Weighted Graph Algorithms: Minimum Spanning Tree, Shortest Distance

Minimum Spanning Trees
In this lecture we will explore the problem of finding a minimum spanning tree in an undirected weighted graph (if one exists). First let's define a tree, a spanning tree, and a minimum spanning tree:

tree: A connected graph without cycles. (A cycle is a path that starts and ends at the same vertex.)

spanning tree: a subtree of a graph that includes each vertex of the graph. A subtree of a given graph as a subset of the components of that given graph. (Naturally, these components must form a graph as well. Thus, if your subgraph can't just have vertices A and B, but contain an edge connecting vertices B and C.)

Minimum spanning tree: This is only defined for weighted graphs. This is the spanning tree of a given graph whose sum of edge weights is minimum, compared to all other spanning trees.

Crucial Fact about Minimum Spanning Trees
Let G be a graph with vertices in the set V partitioned into two sets V₁ and V₂. Then the minimum weight edge, e, that connects a vertex from V₁ to V₂ is part of a minimum spanning tree of G.

Proof: Consider a MST T of G that does NOT contain the minimum weight edge e. This MUST have at least one edge in between a vertex from V₁ to V₂. (Otherwise, no vertices between those two sets would be connected.) Let G contain edge f that connects V₁ to V₂. Now, add in edge e to T. This creates a cycle. In particular, there was already one path from every vertex in V₁ to V₂ and with the addition of e, there are two. Thus, we can form a cycle involving both e and f. Now, imagine removing f from this cycle. This new graph, T', is also a spanning tree, but it's total weight is less than or equal to T because we replaced e with f, and e was the minimum weight edge.

Each of the algorithms we will present works because of this theorem above.

Each of these algorithms is greedy as well, because we make the "greedy" choice in selecting an edge for our MST before considering all edges.

Kruskal's Algorithm

The algorithm is executed as follows:

Let V = ∅
For i=1 to n-1, (where there are n vertices in a graph)
 V = V ∪ e, where e is the edge with the minimum edge
weight not already in V, and that does NOT
form a cycle when added to V.

Return V

Basically, you build the MST of the graph by continually adding in the smallest weighted
edge into the MST that doesn't form a cycle. When you are done, you'll have an MST. You
HAVE to make sure you never add an edge the forms a cycle and that you always add the
minimum of ALL the edges left that don't.

The reason this works is that each added edge is connecting between two sets of vertices,
and since we select the edges in order by weight, we are always selecting the minimum
edge weight that connects the two sets of vertices.

In order to do cycle detection here, one idea is to keep track of all the separate clusters of
vertices. Initially, each vertex is in its own cluster. For each edge added, you are merging
two clusters together. Indicate this by changing a variable that stores the cluster ID values
of a vertex to be the same as every other vertex in the cluster. An edge can NOT be added
in between two vertices within the same cluster.

Prim's Algorithm

This is quite similar to Kruskal's with one big difference:

The tree that you are "growing" ALWAYS stays connected. Whereas in Kruskal's you
could add an edge to your growing tree that wasn't connected to the rest of it, here you
can NOT do it.

Here is the algorithm:

1) Set \(S = \emptyset \).
2) Pick any vertex in the graph.
3) Add the minimum edge incident to that vertex to \(S \).
4) Continue to add edges into \(S \) (n-2 more times) using the
 following rule:

 Add the minimum edge weight to \(S \) that is incident to \(S \)
 but that doesn't form a cycle when added to \(S \).

Once again, this works directly because of the theorem discussed before. In particular, the
set you are growing is the partition of vertices and each edge you add is the smallest edge
connecting that set to its complement.

For cycle detection, note that at each iteration, you must add exactly one vertex into the
subgraph represented by the edges in \(S \). (You can think of "growing" the tree as
successively adding vertices that are connected instead of adding edges.)
Floyd-Warshall’s Algorithm
This algorithm finds the shortest distance in a weighted directed graph between all pairs of vertices and runs in \(O(V^3)\) time for a graph with \(V\) vertices.

The vertices in a graph be numbered from 1 to \(n\). Consider the subset \{1,2,...,k\} of these \(n\) vertices.

Imagine finding the shortest path from vertex \(i\) to vertex \(j\) that uses vertices in the set \{1,2,...,k\} only. There are two situations:

1) \(k\) is an intermediate vertex on the shortest path.
2) \(k\) is not an intermediate vertex on the shortest path.

