
COP 4516: Math for Programming Contest Notes 

 
Euclid's Algorithm 

Euclid's Algorithm is the efficient way to determine the greatest common divisor between two 

integers. Given two positive integers a and b, we divide b into a, obtaining the remainder r, 

repeat the algorithm with b and r, finishing when r is 0. Here is a quick example that calculates 

the gcd of 144 and 57: 

 

144 = 2 x 57 + 30 

57   = 1 x 30 + 27 

30   = 1 x 27  + 3 

27   = 9 x 3 

 

The gcd of the two original integers is the last non-zero remainder. For the example above, the 

greatest common divisor of 144 and 57 is 3, the remainder listed on the second to last line of the 

algorithm. 

 

It's not too difficult to see that algorithm infers that the gcd(144, 57) = gcd(57, 30) = gcd(30, 27) 

= gcd(27, 3) = 3 

 

Thus, we can code the gcd function using recursion quite succinctly: 

 
public static int gcd(int a, int b) { 

    return b == 0 ? a : gcd(b, a%b); 

} 

 

Mod Inverse 

In many problems, it's useful to solve a modular equivalence equation, something like: 

 

47𝑥 ≡ 13 (𝑚𝑜𝑑 85) 
 

Normally, in a regular equation, we would divide through by 47. But this is not allowed in a 

modular equivalence. Rather, we must multiply the equation through by a value, c, such that 47c 

is equivalent to 1 mod 85, revealing just x. This value is defined as the modular inverse of 47 

mod 85. Typically this is written as 47-1 mod 85. In general a-1 mod b exists if and only if 

gcd(a,b) = 1. More generally, if gcd(a,b) = 1, we can always find integers x and y such that: 

 

𝑎𝑥 + 𝑏𝑦 = 1 
 

To find a-1 mod b once we find values for x and y that satisfy the equation above, simply 

consider the equation mod b: 

 

𝑎𝑥 + 𝑏𝑦 ≡ 1 (𝑚𝑜𝑑 𝑏) 

𝑎𝑥 ≡ 1 (𝑚𝑜𝑑 𝑏) 
 

It follows from the definition of modular inverse that 𝑎−1 ≡ 𝑥 (𝑚𝑜𝑑 𝑏). 



Luckily, when gcd(a, b) = 1, there is an extension to the Euclidean Algorithm that solves for a set 

of values (x, y) to satisfy the equation above. Here is the code for the Extended Euclidean 

Algorithm: 

 
// Returns b inverse mod a in res[1].  

// Note - value returned could be negative. 

// Only works if a and b are ints due to the multiplication in the code.  

public static long[] extendedEuclideanAlgorithm(long a, long b) { 

 

    if (b==0) 

        return new long[]{1,0,a}; 

    else { 

        long q = a/b; 

        long r = a%b; 

        long[] rec = extendedEuclideanAlgorithm(b,r); 

        return new long[]{rec[1], rec[0] - q*rec[1], rec[2]}; 

    } 

} 

 

One thing to note about any solution (x, y) to 𝑎𝑥 + 𝑏𝑦 = 1 is that if (x, y) is a solution, so is any 

ordered pair of the form (x + bz, y - az), for any integer z. To see this, recall that our given 

information is that 𝑎𝑥 + 𝑏𝑦 = 1. Now, consider plugging in x' = x + bz, y' = y - az, where z is 

any integer: 

 

𝑎𝑥′ + 𝑏𝑦′ = 𝑎(𝑥 + 𝑏𝑧) + 𝑏(𝑦 − 𝑎𝑧) 

= 𝑎𝑥 + 𝑎𝑏𝑧 + 𝑏𝑦 − 𝑎𝑏𝑧 

= 𝑎𝑥 + 𝑏𝑦 

= 1 
 

Thus, if we wanted to find all solutions to an equation of the form ax + by = 1, where a and b 

were given to us, we could find one solution using the Extended Euclidean algorithm and 

construct all other solutions by plugging in all possible integers for z. 

