Review Notes for Discrete Mathematics
11.1: Division and Euclidean Algorithm

Definition of divisibility: if a | b, then there exists and integer c such that b = ac.

For example, 4 | 16 and 6 | 42.

The division algorithms says that when you divide an integer a by an integer b, you will always get a unique quotient q, and remainder r, where q and r are integers such that

a = bq + r, and 0 <= r < b.

The Euclidean algorithm uses repeated division to determine the greatest common divisor of two integers a and b. At each step, the newly created remainder becomes the next number we use to divide. Here is an example of the algorithm with a = 135 and b = 47

Problem: Determine the GCD of 135 and 47 using the Euclidean Algorithm

135 = 2x47 + 41

47   = 1x41 +   6

41   =  6x6  +   5

6     =  1x5  +   1

5     =  5x1

The greatest common divisor is the last non-zero remainder created in the process. Here, we find gcd(135, 47) = 1.

(Note: The quotients are always the first number listed to the right of the equal sign.)

Two numbers are relatively prime if they share no common factors and their gcd is one.

The fundamental theorem of arithmetic states that all positive integers have unique prime factorizations.

One other theorem that easily follows from the rules of divisibility:

If a | b and a | c, then a | (bx+cy), for all integers x and y.
11.2 Representing integers in other bases

If an integer dkdk-1…d0 is represented in base b, then its value in base 10 is

dkxbk + dk-1xbk-1 + … + d0xb0 , or more succinctly, 
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For bases greater than 10, we start adding A, B, C, etc. to represent further digits. For the IB exam, questions are unlikely to go past base 16 (0, 1, 2, …, 9, A, B, C, D, E, F).

To convert from base b to base10, plug into the formula above.

To convert n from base 10 to base b, do the following:

1) Divide n by b, storing the quotient as n0 and the remainder as r0.

2) Repeat step 1 above, but this time instead of dividing n, divide ni on the ith iteration.

The digits of the answer will simply be formed by all of the remainders, with the first one created being the least significant.

Problem: What is the base 8 representation of the decimal value 13982

13972 = 1724*8 + 0

1724   = 215*8   + 4

215     =   26*8   + 7

26       =    3*8    + 2

 3        =   0*8     + 3

Thus, the desired value in base 8 is 32740, also denoted as 327408.

11.3: Linear Diophantine Equations

To find all integer solutions of an equation of the form ax+by = c where a, b and c are given integers, do the following:

1) Check if gcd(a,b) | c. If not, there are no solutions.

2) Otherwise, run the Extended Euclidean algorithm with a and b, multiplying the whole equation through if necessary.

3) This will give you a base solution (x0, y0). Now, consider the following equation:

ax + by = 0

ax = -by

Dividing both sides by gcd(a,b), we obtain:
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The "smallest" satisfying ordered pair (x,y) to this equation is 
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Now, we can represent all solutions as follows:
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The key idea here is that adding and subtracting the given offsets from the initial solution don't change the value of ax+by at all, thereby creating another valid solution.

Problem: Determine all solutions to the equation 405x + 141y = 12.
Here is the Euclidean Algorithm run on 405 and 141:

405 = 2x141 + 123
141 = 1x123 +   18

123 =  6x18  +   15
18   =  1x15  +   3
15     =  5x3
Now, run the Extended Euclidean Algorithm as follows:

18 – 1x15 = 3
18 – 1x(123 – 6x18) = 3
18 – 1x123 + 6x18 = 3
7x18 – 1x123 = 3
7x(141 – 1x123) - 1x123 = 3
7x141 – 7x123 – 1x123 = 3
7x141 – 8x123 = 3
7x141 – 8x(405 – 2x141) = 3
7x141 – 8x405 + 16x141 = 3
23x141 – 8x405 = 3, now, multiply this through by 4:
92x141 – 32x405 = 12

So, x0 =-32 and y0 = 92 is a solution to the original equation.
Now, take

405x + 141y = 0

405x = -141y, now, just divide through by gcd(405, 141)

135x = -47y

So a solution is x=47, y=-135.

Using this, we can a complete solution to our original equation:

x = -32 + 47k, y = 92-135k, k
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11.4 Modular Arithmetic and Chinese Remainder Theorem
The definition of the following statement: 
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, is that n | (a-b). 

Most rules that apply to regular numbers also apply to mod. In general, we have the following:

If 
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, where f is any polynomial function with integer coefficients.

These rules can be used to calculate remainders of numbers raised to exponents divided by some quotient fairly quickly.
The Chinese Remainder Theorem provides a way to solve a set of linear congruence equations of the form:


[image: image9.wmf])

(mod

1

1

m

a

x

º



[image: image10.wmf])

(mod

2

2

m

a

x

º



[image: image11.wmf])

(mod

3

3

m

a

x

º


where m1, m2, and m3, are all relatively prime, and M = m1m2m3.
Well, there can be more than 3 equations, but it would be crazy for them to give you more than that!!!