In the first situation, we can break down our shortest path into two paths: \(i\) to \(k\) and then \(k\) to \(j\). Note that all the intermediate vertices from \(i\) to \(k\) are from the set \{1,2,...,k-1\} and that all the intermediate vertices from \(k\) to \(j\) are from the set \{1,2,...,k-1\} also.

In the second situation, we simply have that all intermediate vertices are from the set \{1,2,...,k-1\}.

Now, define the function \(D\) for a weighted graph with the vertices \{1,2,...,n\} as follows:

\[
D(i,j,k) = \text{the shortest distance from vertex } i \text{ to vertex } j \text{ using the intermediate vertices in the set } \{1,2,...,k\}
\]

Now, using the ideas from above, we can actually recursively define the function \(D\):

\[
D(i,j,k) = \begin{cases}
 w(i,j), & \text{if } k=0 \\
 \min(D(i,j,k-1), D(i,k,k-1)+D(k,j,k-1)) & \text{if } k > 0
\end{cases}
\]

In English, the first line says that if we do not allow intermediate vertices, then the shortest path between two vertices is the weight of the edge that connects them. If no such weight exists, we usually define this shortest path to be of length infinity.

The second line pertains to allowing intermediate vertices. It says that the minimum path from \(i\) to \(j\) through vertices \{1,2,...,k\} is either the minimum path from \(i\) to \(j\) through vertices \{1,2,...,k-1\} OR the sum of the minimum path from vertex \(i\) to \(k\) through \{1,2,...,k-1\} plus the minimum path from vertex \(k\) to \(j\) through \{1,2,...,k-1\}. Since this is the case, we compute both and choose the smaller of these.

All of this points to storing a 2-dimensional table of shortest distances and using dynamic programming for a solution.

1) Set up a 2D array that stores all the weights between one vertex and another. Here is an example:
Notice that the diagonal is all zeros. Why? Now, for each entry in this array, we will "add in" intermediate vertices one by one, (first with k=1, then k=2, etc.) and update each entry once for each value of k.

After adding vertex 1, here is what our matrix will look like:

\[
\begin{array}{cccc}
0 & 3 & 8 & \text{inf} \\
\text{inf} & 0 & \text{inf} & 1 \\
\text{inf} & 4 & 0 & \text{inf} \\
2 & \text{inf} & -5 & 0 \\
\text{inf} & \text{inf} & \text{inf} & 6
\end{array}
\]

After adding vertex 2, we get:

\[
\begin{array}{cccc}
0 & 3 & 8 & 4 \\
\text{inf} & 0 & \text{inf} & 1 \\
\text{inf} & 4 & 0 & 5 \\
2 & 5 & -5 & 0 \\
\text{inf} & \text{inf} & \text{inf} & 6
\end{array}
\]

After adding vertex 3, we get:

\[
\begin{array}{cccc}
0 & 3 & 8 & 4 \\
\text{inf} & 0 & \text{inf} & 1 \\
\text{inf} & 4 & 0 & 5 \\
2 & 3 & -5 & 0 \\
\text{inf} & \text{inf} & \text{inf} & 6
\end{array}
\]

After adding vertex 4, we get:

\[
\begin{array}{cccc}
0 & 3 & 1 & 4 \\
3 & 0 & \text{inf} & 1 \\
7 & 4 & 0 & 5 \\
2 & -1 & -5 & 0 \\
8 & 5 & 1 & 6
\end{array}
\]

Finally, after adding in the last vertex:

\[
\begin{array}{cccc}
0 & 1 & 3 & 2 \\
3 & 0 & -4 & 1 \\
7 & 4 & 0 & 5 \\
2 & -1 & -5 & 0 \\
8 & 5 & 1 & 6
\end{array}
\]
Here is a method that calculates the shortest distances given the adjacency matrix of the graph and doesn't destroy the original data:

```java
public static int[][] shortestpath(int[][] adj) {
    int n = adj.length;
    int[][] m = copy(adj);
    for (int k=0; k<n; k++)
        for (int i=0; i<n; i++)
            for (int j=0; j<n; j++)
                m[i][j] = Math.min(m[i][j], m[i][k]+m[k][j]);
    return m;
}
```

```java
public static void copy(int[][] a) {
    int[][] res = new int[a.length][a[0].length];
    for (int i=0; i<a.length; i++)
        for (int j=0; j<a[0].length; j++)
            res[i][j] = a[i][j];
    return res;
}
```

