
Cumulative Frequency Array: For Range Sum Queries 

 

Imagine the problem of having a list of numbers and needing to calculate the sum of any 

contiguous range of those numbers. For example, if the array stored: 

 

Index 0 1 2 3 4 5 6 7 8 

Value 3 12 6 9 17 4 3 2 19 

 

and we were asked to find the sum of the values stored from index 2 to index 7, we could just 

add 6 + 9 + 17 + 4 + 3 + 2  = 41. 

 

But…this is rather inefficient, especially for queries on large ranges!!! 

 

Another way to store this same information is to store in a particular index the sum of the values 

upto that index in the original list. This information is typically known as cumulative frequency 

of the list. The corresponding cumulative frequency array for the list shown above is: 

  

Index 0 1 2 3 4 5 6 7 8 

Value 3 15 21 30 47 51 54 56 75 

 

Now, if we want to know the sum of the values in the original array from index 2 to index 7, we 

take the value in index 7 of this array, 56, and subtract from it the value in index 1, 15, to get 56 

– 15 = 41. 

 

Basically, what we’re doing is as follows (assume the original array is called a): 

 

(a[0] + a[1] + a[2] + a[3] + a[4] + a[5] + a[6] + a[7]) – (a[0] + a[1]) = 

 

a[2] + a[3] + a[4] + a[5] + a[6] + a[7] 

 

In this manner, we can get the sum of any contiguous array by subtracting two values from our 

cumulative frequency array. Our special case is when the low bound is index 0, and then we 

don’t subtract anything. Another way to handle this special case is to add an extra array index on 

the left: 

 

Index 0 1 2 3 4 5 6 7 8 9 

Value 0 3 15 21 30 47 51 54 56 75 

 

In this situation, all of our array indexes are shifted over by 1, but an original range starting at 

index 0 can be handled without a special case. Either method can be used to handle ranges 

starting at the beginning. 



Cumulative Frequencies: Two-dimensional Arrays 

We can use cumulative frequencies in two dimensional arrays as well, to quickly get the sums of 

any contiguous rectangle.  

 

First, let’s go over a quick example of how to obtain cumulative frequencies for a two 

dimensional array. Let the following be our input array: 

 

2 3 4 5 

1 2 6 5 

6 3 9 2 

 

We first run our cumulative frequency code for each row to obtain: 

 

2 5 9 14 

1 3 9 14 

6 9 18 20 

 

Then, we redo the same code, but for each column, to get: 

 

2 5 9 14 

3 8 18 28 

9 17 36 48 

 

Now, in this new array, each entry represents the sum of the rectangle defined by the top left 

corner and that square. For example, the 18 in row 2, column 3 of the new array, highlighted in 

green represents the sum of the rectangle shown in yellow in the original array. 

 

Consider the following picture. Let’s say we want the sum of the values in blue in this original 

array. (Note: I haven’t put in actual values since the key idea doesn’t require actual values to be 

in the boxes.) 

 

Once we have an auxiliary cumulative frequency array stored in the manner above, we can then 

calculate the sum of any contiguous rectangle of values in the input array. 

 

A visual example follows on the next page. 



Original Array: 

         

          

         

         

         

         

         

We can obtain the sum of the blue values as follows: Imagine getting the sum of the items in 

yellow (a single look up in the cumulative frequency array), subtracting out the sum of the items 

in green (two look ups in the cumulative frequency array), and then adding back the sum of the 

items in purple, shown above. 

 

Total Sum (in Yellow) - 

         

         

         

         

         

         

         

 

         

         

         

         

         

         

         

 

         

         

         

         

         

         

         

 

The green subtracts out everything from the yellow we don’t want, but subtracts out the purple 

twice, so we want to add this back in so it gets subtracted out properly.You have to be careful 

with border conditions (just like the special case mentioned in the one dimensional example), but 

basically if we have a cumulative frequency array, then we can calculate the sum of the box from 

(lowx, lowy) to (highx, highy) inclusive, as follows: 

 
cumfreq[highx][highy] – cumfreq[lowx-1][highy]  

  – cumfreq[highx][lowy-1]  

  + cumfreq[lowx-1][lowy-1] 

 



Example of a Sweep: Sorted List Matching Problem 

 
Given two sorted lists of names, output the names common to both lists. 

