o/

UCF Programming Team Practice
Geometry Lecture Notes

Lines
There are several ways to represent a line:

General (implicit) form: Ax+By+C=0
Slope-intercept: y=mx+b
Parametric: ' X=Xot+tde,y=yo+tdy
‘ where dx =x; —Xj, and dy = y» — y1
-for any two points P; = (x1, y1) and P, = (X2, y2) on the line

In general, the parametric forms are easiest to deal with in code, because they let you deal
with x and y separately, and they give you a single value to represent any position on the
line. This even works for lines in three dimensions; you only need a third parametric
equation representing z.

In particular, line segments are especially easy to represent parametrically. Select the
two points P; and P, as the two endpoints of the segment, then your parameter ¢ will vary
from 0 to 1 along the segment (other values of t are not on the segment).

Line and Line Segment Intersections

Intersections of lines and segments occur in contest problems frequently. The solution is
simply to solve the system of equations given by the two lines. For lines (or segments) A
and B, solving for the point of intersection (X, y), the equations would look like this:

x = Ax; + s Adx x=Bx; +t Bdx
y = Ay +s Ady y =By +t Bdy

There are four equations in this system, and there are also four unknowns (x, y, s, and t).
However, setting the two x’s and the two y’s equal to each other:

Ax; +s Adx = Bx; +t Bdx
Ay +s Ady = Bx; +t Bdy
or,
- s Adx—-tBdx =Bx; - Axy
s Ady — t Bdy = By; — Ay;

Now, we have a nice, tidy system to solve. There are many techniques to solve systems
such as this. A simple one to code is Cramer’s Rule (see your Linear Algebra or Calculus
book for a thorough discussion). Remember, for segments to intersect, the parametric
point of intersection (the s and t values in the equations above) must be between 0 and 1
for both segments.

Beware of parallel and collinear lines and segments, these require special handling.

Vectors

Vectors are a very useful geometric tool. The parametric form of a line or line segment
can be expressed in a single vector-valued equation, for example:

L=P;t+P;(1-t), for points P; and P, on line L

Vectors can also represent the distance and direction between two points, the velocity of
a moving object, and many other things. Vectors can be represented in the same way as
points, typically a structure of two int’s or double’s (three in 3D problems).

Vector magnitude

Obtaining the magnitude of a vector is similar to obtaining the distance between two
points: '

2 2
Ivli=yve +v,

Sometimes, it is necessary to normalize a vector (making its magnitude equal to one).
This is done by simply dividing each component of the vector by the vector’s magnitude.

Dot product‘

The dot product of two vectors is simply the sum of the products of each vector’s
respective components. That is, ‘

A-B=A,B, +A B,

also, .
A-B=|AJll|B] cosd

Note that the dot product is a scalar value (not a vector).

Cross product

The cross product of two vectors is a vector. This vector is always orthogonal
(perpendicular) to the other two, unless the original two are parallel or opposite. (in which
case, it is undefined). For two-dimensional vectors, the cross product is a three-
dimensional vector with the x and y components both zero and the z component having a
value as shown:

A=<A_A >
B=<B,,B, >
AxB=<0,0,A.B,-A B, >

also,
|AxB|=| Al B| sin&

The scalar cross-product value (the z-component of a two-dimensional cross product) has
some useful properties. Ifthe scalar cross product of two vectors is positive, then the
rotation from the first vector to the second is counter-clockwise. If negative, it is
clockwise.

Angle between two vectors

The angle between two vectors can be easily determined using the dot product, and the
scalar value of the cross product. Here’s how:

A-B=[|All|B] cosd
lAxBII<[A[lIB || sin &

S0,
sind ||AxB]||
cosé A-B
and
0 = tan- (LAXBI
A-B

The atan2() function works well for the inverse tangent in this equation, since it’s answer
is valid from —pi to pi. If you don’t know how atan2() works, educate yourself.

Polygons

Polygons are almost always represented by a set of consecutive points (vertices), and they
fall into three categories: :

e Convex: Non-intersecting edges, all interior angles < 180 degrees

* Concave: Non-intersecting edges, one or more interior angles > 180 degrees

e Complex: One or more intersecting edges

In general dealing with complex polygons is far more difficult than dealing with simple
(non-complex) polygons. Likewise, concave polygons are often trickier to handle than
convex polygons.

Area of a Polygon

Finding the area of a polygon is quite simple. For each edge of the polygon (each pair of
adjacent vertices, create a trapezoid, using the difference of the two x — coordinates as the
“height” and each y coordinate as one of the “bases.” Note that the trapezoid’s area will
be negative if the difference in x coordinates is negative. This is part of the process.

Sum the trapezoid areas up and you will have the area of the polygon. Ifthe vertices of
the polygon are in counter-clockwise order, the total area will be negative, so you should
always take the absolute value of the final area. In case you’ve forgotten your area
formulae:

1
Atrapezoid = '2‘ h (B 1+ B 2)

where B; and B, are the y coordinates of the polygon vertices, and 4 is the difference in x
coordinates.