Path Reconstruction - Floyd-Warshall's
Create a path matrix so that path[i][j] stores the last vertex visited on the shortest path from i to j. Update as follows:

```java
if (D[i][k]+D[k][j] < D[i][j]) {
    D[i][j] = D[i][k]+D[k][j];
    path[i][j] = path[k][j];
}
```

Now, the once this path matrix is computed, we have all the information necessary to reconstruct the path. Consider the following path matrix (indexed from 1 to 5 instead of 0 to 4):

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Nil</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>Nil</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4</td>
<td>Nil</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>Nil</td>
<td></td>
</tr>
</tbody>
</table>

Using this matrix, we can construct the shortest path from vertex 2 to vertex 5.

path[2][5] = 1, path[2][1] = 4, path[2][4] = 2. So, the path is 2->4->1->5.
Dijkstra's Algorithm

This algorithm finds the shortest path from a source vertex to all other vertices in a weighted directed graph without negative edge weights.

Here is the algorithm for a graph G with vertices $V = \{v_1, \ldots, v_n\}$ and edge weights w_{ij} for an edge connecting vertex v_i with vertex v_j. Let the source be v_1.

Initialize a set $S = \emptyset$. This set will keep track of all vertices that we have already computed the shortest distance to from the source.

Initialize an array D of estimates of shortest distances. $D[1] = 0$, while $D[i] = \infty$, for all other i. (This says that our estimate from v_1 to v_1 is 0, and all of our other estimates from v_1 are infinity.)

While $S \neq V$ do the following:

1) Find the vertex (not in S) that corresponds to the minimal estimate of shortest distances in array D. *Use a priority queue to speed up this step.*

2) Add this vertex, v_i, into S.

3) Recompute all estimates based on edges emanating from v. In particular, for each edge from v, compute $D[i] + w_{ij}$. If this quantity is less than $D[j]$, then set $D[j] = D[i] + w_{ij}$.

Essentially, what the algorithm is doing is this:

Imagine that you want to figure out the shortest route from the source to all other vertices. Since there are no negative edge weights, we know that the shortest edge from the source to another vertex must be a shortest path. (Any other path to the same vertex must go through another, but that edge would be more costly than the original edge based on how it was chosen.)

Now, for each iteration, we try to see if going through that new vertex can improve our distance estimates. We know that all shortest paths contain subpaths that are also shortest paths. (Try to convince yourself of this.) Thus, if a path is to be a shortest path, it must build off another shortest path. That's essentially what we are doing through each iteration, is building another shortest path. When we add in a vertex, we know the cost of the path from the source to that vertex. Adding that to an edge from that vertex to another, we get a new estimate for the weight of a path from the source to the new vertex.

This algorithm is greedy because we assume we have a shortest distance to a vertex before we ever examine all the edges that even lead into that vertex. In general, this works because we assume no negative edge weights. The formal proof is a bit drawn out, but the intuition behind it is as follows: If the shortest edge from the source to any vertex is weight w, then any other path to that vertex must go somewhere else, incurring a cost greater than w. But, from that point, there's no way to get a path from that point with a smaller cost, because any edges added to the path must be non-negative.
By the end, we will have determined all the shortest paths, since we have added a new vertex into our set for each iteration.

This algorithm is easiest to follow in a tabular format. The adjacency matrix of an example graph is included below. Let a be the source vertex.

\[
\begin{array}{ccc}
 a & b & c & d & e \\
 a & 0 & 10 & \text{inf} & \text{inf} & 3 \\
b & \text{inf} & 0 & 8 & 2 & \text{inf} \\
c & 2 & 3 & 0 & 4 & \text{inf} \\
d & 5 & \text{inf} & 4 & 0 & \text{inf} \\
e & \text{inf} & 12 & 16 & 13 & 0 \\
\end{array}
\]

Here is the algorithm:

<table>
<thead>
<tr>
<th>Estimates</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add to Set</td>
<td>a</td>
<td>10</td>
<td>\text{inf}</td>
<td>\text{inf}</td>
</tr>
<tr>
<td>a</td>
<td>e</td>
<td>10</td>
<td>19</td>
<td>16</td>
</tr>
<tr>
<td>b</td>
<td>10</td>
<td>18</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>d</td>
<td>10</td>
<td>16</td>
<td>12</td>
<td>3</td>
</tr>
</tbody>
</table>

We changed the estimates to c and d to 19 and 16 respectively since these were improvements on prior estimates, using the edges from e to c and e to d. But, we did NOT change the 10 because 3+12, (the edge length from e to b) gives us a path length of 15, which is more than the current estimate of 10. Using edges bc and bd, we improve the estimates to both c and d again. Finally using edge dc we improve the estimate to c.

