

shifts, but not the 4pm - 4:30pm shift or 8pm-8:30pm shift.) Furthermore, each guard has 

a maximum number of hours they can work in a single day. Determine the maximum 

number of guards we can have scheduled to cover each shift without violating any of the 

constraints. 

 

Solution using a flow network 

As usual, we create an extra source and sink. 

 

Each guard will be a vertex in the flow network. From the source, we connect an edge to 

each guard with an integer representing the maximum number of shifts that guard can 

work. 

 

Each shift (there are 48) will become a node in the flow network. Add an edge with 

capacity 1 from each guard to each shift where the guard is able to work that shift. 

 

Finally, if we are to set the capacities from all the shifts to the sink to 1, and we run the 

network flow algorithm at obtain 48, we know that we can post 1 guard for each slot. We 

can re-run the algorithm with all of these capacities set to 2 and see if the resulting flow is 

96 or not. If so, we move onto 3, and so forth. Since there are at most 50 guards, our 

answer will never exceed 50 and this will run in time. 

 

A more clever approach involves a binary search. Try capacities at 25 for each of these 

edges. If this doesn't work, go to 12, If it does, go to 37, and so on. Basically, rather than 

checking if 1 works, then 2, then 3, etc. a binary search will hone in on the answer a bit 

more quickly, especially in the cases that the answer is closer to 50. 

 

 

 


