
Backtracking 
 

Backtracking is a technique used to solve problems with a large 

search space, that systematically tries and eliminates 

possibilities. 

 

A standard example of backtracking would be going through a 

maze. At some point in a maze, you might have two options of 

which direction to go: 
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            portion B 

 

One strategy would be to try going through portion A of the 

maze. If you get stuck before you find your way out, then you 

"backtrack" to the junction. At this point in time you know that 

portion A will NOT lead you out of the maze, so you then start 

searching in portion B. 

 

Clearly, at a single junction you could have even more than two 

choices. The backtracking strategy says to try each choice, one 

after the other, if you ever get stuck, "backtrack" to the junction 

and try the next choice. If you try all choices and never found a 

way out, then there IS no solution to the maze. 



Eight Queens Problem 
 

The problem is specified as follows: 

 

Find an arrangement of eight queens on a single chess board 

such that no two queens are attacking one another. 

 

In chess, queens can move all the way down any row, column or 

diagonal (so long as no pieces are in the way). 

 

Due to the first two restrictions, it's clear that each row and 

column of the board will have exactly one queen. 

 

The backtracking strategy is as follows: 

 

1) Place a queen on the first available square in row 1. 

2) Move onto the next row, placing a queen on the first available 

square there (that doesn't conflict with the previously placed 

queens). 

3) Continue in this fashion until either (a) you have solved the 

problem, or (b) you get stuck. When you get stuck, remove the 

queens that got you there, until you get to a row where there is 

another valid square to try. 

 

When we carry out backtracking, an easy way to visualize what 

is going on is a tree that shows all the different possibilities that 

have been tried. 

 

Consider the following page with a visual representation of 

solving the 4 Queens problem (placing 4 queens on a 4x4 board 

where no two attack one another). 
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The neat thing about coding up backtracking, is that it can be 

done recursively, without having to do all the bookkeeping at 

once. 

 

Instead, the stack or recursive calls does most of the 

bookkeeping (ie, keeping track of which queens we've placed, 

and which combinations we've tried so far, etc.) 

 

Here is some code that is at the heart of the eight queens 

solution: 

 

void solveItRec(int perm[], int location, struct onesquare 

usedList[]) { 

      

  int i; 

     

  if (location == SIZE) { 

      printSol(perm); 

  } 

     

  for (i=0; i<SIZE; i++) { 

         

      if (usedList[i].selected == 0) { 

             

          if (!conflict(perm, location, usedList[i].row)) { 

                                 

                perm[location] = usedList[i].row; 

                usedList[i].selected = 1; 

                solveItRec(perm, location+1, usedList); 

                usedList[i].selected = 0; 

            }                                        

        }     

    }     

} 

 



Sudoku and Backtracking 

 
Another common puzzle that can be solved by backtracking is 

a Sudoku puzzle. The basic idea behind the solution is as 

follows: 

 

1) Scan the board to look for an empty square that could take 

on the fewest possible values based on the simple game 

constraints. 

2) If you find a square that can only be one possible value, fill it 

in with that one value and continue the algorithm. 

3) If no such square exists, place one of the possible numbers for 

that square in the number and repeat the process. 

4) If you ever get stuck, erase the last number placed and see if 

there are other possible choices for that slot and try those next. 

 

 

 

Mazes and Backtracking 

 

A final example of something that can be solved using 

backtracking is a maze. From your start point, you will iterate 

through each possible starting move. From there, you 

recursively move forward. If you ever get stuck, the recursion 

takes you back to where you were, and you try the next possible 

move.  

 

In dealing with a maze, to make sure you don't try too many 

possibilities, one should mark which locations in the maze have 

been visited already so that no location in the maze gets visited 

twice. (If a place has already been visited, there is no point in 

trying to reach the end of the maze from there again.  



Tentaizu 

 
In this problem, you are given a 7 x 7 board where there are 

exactly 10 hidden bombs. On the board, some squares have 

numbers on them, representing the number of adjacent bombs 

to that square, just like the numbers in the game, Minesweeper. 

The numbers are given in such a way that there is only one 

arrangements of 10 bombs that is consistent with the numbers 

given. The goal of the problem is to determine where all of the 

10 bombs go. 

 

Regular brute force would try up to (
𝟒𝟗
𝟏𝟎

) combinations of 

placements of stars. This is far too many to run in a reasonable 

amount of time. 

 

But…this is where backtracking comes in. Consider placing 

bombs in squares one by one, from top to bottom, going left to 

right in each row. A vast majority of possible combinations can 

be eliminated very early on due to inconsistencies!!! 

 

Thus, our idea is as follows: 

 

1) Step through the board, in row major order (row by row 

from top to bottom, and from left to right in each row). 

2) For each square, try placing a bomb in it and recursively 

see if this solution works. 

3) If it doesn’t, then try skipping the square and see if that 

solution works. 

 

Thus, our recursive function needs two critical pieces of 

information: 

 

1) Which square I am considering 

2) The number of bombs already placed. 