 

Finally, if we have an equation of the form 𝑎𝑥 + 𝑏𝑦 = 𝑐, where we want the general solution, we 

do the following: 

 

1) if gcd(a, b) doesn't divide evenly into c, there is no solution, and we are done. 

 

2) if gcd(a, b) isn't 1, then we can divide the whole equation through by the gcd and obtain a new 

equation where the gcd is 1. Let the three values we obtain by dividing by the gcd be a', b' and c', 

respectively. 

 

3) Solve the equation as if 1 were the right hand side. 

 

4) Multiply our solution (x, y) that solves the equation for 1 by c' to obtain a single valid solution 

(c'x, c'y). 

 

5) Add and subtract multiples of a' and b' as necessary to obtain other solutions. 

 



Prime Factorization 

A prime number is a positive integer that isn't divisible by any integer but 1 and itself. The first 

few prime numbers are 2, 3, 5, 7, and 11. If an integer n is NOT prime (also known as 

composite), it can be written as a product of two positive integers, both greater than 1. Note that 

if xy = n with x ≤ y, since √𝑛√𝑛 = 𝑛, it follows that 𝑥 ≤ √𝑛. Thus, all composite numbers n  

have at least one divisor greater than 1 and less than or equal to the square root of n. 

 

It follows that if we want to test a single number, n, for primality, it suffices to try to divide it 

(using % in code) by each possible divisor from 2 to √𝑛. 

 

Each integer has a unique prime factorization (the Fundamental Theorem of Arithmetic), namely, 

a list of primes that multiply to it. Typically, we write prime factorizations with each unique 

prime factor raised to the appropriate power. For example, 75 = 3 x 52. 

 

Using the fact above, we can write code that prime factorizes an integer, n, in O(√𝑛) time. We 

simply start at 2 and try dividing into our integer n. Once we find a divisor, we "divide it out" 

and continue the process. Whenever we find a divisor, we must try that divisor again, just in case 

it divides into the original number more than once. Here is some code that prime factorizes an 

integer: 

 
class pair { 

    public int prime; 

    public int exp; 

 

    public pair(int p, int e) { 

        prime = p; 

        exp = e; 

    } 

} 

 

In a class 

---------- 

public static ArrayList<pair> primeFactorize(int n) { 

 

    ArrayList<pair> res = new ArrayList<pair>(); 

 

    int div = 2; 

    while (div*div <= n) { 

 

        int exp = 0; 

        while (n%div == 0) { 

            n /= div; 

            exp++; 

        } 

     

        if (exp > 0) res.add(new pair(div, exp)); 

        div++; 



    } 

 

    if (n > 1) res.add(new pair(n, 1)); 

    return res; 

 

} 

 

Prime Sieve (Sieve of Eratosthenes) 

Now imagine that rather than needing to find if one number is prime, that we want to find all the 

primes from 2 to some positive integer n. A faster method than individually testing each integer 

exists, discovered by the Greek mathematician Eratosthenes. It works as follows: 

 

1) Write down all the numbers from 2 to n. 

2) Go through each number, in order. 

3) For each of these, if it’s not crossed off, circle it.  

4) Then, cross off each multiple of that number. Thus, when we circle 2 at the beginning of the 

algorithm, then cross off 4, 6, 8, 10, and so forth, until we get to the last even number less than or 

equal to n. 

 

 

In code, the following method returns a boolean array such that prime[i] is true if and only if i is 

prime: 

 
public static boolean[] primeSieve(int n) { 

 

    boolean[] isPrime = new boolean[n+1]; 

    Arrays.fill(isPrime, true); 

    isPrime[0]= false; 

    isPrime[1] = false; 

     

    for (int i=2; i*i<=n; i++) 

        for (int j=2*i; j<=n; j+=i) 

            isPrime[j] = false; 

 

    return isPrime; 

} 

 

We can optimize this in two ways: 

 

1) Stopping the outer loop after we reach √𝑛. 

