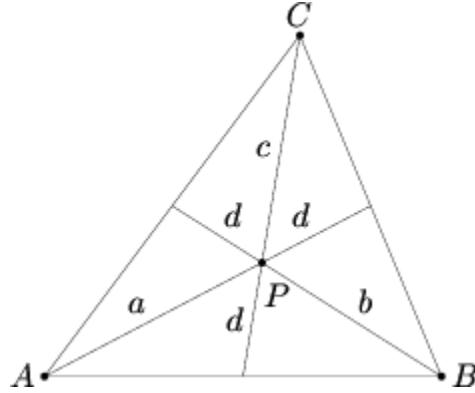


1988 Problem 12

Let P be an interior point of triangle ABC and extend lines from the vertices through P to the opposite sides. Let a , b , c , and d denote the lengths of the segments indicated in the figure. Find the product abc if $a + b + c = 43$ and $d = 3$.



Solution (441)

Let CP meet AB at D . If we use AB as the base of the triangle, then the area of APB divided by the area of ACB is equal to $\frac{d}{c+d} = \frac{3}{c+3}$. This is because both triangles have the same base so their areas are proportional to their heights and the heights are proportion PD to CD . Similarly, we can set up the area of BCP divided by area BCA to be $\frac{3}{a+3}$. Finally, the area of ACP divide by the area of ACB is $\frac{3}{b+3}$. Let $[ABC]$ denote the area of triangle ABC .

Notice that $\frac{[ABP]}{[ABC]} + \frac{[BCP]}{[BCA]} + \frac{[ACP]}{[ACB]} = \frac{[ABP] + [BCP] + [ACP]}{[ABC]} = \frac{[ABC]}{[ABC]} = 1$.

It follows that:

$$\frac{3}{a+3} + \frac{3}{b+3} + \frac{3}{c+3} = 1$$

Multiply this equation through by $(a+3)(b+3)(c+3)$:

$$3(a+3)(b+3) + 3(a+3)(c+3) + 3(b+3)(c+3) = (a+3)(b+3)(c+3)$$

$$3(ab + 3(a+b) + 9 + ac + 3(a+c) + 9 + bc + 3(b+c) + 9) = (a+3)(b+3)(c+3)$$

$$3(ab + ac + bc) + 18(a+b+c) + 81 = abc + 3(ab + ac + bc) + 9(a+b+c) + 27$$

$$abc = 54 + 9(a+b+c) = 54 + 9 \times 43 = 54 + 387 = \mathbf{441}$$

1992 Problem 14

094

In triangle ABC , A' , B' , and C' are on the sides BC , AC , and AB , respectively. Given

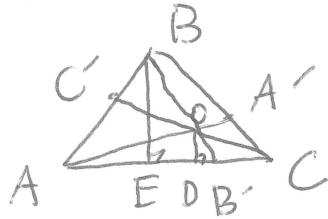
that AA' , BB' , and CC' are concurrent at the point O , and that $\frac{AO}{OA'} + \frac{BO}{OB'} + \frac{CO}{OC'} = 92$

, find $\frac{AO}{OA'} \cdot \frac{BO}{OB'} \cdot \frac{CO}{OC'}$. Let $[\triangle ABC]$ denote area of $\triangle ABC$.

Let $x = [\triangle AOB]$, $y = [\triangle AOC]$, $z = [\triangle BOC]$.

$\triangle ODB \cong \triangle BEB'$, thus $\frac{BE}{BB'} = \frac{OD}{OB'}$ and

$$\frac{BB'}{OB'} = \frac{BE}{OD}$$



$$[\triangle AOC] = \frac{1}{2}(AC)(OD) \quad [\triangle ABC] = \frac{1}{2}(AC)(BE)$$

$$\frac{x+y+z}{y} = \frac{[\triangle ABC]}{[\triangle AOC]} = \frac{\frac{1}{2}(AC)(BE)}{\frac{1}{2}(AC)(OD)} = \frac{BE}{OD} = \frac{BB'}{OB'}, \frac{BB'}{OB} \cdot \frac{OB'}{OB} = \frac{BO}{OB'} = \frac{x+y+z}{y} - \frac{y}{y}$$

$$= \frac{x+z}{y}$$

Thus, $\frac{BO}{OB'} = \frac{x+z}{y}$, similarly $\frac{AO}{OA'} = \frac{x+y}{z}$ and $\frac{CO}{OC'} = \frac{y+z}{x}$.

$\frac{x+z}{y} + \frac{x+y}{z} + \frac{y+z}{x} = 92$. We must find

$$\begin{aligned} \left(\frac{x+z}{y} \right) \left(\frac{x+y}{z} \right) \left(\frac{y+z}{x} \right) &= \frac{(x+y)(x+z)(y+z)}{xyz} \\ &= \frac{x^2y + x^2z + y^2x + y^2z + z^2x + z^2y + 2xyz}{xyz} \\ &= \frac{x^2(y+z) + y^2(x+z) + z^2(x+y)}{xyz} + 2 \end{aligned}$$

$$\text{Note that } \frac{x+z}{y} + \frac{x+y}{z} + \frac{y+z}{x} = \frac{(x+z)xz + xy(x+y) + yz(y+z)}{xyz} = \frac{x^2y + x^2z + y^2x + y^2z + z^2x + z^2y}{xyz}$$

Thus, our final answer is

$$\rightarrow = 92 + 2 = \boxed{094}$$