Topic 7: Calculus
7.1

· Definition of a Limit

Let f  be a function defined on an open interval containing c (except possibly at c) and let L be a real number. The statement 
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· Definition of a Derivative

The derivative of f  at x is given by 
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 provided that the limit exists. For all x for which the limit exists, f ’ is a function of x .
· Notations (for first derivatives)

· f ’(x)



· y’

· 
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Ex: f (x) = 3x + 2
      f ’ (x) = 
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· Derivatives of 

(All can be found in IB formula packet)
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[image: image18.wmf]1

-

Þ

n

n

nx

x

 

ex: 
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Ex: 
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Derivatives are interpreted as gradient functions and as rates of change and can be used to find equations of tangents and normals:

· Finding equation of tangents

The slope of the tangent line is found by calculating the derivative of the function at the point of intersection. The equation is then found by plugging that slope, along with the original point, into:
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Ex: Find an equation for the tangent line to the curve at the indicated point:
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· Identifying increasing and decreasing functions
· If 
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7.2

· Chain Rule
Let 
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Ex: Let
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· Sample Related Rates of Change Problems
If a balloon is deflating at a rate of 2 inches a second, find the change is surface area and volume over time when the radius is 4 inches.
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· Product Rule
Let
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Ex: 
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· Quotient Rule
Let 
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Ex: Let y = 
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· Other Notations of Derivatives

· Second:  
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· Third:
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· Fourth:  
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· nth:
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7.3
· Testing for Maximum or minimum using change of sign of the first derivative and using sign of second derivative

· First Derivative Test:
Let c be a critical number of a function 
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that is continuous on the open interval I containing c. If 
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      Critical Values = 0,4

Increasing: 
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Decreasing: 
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      Relative Max: (0,15)

Relative Min: (4,-17)

· Second Derivative Test:
Let 
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· Use of First and second derivative in optimization problems:

Ex: A fast-food restaurant has determined that the monthly demand for its hamburgers is 
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. Find the increase in revenue per hamburger (marginal revenue) for monthly sales of 20,000 hamburgers.


(Total revenue is given by R=xp)

Solution: 
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Marginal Revenue is: 
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When x=20000 the marginal revenue is:
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Ex: The radius of a sphere is measured to be 50 cm with a measurement error of + .02 cm. Estimate the relative error in the computer volume of the sphere.
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Solution:
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Ex: A liquid form of penicillin manufactured by a pharmaceutical firm is sold in bulk at $200 per unit. If the total production cost for x units is 
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and if the production capacity of the firm is at most 30,000 units in a specified time, how many units of penicillin must be manufactured and sold to maximize profit in that specified time?
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x=20,000 units


Justification using second derivative test:
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-.006 < 0 Therefore, when x = 20,000, the curve is concave down and the value is a maximum

7.4
· Definition of Antiderivative:
A function 
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is an Antiderivative of F on an interval I if 
[image: image147.wmf])

(

x

F

f

l

=

for all x on I.

Indefinite integral interpreted as a family of curves

· Indefinite integrals of:
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· With Linear function ax + b:

Ex: 
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7.5

Anti-differentiation with a boundary condition to determine the constant term:

     If dy/dx = 3x^2 + x and y =10 when x =0, find y.
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Definite Integrals:
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Area Between a curve and the x-axis or y-axis in a given interval, areas between curves:
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Volumes of revolution:


Revolution about the x-axis and y-axis

Disk Method: 
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Shell Method: 
[image: image160.wmf]dx

x

xf

b

a

)

(

2

ò

p


7.6 Kinematic Problems: acceleration, velocity, and displacement

 V=ds/dt
a = dV/dt = d2s/dt2 = V(dV/dt)

Area under velocity v. time graph represents distance traveled
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7.7

Asymptotes:


Horizontal:



Horizontals asymptotes exist if the function approaches a value as x approaches +/- infinite.  They can be determined by taking the limits of the functions as the approach +/- infinite.


Vertical:



Vertical asymptotes occur when the denominator of f(x) is zero and f(x) is, therefore undefined.  Ex. 1/x would have a vertical asymptote at x=0.


Oblique:



The graph of a rational function has an oblique asymptote if the degree of the numerator is greater than that of the denominator.  To calculate the equation of the asymptote, perform long division and then drop the remainder.

Definition of Concavity:

Let f be differentiable on an open interval I.  The graph of f is concave upward on I if f’ is increasing on the interval and concave down on I if f’ is decreasing on the interval.

Test for Concavity:


Let f be a function whose second derivative exists on an open interval I

1. If  f ``(x)>0 for all x in I, then the graph of f is concave upward in I.
2. If  f ``(x)<0 for all x in I, then the graph of f is concave donward in I.

Point of Inflection:


If (c, f(c)) is a point of inflection then either f ``(x) = 0 or f ``(x) does not exist at x = c.

7.8 Implicit Differentiation:

The procedure of differentiating an implicit equation with respect to the desired variable x while treating the other variables as unspecified functions of x:

xy = 1
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7.9 Further Intergration

Substitution:
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Partial Fractions:
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By Parts:
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7.10 Separation of Variables:
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