 

2) Skipping the j loop if isPrime[i] is already false. (For example, there is no point in crossing off 

multiples of 4 since we already crossed all of those off when we crossed off all multiples of 2 

greater than 2.) 

 



For nearly all contest questions, the code above runs fast enough for any list of primes we might 

need and there's no need to make the optimizations mentioned. If problems with very, very tight 

run time limits, these optimizations may be of use, so it's good to know them. 

 

Number of Divisors of an Integer. 

To determine the number of divisors of an integer, we can either use brute force (checking all 

divisors to the square root, realizing that each divisor strictly less than the square root of a 

number maps to a divisor greater than the square root), or if we have access to the prime 

factorized version of the integer, we can detemrine it almost immediately. 

 

As an example, consider the integer n = 24 x 33 x 52.  

 

Any divisor of it must have the form 2a x 3b x 5c, with 0 ≤ a ≤ 4, 0 ≤ b ≤ 3, and 0 ≤ c ≤ 2. 

 

Since any choice of a can be combined with any choice of b and c, it follows that we can simply 

multiply the number of possible choices for a, b and c to obtain the number of divisors of n. In 

this example, we have 5 x 4 x 3 = 60 divisors. 

 

In general, if the exponents in the prime factorized form of an integer are e1, e2, ..., ek, then the 

number of divisors of the integer is (e1 + 1)(e2 + 1) ... (ek + 1). 

 

Note that one consequence of this formula is that the only way the number of divisors of an 

integer can be odd is if each of the factors above is odd. But that only occurs if all of the 

exponents in the prime factorization are even. If this is true, then the number is a perfect square. 

Thus, all integers EXCEPT perfect squares have an even number of divisors. The reason that 

perfect squares have an odd number of divisors is that each of their divisors can be written in 

pairs EXCEPT for the square root of the number. Take for example, 36. We can write its divisors 

in pairs that multiply to 36: (1, 36), (2, 18), (3, 12), and (4. 9). But, we would have to pair 6 with 

itself, but we don't want to count 6 twice!!! For all non-perfect squares, we always just list the 

pairs so the count must be even. 

 

Sum of the Divisors of an Integer 

Consider adding all of the divisors of n = 24 x 33 x 52. We know that all of them are of the form 

2a x 3b x 5c. Now, consider the following multiplication: 

 

(20 + 21 + 22 + 23 + 24)(30 + 31 + 32 + 33)(50 + 51 + 52) 

 

Notice that every term foiled out is of the form 2a x 3b x 5c. Furthermore, notice that each unique 

divisor appears exactly once in this expansion. Thus, this product equals the sum of the divisors 

of n. Finally, since each of the sums within the parentheses are geometric series, we can plug into 

the formula for the sum of geometric series to get the sum of the divisors of n to be: 

 

(25 − 1)

(2 − 1)
×

(34 − 1)

(3 − 1)
×

(53 − 1)

(5 − 1)
 

 



More generally, if n = ∏ 𝑝𝑖
𝑒𝑖𝑘

𝑖=1 , then the sum of its divisors is ∏
𝑝𝑖

𝑒𝑖+1−1

𝑝𝑖−1

𝑘
𝑖=1 . Note that the capital 

π is product notation. It's identical to a capital sigma except that it indicates the product of each 

term instead of the sum of each term. 

 

Prime Factorization of n! (and number of 0s at the end of n!) 

Consider the problem of how many times a prime number p divides into n!. n! is simply a listing 

of each integer from 1 to n, multiplied together. So, naturally, p will divide into p, 2p, 3p, ..., kp, 

where kp is the largest multiple of p less than or equal to n. More elegantly, we can deduce that k 

is simply the result of the integer division of n and p. So, p appears at least n/p times in the prime 

factorization of n!. However, this may not count all of the times p appears in the prime 

factorization of n!. Consider the term p2 in the expansion of n! This has the prime factor p twice, 

but we only counted it once in the count above. But notice that each multiple of p2 should have 

counted twice, not once. Thus, we need to add in the integer division of n and p2. But this only 

counts two factors of p for the term p3 (if it exists). Thus, we simply need to continue adding 

terms until pk exceeds n. Thus, a general formula for the number of times a prime p divides 

evenly into n! is ∑ ⌊
𝑛

𝑝𝑖⌋
∞
𝑖=1 . In code, here is a function that accomplishes the calculation: 

 
 

 

 

 

// Pre-condition: p is prime, n > 0. 

