
Applications of Binary Search 

 
The basic idea of a binary search can be used in many different places. In particular, any time 

you are searching for an answer in a search space that is somehow “sorted”, you can simply set a 

low bound for the value you’re looking for, and a high bound, and through comparisons in the 

middle, successively reset either your low or high bound, narrowing your search space by a 

factor of 2 for each comparison. This is especially useful in situations where you can calculate an 

increasing function forwards easily, but have difficulty calculating its inverse directly. Since the 

function is increasing, guessing allows you to narrow down your search range for the possible 

answer by half. In essence, after each guess, you know which direction to “go.” 

 

Binary searches can either be in a continuous space (answer is a real number) or a discrete space 

(answer is an integer). While the high level concepts are the same for both search domains, there 

are some specific issues that come up only for continuous searches and a different set of issues 

that come up for discrete searches. Thus, each problem is labeled with which type of search it is. 

 

The text to each of the problems in this lecture can be found at the end of this document. 

 
Problem #1: Crystal Etching (Continuous) 

Consider the problem of calculating how many seconds a crystal should be “etched” until it 

arrives at a given frequency. (This is actually a real problem I worked on at a summer job…) 

 

In particular, the crystals start at an initial frequency, let’s call this f1 and they must be placed in 

an etch bath until they arrive at a target frequency, f2. Both of these values, f1 and f2 are known. 

 

Furthermore, you are given constants a, b and c that can be used to calculate the relationship 

between f1 and f2. The formula is as follows: 
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The only unknown in this formula is t, the number of seconds for which the crystal must be 

etched. 

 

The difficulty with this problem is solving the equation for t. No matter what you try, it’s 

difficult to only get one copy of t in the equation, since t appears in both an exponent and a linear 

term. 

 

But, a quick analysis of this specific function, along with a bit of common sense, indicates that as 

t rises, the value on the right-hand side of the equation also rises. In particular, since the 

constants a, b and c are always positive, that function on the right is a strictly increasing function 

in terms of t. 



 
This means that if we make a guess as to what t is and plug that guess into the right-hand side, 

we can compare that to what we want for our answer on the left, and correctly gauge whether or 

not our guess for t was too small, OR too big. 

 

This is a perfect situation for the application of binary search, so long as we can guarantee an 

upper bound. Luckily, in the practical setting of this problem, I knew that no crystal would ever 

be etched for more than 10000 seconds. (This was WAAAY over any of the actual times and a 

very safe number of use as a high bound.) I also knew that each crystal had to be etched for at 

least one second. (Actually, if we ignore the second term on the right, we can very easily get a 

nice upper bound as well.) 

 

From there, we successively try the middle point between high and low, resetting either high (if 

our guess was too high) or low (if our guess was too low). 

 

Example #2: Airport Shuttle (Discrete)) 

This problem originally appeared in UCF’s Competitive Programming Camp for high school 

students. The problem is as follows: 

 

Several students (n) arrive at the airport at certain times. There are k staff members, each of 

whom are willing to come and pick up students from the airport, but just once. Since students 

must be supervised once they land, the staffer must come when the first student they pick up 

arrives and can leave when the last student they are picking up arrives. Luckily, each staffer has 

a bus with infinite capacity. The question is: what is the minimum amount of time for which we 

can create a schedule where no staffer has to wait more than that many minutes.  

 

Consider the following arrival times: 10, 10, 30, 200, 205, 210, 215, 220 and 500, with three 

staffers available. In this case, the best we can do is a wait time of 20 minutes. The first staffer 

gets the first three students (in yellow), the second staffer gets the next five (in blue), and the last 

staffer just gets the last student. 

 

Abstractly, the problem is: given a list of n numbers, sort them, and then partition the array into k 

segments such that the max value minus the min value in any segment is minimal. 

 

It’s hard to know when the first staffer should leave, but if we knew how long each staffer was 

willing to wait, it’s easy to calculate the number of staffers needed to transport all the students. 

For example, if we ask the question, how many staffers are needed if each staffer is willing to 

wait a maximum of 15 minutes, we’d have the following 5 shuttles: 10, 10, 30, 200, 205, 210, 

215, 220, 500. Thus, we can see that 15 minutes is not possible. As we increase the number of 

minutes, the number of staffers required decreases. Thus, the function number of staffers needed 

based on the amount of minutes each staffer is willing to wait is a non-increasing function and 

binary searchable.  