Point in Porlygon

Given a point and a polygon (convex or concave), you are to determine if the point is
inside the polygon. This can be done using the angle between two vectors formula. For
each pair of adjacent vertices, determine the angle between the vectors from the point to
each vertex. Sum each of these angles, and at the end, you’ll have 2= if the point is inside
the polygon, and 0 if not. This method works for convex and concave polygons.

This method fails if the test point is one of the polygon’s vertices. Also, a point on
the polygon’s edge may not provide a correct answer (the answer will be =, but it
may need to be —x for your sum to work out particular situation). Finally, make
sure you understand what the problem means by “inside.” Is a point on the
polygon’s edge (or a vertex) “inside” or “outside”?

Convex hull

Build the smallest fence you can around a group of trees. Tie a string around a group of
nails hammered into a board. Compute the minimum amount of paint a warning
boundary around a group of potholes would require. Each of these problems can be
solved using a convex hull. A convex hull is the smallest convex polygon that surrounds
and encompasses a group of points.

To find a convex hull, start with the bottom-most, left-most point. That is, start with the
point with the smallest y coordinate. If multiple points have that y coordinate, pick the
one with the smallest x coordinate. This is the first point on the convex hull. At each
subsequent point on the hull, form a vector from that point to each remaining point.
Select the point with the vector that makes the smallest positive angle with the previous
vector (at the first point, your “previous vector” points to the right, in the positive X
direction). Stop when you reach the initial point.

Make sure you understand whether the problem wants collinear points included on
the convex hull or not. If so, include them. If not, when choosing the next point on
the hull from several collinear points, make sure you pick the point farthest from
the current point (otherwise you may include collinear points inadvertently).

Distances
It is often required to compute the distance between various geometric features.

Point-Point
This is the simplest distance to compute. Given two points, P and Q, the distance is
essentially the magnitude of the vector between them.

D=|Q-P|=(Q, -P) +(©Q, -P)

Point-Line and Point-Segment

This method requires a little more math. If you’re given the line in the general form (Ax
+ By + C = 0) as well as a point (u, v), the distance from (u, v) to the line is given by the
simple formula:

D=|Au+Bv+C|

VA + B?

To understand this a little better, realize that the vector (A, B > is a normal (perpendicular)

vector to the line. Let’s denote this as vector N. If you assume a point P is on the line,
then the line equation becomes N-P +C = 0. Further, C can be computed using another
point Q on the line as so: C =-Q-N. Armed with this knowledge, we can create a

function (very similar to the D equation above),

Now, instead of assuming P is on the line, we can test for it. Further, we can determine
the distance from the line if it’s not. If £, (P) =0, then P is on the line. Ifnot, then the

value of f,(P)indicates the distance from P to the line. Note that £, (P)actually returns a

signed distance, which can be used to decide which half-plane (i.e, which side of the line)
that the point P is on. If f; (P)is positive, then it lies on the same side of the line that the

normal vector N is pointing. Ifit’s negative, then it lies on the opposite side. If you
don’t care, take the absolute value (as done in the D equation above).

More often, you’re given two points (call them P and Q) to describe a line. You can
solve for 4 and B (vector N) and C given these two points as follows:

N-(P-Q)=0-
N=(P-Q) =(~(7,-0,).(P, -0,))=(4.B)
C=-Q-N

Once you have N and C, you can use the formula above. However, a more
straightforward way to handle this is to use point rotation (described below). Rotate
point Q around point P so that P lies horizontal and to the right of Q. Next, rotate the test
point (also around P) by the same amount. Now, you can simply subtract the y
coordinate of the line from the test point’s y coordinate. ;

Finally, if you’re finding the distance from a point to a line segment (using either
technique), you’ll also have to consider the distance to each of the segment’s endpoints
and return the minimum of the three distances. If you’re using the point rotation method,
a quick shortcut is to determine if the x coordinate of the rotated test point is between the
x coordinates of the rotated endpoints. If so, then the y distance is the correct answer. If
not, then you’ll need to compute the distance to the closer endpoint and return that.

Point Rotation

To rotate a point B around the origin, you can multiply the point as a vector <x, y> by the
rotation matrix Rg as follows:

0 -—sind
[x’ y’]= C.OS sin [xcos@ ysind xsin@+ ycos&]
sin@ cosé y

This will result in a new point B’ that is rotated about the origin by 0 radians. To rotate B
about another point 4 instead of the origin, simply subtract 4 from B before rotating, then
‘add 4 back to B’ when done.

References

Akenine-Moller, Tomas and Eric Haines, Real-Time Rendering (2 ed.), pp- 732 734,
A.K. Peters, Natick, MA, 2002.

