Exponents
By definition, the short-hand notation ab represents a multiplied by itself exactly b number of times, when b is a positive integer. In this expression, a is known as the base, and b is known as the exponent. When b is 0, as long as a is not 0, we define the value to be 1. (This is consistent with all the rules with exponents we are going to see. Technically, 00 can not be determined. One way to see this is to note that the following two limits are not equal: 
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We extend the definition of exponents to include negative values as follows: 
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. Once again, this extension makes sense with the intuitive idea of an exponent, since if we multiplied four by itself five times, and then "undid" two of those multiplications, then it would be as if we multiplied four by itself three times. (Mathematically, that is just saying 454-2 = 43.)

The following exponent rules follow from this intuitive definition of exponents:
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So far, we've only discussed integer exponents. To extend the definition to real exponents it would make sense that the definition should be consistent with the previous ones. Thus, for any fractional exponent, it makes sense that 
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. In simple terms, the square root of a number, such as 4, should simply be defined as the number, that when squared, equals 4. For notational purposes, we have 
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Some other notes to keep straight about exponents: The expression 
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will always be positive if a is positive. If a is greater than 1, then if x is positive the expression will be greater than 1, if x is negative it will be less than 1. Within the realm of real numbers it is impossible to take an even root of a negative number. Raising negative numbers to fractional exponents poses some strange dilemmas as well.
Also, it must be noted that all the rules above require the same base for each exponent. There is no good way to deal with an expression of the form ax+by or axby. Sometimes, if you have something like 2x+4x, you can rewrite the expression as 2x+22x, and then simplify it to 2x(1+2x).
Logs
The log function is the inverse of the exponential function. In particular, an exponential problem is of the form, "If I raise a to the power b, what result do I obtain?" whereas a log problem is of the form "What power do I have to raise a to, in order to obtain c?"

Mathematically, we have 
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In the equation above, a is know as the base of the logarithm. Typically, we only deal with positive bases greater than 1, though it's fairly easy to deal with a positive base less than 1 as well. The base of a logarithm will never be 0 or 1, and as mentioned before, it would be quite problematic to have a negative base, since it's not easy to deal with a negative base raised to a fractional exponent. (Why is a base of 0 or 1 not allowed?)

Here are the main rules of logarithms:
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Most other log rules can be derived from these. We can prove these by using the corresponding exponent definitions:

Proof of 
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Let 
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. It follows that 
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Furthermore, 
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, first using substitution from above, and then applying the established exponent rule. Thus, we have that 
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. By definition of the logarithm, this statement is equivalent to 
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. Now, just substitute back for both x and y to yield 
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 as desired.
A similar proof can be constructed to show that 
[image: image23.wmf]b

a

b

a

c

c

c

log

log

log

=

-

.

Proof of 
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Let 
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. Thus, 
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. Rewriting this as a log statement we have:
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, now just substitute for x and y to yield: 
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The reason this result is so important is that it allows for the changing of the base of the exponent. Consider the following:
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. Here we've just changed our expression from a base of 8 to a base of 2. Certain problems become easier to solve if you change the base of some of the logs in the problem.

The proof of 
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 follows directly from the addition rule, since multiplication is just repeated addition.

Historically, logs were "created" by John Napier. (If he didn't invent them, he was certainly the one who spent much of his life utilizing the information to create logarithm tables.) Their main purpose was to ease the tedium of complex arithmetic calculations that arose in the study of astronomy. In particular, the task of multiplying two numbers could be done by adding two numbers and consulting the log tables. For a simple example, consider the following:  

Calculate 3523, given that log103 = .4771 and log102 = .3010. 

Calculate the log of the given expression, base 10:
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Now, we know that the answer is 103.2885 = 103(10.2885) = 1000(1.943) = 1943.
The latter value, 10.2885 would have to be looked up on a table. As you might imagine, it was quite painstaking to create these tables. Napier spent over 20 years of his life doing so. But, once they were created, they greatly expedited complex calculations.
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