Here's how to solve the set of equations for a unique solution mod M:

1) Let Mi = M/mi and multiply equation i through by Mi to yield:
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But, note that the following three equations will also be true:
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2) Now, determine the values of the following: M1-1 mod m1, M2-1 mod m2, and
M3-1 mod m3. This can be simplified by first reducing M1 mod m1, etc. You can either solve these values by inspection or by doing the Extended Euclidean Algorithm.

3) Now multiply each question through by the values from step 2, so we have:
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 EMBED Equation.3  [image: image20.wmf])
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Finally, adding these three equations together yields the following solution:
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Problem: Find the unique solution (mod 280) to the following equations
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M1 = 56, M2 = 40, M3 = 35, so we get: 
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Now, we must calculate 56-1 mod 5, 40-1 mod 7, 35-1 mod 8. These reduce to 1-1 mod 5, 5-1 mod 7, 3-1 mod 8. The first of these is clearly 1. For formalities sake, we'll go through the proper method of finding the other two:

To find 5-1 mod 7, we want to find x such that 5x 
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1 mod 7. Run the Extended Euclidean Algorithm on 7 and 5:

7 = 1x5 + 2

5 = 2x2 + 1, so 

5 – 2x2 = 1

5 – 2x(7 – 1x5) = 1

5 – 2x7 + 2x5 = 1

3x5 – 2x7 = 1, considering the equation mod 7, we get

3x5 
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1 (mod 7), so the desired inverse is 3.

We also find that 3-1 mod 8 = 3.

Now, multiply through by these values:
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This can easily be verified by dividing 93 by 5, 7 and 8 and obtaining the remainders 3, 2, and 5 respectively.

11.5 Fermat's little theorem
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This can be used to quickly determine values mod a prime.

Problem: Determine the remainder of 17354mod89.

17354 = 174(88)+2=(1788)4172
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22 (mod 89), so 22 is the desired remainder.
11.6 Graphs

A graph is a collection of vertices and edges. Edges connect the vertices.

Graphs can either be weighted or unweighted, directed or undirected. The former deals with if there are "weights" associated with each edge, and the latter deals with whether there is a direction associated with each edge.

Our handout has all of the definitions. Here are some of the more important ones:
Path: a sequence of adjacent edges from one vertex to another.

Cycle: a sequence of adjacent edges from one vertex back to itself.

Connected graph: There is a path from each vertex to every other vertex in the graph

Complete graph: A graph that contains all possible edges

Bipartite graph: A graph whose vertices can be split into two sets A and B, such that

                          each edge in the graph connects one vertex from A to one in B.

Planar graph: There exists a way to draw a planar graph on a piece of paper without 

                       having any of the edges intersect.

Tree: A part of a graph that is connected and contains no cycles.

Graph complement: A graph that has the same vertices and the opposite edges compared

                                 to the original.

Graph isomorphism: Two graphs that are identical in structure if you rearrange the order 

                                  of one of the graph's vertices.

Euler's relation for planar graphs: v – e + f = 2. Also, for planar graphs, e <= 3v-6, and e <=2v – 4, for graphs with no triangular regions. K5 and K3,3 are not planar. Proofs of these were shown in class.

11.7 Hamiltonian cycles and Eulerian circuits

A Hamiltonian cycle in a graph is a cycle that includes each vertex exactly once.

A Eulerian circuit is a circuit in a graph that includes each edge exactly once.
A graph contains an Eulerian circuit if and only if each vertex has an even degree. We can find such a circuit by creating a small cycle and splicing more cycles into it until the full circuit is completed.

There is no easy way to tell if a graph has a Hamiltonian cycle. There are ways in which you can show it doesn't. (Any vertex of degree two must have both adjacent edges in the supposed Hamiltonian cycle. Automatically, all graphs with a vertex of degree one don't have such a cycle.) The easiest way to prove a graph has one is to find one and state it explicitly.

Problem: See the problems in the IB questions '96 – '98 I gave you.
11.8 Adjacency Matrix

An adjacency matrix of a graph is a convenient way to store the structure of a graph in a 2-D array. This matrix raised to the k power stores the number of walks of length k between each pair of vertices in the graph.

Furthermore, two graphs are isomorphic iff there exists a way to rearrange the vertices of one of the graphs so that its adjacency matrix is identical to the other.

11.9 Prim's, Kruskal's and Dijkstra's

Prim's and Kruskal's solve the Minimum Spanning Tree problem.

Here's Prim's:

1) Pick a start vertex, and let S be the set with just that vertex. Let M be empty.

2) While (M isn't a spanning tree yet)

     a) Find the minimum weight edge adjacent to a vertex in S.

     b) Add this edge into M if it doesn't cause a cycle with the edges already in M.