The key to back-tracking is effectively cutting off “doomed” 

partial solutions as early as possible. In our recursion, this 

corresponds to base cases in the beginning – typically if 

statements to handle “easy” cases. 

 

For our problem, it’s very easy to test consistency issues just 

with the number of bombs already placed and our current 

position. 

 

Then, we can test more detailed consistency issues. 

 

Finally, we move onto our recursive case(s). 

 

For some squares, we can’t place a bomb (these are squares that 

already have a number or that are adjacent to a 0). For these 

squares, we make one recursive call only, corresponding to not 

placing a bomb in that squre. 

 

For other squares we try two things: 

 

1) Place the bomb and see what the recursion returns. 

2) If that didn’t work, undo that bomb and run the 

recursion again. 

 

In the code, the recursive function solveRec is structured very 

similar to the description given above. 

  



Hexagram 

 
In this problem, you are given a star design with 12 circles to fill 

with numbers in such a way that each of the six lines of four 

numbers adds up to the same value. You are given 12 distinct 

positive integers and asked to count the number of valid 

solutions. Two solutions are distinct if any corresponding circle 

contains two different values in the two solutions. 

 

A regular brute force algorithm would check 12! different 

placements of numbers. Unfortunately, this is too many to run 

fast enough. Once again though, we see that if we try to build a 

partial solution, many of the possible placements are impossible 

if we use some of the given information. 

 

First off, notice that the sum of each line can be calculated since 

each circle is part of exactly two lines. Thus, twice the sum of the 

twelve numbers is equal to the sum of each of the six of the lines. 

Thus, our desired line sum is twice the sum of the twelve 

numbers, divided by six, or more simply, the sum of the 

numbers divided by three. 

 

From here, we just fill in the numbers in some specified order, 

trying each unused number in each square, and cutting out of 

our search if the filled in information is inconsistent. Consider 

the following trace by hand for the input case. 

  



More Divisors 

 
Warning: This is a difficult problem, so don’t feel bad if you 

don’t understand its solution. I wanted to include it because the 

solution uses backtracking and a fact taught in COT 3100, 

which all the students in this class have taken. Also, it highlights 

the use of a HashMap and shows how much smaller a search 

space can get utilizing just a few constraints. 

 

The goal of the problem is very simply stated: 

 

For any integer n, consider all positive integers less than or 

equal to it. Of all of those integers, count the number of divisors 

each one has. Find the number that has the maximum number 

of divisors. If multiple numbers have this same maximum 

number of divisors, just report the minimum of those numbers. 

You are asked to solve the problem for any n ≤ 1016. 

 

For example, 6 has four factors. The next integer that has more 

factors is 12, which has six factors. Thus, if the input was 6, 7, 8, 

9, 10 or 11, our answer should be 6. 

 

Notice that solving this by straight brute force (looping through 

all possible values less than or equal to n), is absolutely not a 

possibility, since 1016 is much, much larger than 108, which is 

roughly the most number of simple operations we can run in a 

couple seconds. 

 

First, let’s review the formula for calculating the number of 

factors of a number, given its prime factorization: 

 

If the prime factorization of n = ∏ 𝒑𝒊
𝒂𝒊

𝒑𝒊∈𝑷𝒓𝒊𝒎𝒆𝒔 , then the 

number of divisors of n is ∏ (𝒂𝒊 + 𝟏)𝒑𝒊∈𝑷𝒓𝒊𝒎𝒆𝒔 .  



The key observation that is so helpful here is that the primes in 

the prime factorization don’t affect the number of factors, only 

the exponents to those primes do. Thus, a list containing every 

positive exponent is all that is needed to calculate the number of 

divisors of an integer. Remember our goal is to minimize n, for 

any number of factors. Thus, given any list of exponents, it 

makes sense to raise 2 to the largest of these, 3 to the next largest, 

etc. since it’s very obvious that 2534 < 2435. (Basically, by 

lowering 2’s exponent by 1 and increasing 3’s exponent by one, 

I am dividing by 2 and multiplying by a larger number, 3, which 

will ultimately yield a larger number, one that is irrelevant to 

this problem.) 

 

Thus, our key observation is that we only care about exponent 

sequences in reverse sorted order. Each unique sequence maps 

to a single integer n that matters for the sake of this problem. 

We can simply store all pairs number of factors with the 

minimal integer that has that number of factors by iterating 

through all possible exponent sequences. 

 

One question hasn’t been answered yet: How can backtracking 

limit our search of exponent sequences. If 60 is my largest 

exponent and I could have a sequence of 14 or so terms, that 

search space seems WAY TOO BIG!!! 

 

Answer: A vast majority of sequences correspond to numbers 

bigger than 1016. As we build a sequence, we can calculate how 

big the corresponding number is. We can stop building a 

sequence as soon as adding 1 to one of its exponents makes it too 

big! 

 

So, quite literally, this is what we do. We store an array list with 

the “current sequence” under investigation, and a HashMap 

with our best factor, number pairs, updating it as necessary. 