 

Perhaps the standard way to attack this problem is the following: 

 

For each name on list #1, do the following: 

 a) Search for the current name in list #2. 

 b) If the name is found, output it. 

 

If a list is unsorted, steps a and b may take O(n) time. Can you tell me why? 

 

BUT, we know that both lists are already sorted. Thus we can use a binary search in step a. From 

CS1, we learned that this takes O(log n) time, where n is the total number of names in the list. 

For the moment, if we assume that both lists are of equal size, then we can safely say that the 

size of list #2 is about ½ the total input size, so technically, our search would take O(log n/2) 

time, where n is the TOTAL SIZE of our input to the problem. Using our log rules however, we 

find that log2 n = (log2 n/2) + 1. Thus, it’s fairly safe to assume for large n that our running time 

is simply O(log2 n). 

 

Now, that is simply the running time for 1 loop iteration. But how many loop iterations are 

there? (Assume that there are n/2 names on each list, again, where n is the TOTAL SIZE of the 

input.) Under our assumption, there will be n/2 loop iterations, so our total running time would 

be O(n log2 n). Why did I not divide the expression in the Big-O by 2? 

 

A natural question becomes:  Can we do better?  The answer is yes. What is one piece of 

information we have that our first algorithm does NOT assume? 

 

That list #1 is sorted. You’ll notice that our previous algorithm will work regardless of the order 

of the names in list #1. But, we KNOW that this list is sorted also. Can we exploit this fact so 

that we don’t have to do a full binary search for each name?  

 

Consider how you’d probably do this task in real life... 

 

List #1   List #2 

Adams   Boston 

Bell   Davis 

Davis   Duncan 

Harding  Francis 

Jenkins  Gamble 

Lincoln  Harding 

Simpson  Mason 

Zoeller   Simpson 

 

You’d read that Adams and Boston are the first names on the list. Immediately you’d know that 

Adams wasn’t a match, and neither would any name on the list #1 alphabetically before Boston. 

So, you’d read Bell and go on to Davis. At this point you’d deduce that Boston wasn’t on the list 

either, so you’d read the next name on list #2 – voila!!! A match! You’d output this name and 

simply repeat the same idea. In particular, what we see here is that you ONLY go forward on 



your list of names. And for every “step” so to speak, you will read a new name off one of the two 

lists. Here is a more formalized version of the algorithm: 

 

1) Start two “markers”, one for each list, at the beginning of both lists. 

2) Repeat the following steps until one marker has reached the end of its list. 

    a) Compare the two names that the markers are pointing at. 

    b) If they are equal, output the name and advance BOTH markers one spot. 

         If they are NOT equal, simply advance the marker pointing to the name that comes earlier 

alphabetically one spot. 

 

Algorithm Run-Time Analysis 

For each loop iteration, we advance at least one marker. 

The maximum number of iterations then, would be the total number of names on both lists, 

which is n, using our previous interpretation. 

 

For each iteration, we are doing a constant amount of work. (Essentially a comparison, and/or 

outputting a name.) 

 

Thus, our algorithm runs in O(n) time – an improvement over our previous algorithm. 

 

A final question one must ask is, can we solve this question in even less time? If yes, what is 

such an algorithm, if no, how can we prove it? 

 

Our proof goes along these lines: In order to have an accurate list, we must read every name on 

one of the two lists. If we skip names on BOTH lists, we can NOT deduce whether we would 

have matches between those names or not. In order to simply “read” all the names on one list, we 

would take O(n/2) time. But, in order notation, this is still O(n), the running time of our second 

algorithm. Thus, we know we can not do better in terms of time, (within a constant factor), of our 

second algorithm. 