Here's Kruskal's

1) Sort the edges in ascending order by edge weight. Let M be empty.

2) While (M isn't a spanning tree yet)

     a) Consider the next edge on the list.

     b) Add this edge to M if it doesn't cause a cycle with the edges already in M.

Dijkstra's algorithm solves the Single Source Shortest Path problem for any graph with only positive edge weights. 

Here is the algorithm for a graph G with vertices V = {v1, ... vn} and edge weights wij for an edge connecting vertex vi with vertex vj. Let the source be v1.

Initialize a set S = (.  This set will keep track of all vertices that we have already computed the shortest distance to from the source.

Initialize an array D of estimates of shortest distances. D[1] = 0, while D[i] = (, for all other i. (This says that our estimate from v1 to v1 is 0, and all of our other estimates from v1 are infinity.)
While S !=  V do the following:

 
1) Find the vertex (not is S) that corresponds to the


     minimal estimate of shortest distances in array D.


2) Add this vertex, vi into S.


3) Recompute all estimates based on edges emanating 

 
     from v. In particular, for each edge from v, compute


     D[i]+wij. If this quantity is less than D[j], then set


     D[j] = D[i]+wij. 
Problem: Determine the shortest distance from vertex A to vertex F in the graph described by the "weighted" adjacency matrix below, using Dijkstra's algorithm:
	
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J

	A
	0
	7
	∞
	∞
	∞
	∞
	∞
	∞
	5
	3

	B
	∞
	0
	4
	7
	10
	∞
	∞
	∞
	∞
	∞

	C
	∞
	∞
	0
	2
	∞
	∞
	∞
	∞
	∞
	∞

	D
	∞
	∞
	∞
	0
	6
	8
	∞
	∞
	∞
	∞

	E
	∞
	∞
	∞
	∞
	0
	1
	∞
	∞
	∞
	∞

	F
	∞
	∞
	∞
	∞
	∞
	0
	∞
	∞
	∞
	∞

	G
	∞
	∞
	∞
	2
	3
	10
	0
	∞
	∞
	∞

	H
	∞
	∞
	∞
	∞
	∞
	∞
	1
	0
	∞
	∞

	I
	∞
	∞
	∞
	∞
	∞
	∞
	6
	4
	0
	∞

	J
	∞
	∞
	∞
	∞
	∞
	∞
	∞
	6
	1
	0


	Add to Set
	B
	C
	D
	E
	F
	G
	H
	I 
	J

	A
	7
	∞
	∞
	∞
	∞
	∞
	∞
	5
	3

	J
	7
	∞
	∞
	∞
	∞
	∞
	9
	4
	3

	I
	7
	∞
	∞
	∞
	∞
	10
	8
	4
	3

	B
	7
	11
	14
	17
	∞
	10
	8
	4
	3

	H
	7
	11
	14
	17
	∞
	9
	8
	4
	3

	G
	7
	11
	11
	12
	19
	9
	8
	4
	3

	C
	7
	11
	11
	12
	19
	9
	8
	4
	3

	D
	7
	11
	11
	12
	19
	9
	8
	4
	3

	E
	7 
	11
	11
	12
	13
	9
	8
	4
	3


Note: C and D can be swapped.
11.10: Traveling Salesman and the "Chinese postman" problem

Given a weighted graph, the traveling salesman problem is to determine the Hamiltonian cycle of minimum weight in the graph. (The weight of a cycle is the sums of the weights of the edges that comprise it.)

Given a graph that satisfies the triangle inequality (namely the edge weight connecting A to B is ALWAYS less than the sum of the edges connecting A to C and C to B), then we can find an approximate solution to the Traveling Salesman Problems as follows:

1) Find the Minimum Spanning Tree of the graph.

2) Trace the outline of the MST, thus traversing each edge twice while visiting every vertex.

3) Streamline that path by skipping any vertices you've already visited. The triangle inequality guarantees that this streamlining will only reduce the cost of the cycle created – thus guaranteeing that the final answer will be within a factor of two of the optimal.

The low bound for the weight of a Traveling Salesman Path is the weight of the Minimum Spanning Tree of a graph.

The "Chinese Postman" problem is as follows: Given a weighted, undirected graph, determine a walk that starts and ends at the same vertex that traverses every edge in the graph at least once. If the graph has all even degreed vertices, then just compute the Eulerian circuit. Otherwise, do the following:

1) List all vertices of odd degree.

2) Try listing all possible pairs of vertices.

3) For each pair, calculate the cost of moving from one vertex to the other.

4) For each possible set of pairs, calculate the extra cost incurred by "redoing" these edges.

5) Pick the minimum possible.

For an explanation and example, go to http://people.bath.ac.uk/ma3mb/route.htm and http://people.bath.ac.uk/ma3mb/example.htm, respectively. 
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