Now, we will prove why the algorithm works. We will use proof by contradiction. After each iteration of the algorithm, we "declare" that we have found one more shortest path. We will assume that one of these that we have found is NOT a shortest path.

Let t be the first vertex that gets incorrectly placed in the set S. This means that there is a shorter path to t than the estimate produced when t is added into S. Since we have considered all edges from the set S into vertex t, it follows that if a shorter path exists, its last edge must emanate from a vertex outside of S to t. But, all the estimates to the edges outside of S are greater than the estimate to t. None of these will be improved by any edge emanating from a vertex in S (except t), since these have already been tried. Thus, it's impossible for ANY of these estimates to ever become better than the estimate to t, since there are no negative edge weights. With that in mind, since each edge leading to t is non-negative, going through any vertex not in S to t would not decrease the estimate of its distance. Thus, we have contradicted the fact that a shorter path to t could be found. Thus, when the algorithm terminates with all vertices in the set S, all estimates are correct.
Bellman-Ford Algorithm

This algorithm finds shortest distances from a source vertex for directed graphs with or without negative edge weights. This algorithm works very similar to Dijkstra's in that it uses the same idea of improving estimates (also known as edge relaxation), but it doesn't use the greedy strategy that Dijkstra's uses. (The greedy strategy that Dijkstra's uses is assuming that a particular distance is optimal without looking at the rest of the graph. This can be done in that algorithm because of the assumption of no negative edge weights.)

The basic idea of relaxation is as follows:

1) Maintain estimates for distances of each vertex.

2) Improve these estimates by considering particular edges. Namely, if your estimate to vertex b is 5, and edge bd has a weight of 3, but your current estimate to vertex d is greater than 8, improve it!

Using this idea, here is Bellman-Ford's algorithm:

1) Initialize all estimates to non-source vertices to infinity.
 Denote the estimate to vertex u as $D[u]$, and the weight of an edge (u,v) as $w(u,v)$.

2) Repeat the following $|V| - 1$ times:
 a) For each edge (u,v)

 if $D[u] + w(u,v) < D[v]$

 $D[v] = D[u] + w(u,v)$

The cool thing is that it doesn't matter what order you go through each edge in the graph in the inner for loop in step 2. You just have to go through each edge exactly once.

This algorithm is useful when the graph is sparse, has negative edge weights and you only need distances from one vertex.
Let's trace through an example. Here is the adjacency matrix of a graph, using a as the source:

\[
\begin{array}{cc|ccc}
& a & b & c & d & e \\
\hline
a & 0 & 6 & \text{inf} & \text{inf} & 7 \\
b & \text{inf} & 0 & 5 & -4 & 8 \\
c & \text{inf} & -2 & 0 & \text{inf} & \text{inf} \\
d & 2 & \text{inf} & 7 & 0 & \text{inf} \\
e & \text{inf} & \text{inf} & -3 & 9 & 0 \\
\end{array}
\]

<table>
<thead>
<tr>
<th>Edge</th>
<th>Estimates</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>ab, ae</td>
<td>0</td>
<td>6</td>
<td>\text{inf}</td>
<td>\text{inf}</td>
<td>7</td>
</tr>
<tr>
<td>bc, bd, be, ec, ed</td>
<td>0</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>all, with cb</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>all, with bd</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>-2</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

The proof for the correctness of this algorithm lies in the fact that after each \(i\)th iteration each estimate is the shortest path using at most \(i\) edges. This is certainly true after the first iteration. Now, assume it is true for the \(i\)th iteration. Under this assumption, we must prove it is true for the \(i+1\)th iteration. Notice that either the shortest path using at most \(i+1\) edges uses at most \(i\) edges OR, is a shortest path of \(i\) edges with one more edge tacked on. This is because all shortest paths contain shortest paths. BUT, the way the algorithm works, ALL shortest paths of length \(i\) are considered, along with all edges added to them. Thus, the algorithm MUST come up with the optimal path using at most \(i+1\) edges.