 

 



 Running Sums: Maximal Contiguous Subsequent Sum Problem 

 

Maximum Contiguous Subsequence Sum:  given (a possibly negative) integers A1, A2, …, AN, 

find (and identify the sequence corresponding to) the maximum value of  
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For the degenerate case when all of the integers are negative, the maximum contiguous 

subsequence sum is zero. 

 

Examples:   

 

If input is: {-2, 11, -4, 13, -5, 2}.  Then the output is: 20. 

 

If the input is {1, -3, 4, -2, -1, 6}.  Then the output is 7. 

 

In the degenerative case, since the sum is defined as zero, the subsequence is an empty string.  

An empty subsequence is contiguous and clearly, 0 > any negative number, so zero is the 

maximum contiguous subseqeunce sum. 

 

The O(N3) Algorithm (brute force method) 

 
public static int MCSS(int [] a) { 

 

     int max = 0, sum = 0, start = 0, end = 0; 

   

     // Cycle through all possible values of start and end indexes 

     // for the sum. 

     for (i = 0; i < a.length; i++) { 

          for (j = i; j < a.length; j++) {  

               sum = 0; 

 

               // Find sum A[i] to A[j]. 

               for (k = i; k <= j; k++)  

                    sum += a[k]; 

               if (sum > max) { 

                   max = sum; 

                   start = i; // Although method doesn't return these 

                   end = j;  // they can be computed. 

               } 

          }       

     } 

     return max; 

} 

 

General Observation Analysis 

 

Look at the three loops: the i loop executes SIZE (or N) times.  The j loop executes SIZE-1 (or N-

1) times.  The k loop executes SIZE-1 times in the worst case (when i = 0).  This gives a rough 

estimate that the algorithm is O(N3). 

 



Precise Analysis Using Big-Oh Notation 

 

In all cases the number of times that, sum += a[k], is executed is equal to the number of ordered 

triplets (i, j, k) where 1  i  k  j  N2 (since i runs over the whole index, j runs from i to the 

end, and k runs from i to j).  Therefore, since  i, j, k, can each only assume 1 of n values, we 

know that the number of triplets must be less than n(n)(n) = N3 but i  k  j restricts this even 

further.  By combinatorics it can be proven that the number of ordered triplets is n(n+1)(n+2)/6.  

Therefore, the algorithm is O(N3). 

 

The O(N2) Algorithm  

 

Algorithm 
public static int MCSS(int [] a) { 

     int max = 0, sum = 0, start = 0, end = 0; 

     // Try all possible values of start and end indexes for the sum. 

     for (i = 0; i < a.length; i++) { 

          sum = 0; 

          for (j = i; j < a.length; j++) { 

               sum += a[j]; // No need to re-add all values. 

               if (sum > max) { 

                   max = sum; 

                   start = i; // Although method doesn't return these 

                   end = j;  // they can be computed. 

               } 

          }       

     } 

     return max; 

} 

 

Discussion of the technique and analysis 

We would like to improve this algorithm to run in time better than O(N3).  To do this we need to 

remove a loop!  The question then becomes, “how do we remove one of the loops?”  In general, 

by looking for uncessary calculations, in this specific case, uncessary calculations are performed 

in the innerloop. The sum for the subsequence extending from i to j – 1 was just calculated – so 

calculating the sum of the sequence from i to j shouldn’t take long because all that is required is 

that you add one more term to the previous sum (i.e., add Aj ).  However, the cubic algorithm 

throws away all of this previous information and must recompute the entire sequence! 