 

This is an integer binary search since each of the input values (arrival times) are integers, and the 

final answer must be the difference of two values on the list. We can set low to 0 and high to the 

difference between the first and last arrival, and do the binary search from there.  



Example #3: A Careful Approach (Continuous) 

This problem is taken from the 2009 World Finals of the ACM International Collegiate 

Programming Contest that was held in Stockholm, Sweden. 

 

The essence of the problem is that you are given anywhere from 2 to 8 planes that have to land. 

Each plane has a valid “window” within which in can land. The goal is to schedule the planes in 

such a way that the gap between all planes’ landing times is maximized. 

 

For example, if Plane1 has a window from t = 0 to t = 10, Plane2 has a window from t = 5 to t = 

15 and Plane3 has a window from t=10 to t = 15, then Plane1 could land at t=0, Plane2 could 

land at t = 7.5 and Plane3 could land at t=15. If Plane2 moves its time any earlier, then the gap 

between Plane1 and Plane2 gets below 7.5 and if it moves its time later, then the gap between 

Plane2 and Plane3 goes below 7.5. Thus, 7.5 is the largest gap we can guaranteed between each 

of the planes. 

 

Two Problem Simplifications 

First, let’s just assume we knew which order the planes were going to land. 

 

A second simplification will help us as well: 

 

Rather than write a function that returns to us the maximum gap between plane landings, why 

don’t we write a function that is given an ordering of the planes AND a gap value and simply 

returns true or false depending on whether that gap is achievable or not. 

 

Here’s how to do it: 

 

1) Make the first plane land as early as possible. 

2) Make the subsequent plane land exactly gap minutes later (if this time is within its range), if it 

is not, then make it land after that time, as soon as possible. If this can’t be done, then the 

arrangement is impossible. If it can, then continue landing planes. 

3) Repeat step two if there’s another plane to land. 

 

This is what is known as a greedy algorithm. If a method exists to land all the planes with the 

given gap, then this method will work, since we land each plane as EARLY as possible given the 

constraints. Any alternate schedule gives less freedom to subsequent landing planes. 

 

Solving the Original Problem 

Now, the question is, HOW can we solve the original problem, if we only know how to solve 

this easier version. 

 

We can deal with simplification number one by simply 

 

TRYING ALL ORDERINGS OF THE PLANES LANDING!!! 

 



Now, if we have a function that returns true if a gap can be achieved and false otherwise, can’t 

we just call that function over and over again with different gaps, until we solve for the gap 

within the nearest second? (This is what the actual question specified. Furthermore, the numbers 

in the input represented minutes, thus, 7.5 should be expressed as 7:30, for 7 minutes and 30 

seconds.) 

 

Thus, once again, we have the binary search idea!!! 

 

Set our low gap to 0, and our high gap to something safe, and keep on narrowing down the low 

and high bounds on the maximum gap until they are so close we have the correct answer to the 

nearest second! 

 

Problem #4: Bones (Binary Search with APSP, All Pairs Shortest Paths) (Discrete) 

So the problems is, given an undirected weighted graph, find some number R such that if you 

travel from one node to another the distance is less than or equal to R and you may reset,charge, 

R only K-1 times and only at nodes. One charge is used when you leave the node. You are given 

K, you need to find R. N denotes how many nodes and M denotes how many edges and d 

denotes the distance of the edge.  

 

2 ≤ N ≤ 100 and 1 ≤ K ≤ 100 and 1 ≤ d ≤109 

 

Example: 

 

Let's say we have a graph with 4 nodes,4 edges, and K = 2.  

 

0↔1, d = 100 

1↔2, d = 200 

2↔3, d = 300  

3↔0, d = 400 

 

So we have a graph that goes in a circle. 

We find that the min distance traveled from nodes  

0↔1= 100 

0↔2 = 200 

0↔3= 300 

 

If we leave from node 0 we need to use a charge so we only have 1 more charge left and we can 

only use a charge at a node. 

If R = 300 we can go from node 0 to 1,2 without having to use another charge and then at node 2 

we can use a charge to go to 2↔3 since that only cost 300 

therefore 0 ↔ 3 in 2 charges.  

 

If R = 200, we would only be able to go to node 0↔1 before we had to use a charge to go to 

node 2. But then we don’t have enough gas or charges to go to node 3 from 2. 