// Post-condition: returns the number of times p divides into 

// n! 

public static int numTimesDivide(int n, int p) { 

    int res = 0; 

    while (n > 0) { 

        res += (n/p); 

        n /= p; 

    } 

    return res; 

} 

 

Notice that a zero at the of a number indicates a divisor of 10 = 2 x 5. Thus, to determine the 

number of 0s at the end of a number, we simply need to determine the number of times 2 appears 

in its prime factorization and the number of times 5 appears in its prime factorization. The 

minimum of these two values equals the number of 0s at the end of the number. Applying this 

idea to n! and noting that 5 divides into n! fewer times than 2, the number of 0s at the end of n! is 

equal to the number of times 5 divides into n factorial, since is solved above. 

 

  



Using Divisibility Arguments to Reduce Brute Force Search 

Consider finding all of the positive integer solutions to: 

 

45x + 1373y = 100000007 

 

We can consider this equation mod 45 yielding: 

 

1373y ≡ 100000007 mod 45 

23y ≡ 17 mod 45 

 

Using brute force, we can plug in the possible 45 values for y and see which ones satisfy the 

equation. Once we know this, then we have a list of all possible values that we can substitute for 

y, since we can always add or subtract multiples of 45 from the original solution for y and still 

yield an integer for x. 

 

A better solution to such an equation would be to multiply both sides by the modular inverse of 

23 mod 45. By definition, a-1 mod n (read: "a inverse mod n") is the integer value, x, (if it exists), 

in between 0 and n-1 such that ax ≡ 1 mod n. In our example above, the modular inverse of 23 

mod 45 is 2, since 23 x 2 ≡ 1 mod 45. Thus we can solve the equation above by multiplying it 

through by 2: 

 

2(23y) ≡ 2(17) mod 45 

46y ≡ 34 mod 45 

y ≡ 34 mod 45 

 

This is clearly better than trying every value for x or y. 

 

 

Another example of using a divisibility argument is as follows: 

 

Given an integer, b, representing the length of a leg in a right triangle with integer side lengths, 

determine all possible values for the other leg and hypotenuse: 

 

Recall that a2 + b2 = c2, where a and b are the lengths of the legs of a right triangle and c is the 

length of the hypotenuse. Now, solve this for b2: 

 

b2 = c2 - a2 

b2 = (c - a)(c + a) 

 

It follows that if we're given b, then we must have (c - a) | b2. 

 

Since we know that c - a < c + a, since a is positive, it also follows that (c - a) < b, the square root 

of b2. 

 

Thus, our method of solution (so long as the input value of b is no more than 109) is to prime 

factorize b, which then also gives us the prime factorization of b2. Then, cycle through each 



divisor, of b2 that is less than b and set that equal to c - a, creating the following system of 

equations: 

 

𝑐 − 𝑎 = 𝑑 

𝑐 + 𝑎 =
𝑏2

𝑑
 

 

Adding the two equations yields 2𝑐 = 𝑑 +
𝑏2

𝑑
. If the quantity on the right hand side is odd, there's 

no solution since we require that c is an integer. Otherwise, divide both sides by 2, yielding the 

value of c and then substitute back for the value of a. 

 

If b ≤ 106, then instead of prime factorizing b, we can just run a brute force search to see which 

values in between 1 and 106 divide evenly into b2. (Note that based on these bounds we would 

have to store everything in longs since a million squared does not fit in an int.) 

 