Mathematically, we are utilizing: j
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The O(N) Algorithm (A linear algorithm) 

 

Discussion of the technique and analysis 

 

To further streamline this algorithm from a quadratic one to a linear one will require the removal 

of yet another loop.  Getting rid of another loop will not be as simple as was the first loop 

removal.  The problem with the quadratic algorithm is that it is still an exhaustive search, we’ve 

simply reduced the cost of computing  the last subsequence down to a constant time (O(1)) 

compared with the linear time (O(N)) for this calculation in the cubic algorithm.  The only way 

to obtain a subquadratic bound for this algorithm is to narrow the search space by eliminating 

from consideration a large number of subsequences that cannot possibly affect the maximum 

value. 



 

How to eliminate subsequences from consideration 

 

i                                    j   j+1                              q 

A             < 0 B           Sj+1, q 

C   < Sj+1, q 

 

If A < 0 then C < B  

 

If 
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Basically if you take the sum from Ai to Aq and get rid of the first terms from  Ai to Aj your sum 

increases!!! Thus, in this situation the sum from Aj+1 to Aq must be greater than the sum from Ai 

to Aq.  So, no subsequence that starts from index i and ends after index j has to be considered. 

So – if we test for sum < 0 and it is – then we can break out of the inner loop.  However, this is 

not sufficient for reducing the running time below quadratic! 

 

Now, using the fact above and one more observation, we can create a O(n) algorithm to solve the 

problem. 

 

If we start computing sums 
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1) The MCSS is contained entirely in between Ai to Aj-1  OR 

2) The MCSS starts before Ai or after Aj. 

 

From this, we can also deduce that unless there exists a subsequence that starts at the beginning 

that is negative, the MCSS MUST start at the beginning. If it does not start at the beginning, then 

it MUST start after the point at which the sum from the beginning to a certain point is negative. 

 

So, using this how can we come up with an algorithm? 

 

1) We can compute intermediate sums starting at i=0. 

2) When a new value is added, adjust the MCSS accordingly. 

3) If the running sum ever drops below 0, we KNOW that if there is a new MCSS than what has 

already been calculated, it will start AFTER index j, where j is the first time the sum dropped 

below zero. 

4) So now, just start the new running sum from j+1. 

 



Algorithm 
public static int MCSS(int [] a) { 

 

     int max = 0, sum = 0, start = 0, end = 0, i=0; 

   

     // Cycle through all possible end indexes. 

     for (j = 0; j < a.length; j++) { 

         

          sum += a[j]; // No need to re-add all values. 

          if (sum > max) { 

              max = sum; 

              start = i; // Although method doesn't return these 

              end = j;  // they can be computed. 

          } 

          else if (sum < 0) { 

               i = j+1; // Only possible MCSSs start with an index >j. 

               sum = 0; // Reset running sum. 

          }       

     } 

     return max; 

} 

 

MCSS Linear Algorithm Clarification 

Whenever a subsequence is encountered which has a negative sum – the next subsequence to 

examine can begin after the end of the subsequence which produced the negative sum.  In other 

words, there is no starting point in that subsequence which will generate a positive sum and thus, 

they can all be ignored. To illustrate this, consider the example with the values 

 

5, 7, -3, 1, -11, 8, 12 

 

You'll notice that the sums 5, 5+7, 5+7+(-3) and 5+7+(-3)+1       are positive, but 

5+7+(3)+1+(-11) is negative. 

 

It must be the case that all subsequences that start with a value in between the 5 and -11 and end 

with the -11 have a negative sum. Consider the following sums: 

 

7+(-3)+1+(-11)  (-3)+1+(-11)  1+(-11)  (-11) 

 

Notice that if any of these were positive, then the subsequence starting at 5 and ending at -11 

would have to be also. (Because all we have done is stripped the initial positive subsequence 

starting at 5 in the subsequences above.) Since ALL of these are negative, it follows that NOW 

MCSS could start at any value in between 5 and -11 that has not been computed. 

 

Thus, it is perfectly fine, at this stage, to only consider sequences starting at 8 to compare to the 

previous maximum sequence of 5, 7, -3, and 1. 