 

Since the graph can be at most 100 nodes if we try to DFS from each node as a starting point 



We get (V*E)*V. If we try all starting positions V2E and try all numbers from 1-109 as R until 

we find an answer that works we would be waiting for a very long time. 

 

So the first problem we notice is that we have no idea what R could possibly be and it is too 

large to brute force. Let’s assume that we can come up with a fancy algorithm that finds for all 

pairs Node i and Node j how many charges it takes to get there given R. What is interesting 

about the property of R is that if let's say for some example we knew the minimum value of R 

such that our fancy algorithm returns true this R is possible. Then we also know that R+1 is also 

valid because if we can reach all pairs with just R max gas we can obviously do the same with 

R+1 max gas. This is an important because if R was minimum we know that R-1 is impossible 

otherwise it would have been our minimum. Therefore R-1 and so on will always be impossible. 

Because of this duality we can actually run a binary search on R to find the minimum R that is 

valid, assuming we have a function that takes R and outputs whether this is valid or not. That 

would be the next subproblem. 

 

So what you notice is that since we need to know for all pairs we need to know if we can go to 

another node in less than k charges. So we also need to know the min distance from node i -> j. 

Luckily we have a fancy algorithm called Floyd Warshall's Algorithm that runs in O(V3) time 

where V is the number of vertices there are and finds for us the shortest path for all pairs of 

nodes in the graph. As you can see V is only 100 so this will be fine. Using this idea we can then 

make another graph of similar nature but instead of using weights we use the min amount of 

charges it takes to go from node i ↔ node j. 

 

So all we have to do is binary search R and run Floyd Warshall's Algorithm on a graph that has 

either a 0 for node i ↔ node i since it takes 0 charges to get to itself, a 1 if from node i ↔ j can 

we get there in less then equal to R, or K+1 charges otherwise to represent our infinity. We run 

floyd on this new graph and then search for every pair if it can get there in less than or equal to k 

charges. 

 

If so return true, else return false 



Problem #5: Carpet (Binary search with geometry) (Continuous) 

The problem is you are given 3 lengths a, b, and c. They represent the distances from the three 

points of an equilateral triangle. The goal is to find the length of the side of the equilateral 

triangle.  

 

So assuming we had a function that tells us if given these 3 variables and some L can we form a 

equilateral triangle with length L that satisfies a, b, and c. Then we can just binary search on L 

and if L is too small then search higher else if L is too big search lower. The problem is how do 

we know if L is too small or too big? 

 

We know that law of cosines state that c2 = a2 + b2 - 2abCos(C) where a, b, c are legs of the 

triangle, unrelated to the above mentioned a, b, and c, and C is the angle formed at the point 

opposite of the leg c. 

 

So to determine if a current leg length is too big or too small we can determine this by summing 

up the inner angle formed by the legs using the law of cosine. If the angle sum is less than 360 

degrees then we need longer legs to increase the angle sum, if the angle sum is more than 360 we 

need smaller legs. 

 

There is a small problem we need to consider when using acos in java. It returns a range of 0 to 

PI. So we have to check if the length of the 3 legs qualify as being a triangle. 

 



Taking Care with Coding Binary Search 

Last but not least, I've found that almost all errors in binary search code happen in one of four 

places. Here is a cheat sheet I made for where you should really pay attention when coding 

binary search. 

 

Binary Search Debugging Cheat Sheet 

Item Discrete Bin Search Continuous Bin Search 

Setting low and high Make sure low <= ans, high >= 

ans, make sure they are 

ints/longs and overflows don’t 

occur, and no array out of 

bounds issues 

Make sure low <= ans, high >= 

ans, but also make sure that low 

isn’t too low and high isn’t too 

high, if they are, the could crash 

math functions 

Loop while (low < high) for (iter=0; iter<100; iter++) 

Assign mid mid = (low+high)/2 or 

mid = (low+high+1)/2,  

plug in low=2, high =3 after 

code is written to determine 

which will terminate 

mid = (low+high)/2.0 

Updating After each iteration, either low 

OR high should be updated, 

but not both. Make sure you 

update the correct one!!! 

After each iteration, either low 

OR high should be updated, 

but not both. Make sure you 

update the correct one!!! 

What to update to For low, we have two choices: 

low = mid or low=mid+1. For 

high, we have two choices: 

high = mid or high = mid-1. We 

will typically pair (low=mid with 

high =mid-1) or pair 

(low=mid+1 with high=mid) 

Always either low = mid or high 

= mid 

 
 

 

 

 


