IB HL Math Homework #6: Vectors
1) ('05 P1 #1)The vectors a, b, and c are defined by a = 
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Given that c is perpendicular to 2a – b, find the value of y.

Solution

2a – b = (6i + 4j – 2k) – (i +5j + 2k) = 5i – j – 4k

(2a – b) . c = 2(5) – y – 4(3) = 0, so y = -2.

2) ('05 P1 #3) The line 
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 an the plane 2x – y + 3z = 10 intersect at the point P. Find the coordinates of P.

Solution

The parametric equation of the line is as follows:

x = 2λ + 3, y = λ – 1, z = -3λ + 5.

Plug this into the equation of the plane to yield

2(2λ + 3) – (λ – 1) + 3(-3λ + 5) = 10

4λ + 6 – λ + 1 – 9λ + 15 = 10

-6λ = -12

λ = 2

Plugging this back into the line equation, we find the intersection to be (7, 1, -1).
3) ('04 P1 #8) Given that a = (i+2j+k), b = (i-3j+2k) and c = (2i+j-2k), calculate 
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Solution
a – b = 5j – k
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4) ('04 P1 #10) The line 
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 intersect at the point P. Find the coordinates of P.

Solution
The parametric equation of the line is

x = λ + 1, y = 2λ – 1, z = 3λ. Plug this into the equation of the plane to yield:

(λ+1)(1)+(2λ-1)2 + (-1)(3λ) = 1

λ +1 + 4λ - 2 - 3λ = 1

2λ = 2

λ = 1

The point of intersection is (2, 1, 3).

5) ('02 P1 #5) Find the angle between the vectors v = i+j+2k and w = 2i+3k+k. Give your answer in radians.

Solution
Let the angle between the vectors be θ. Then, using the dot product of the two vectors we find:
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6) ('02 P1 #8) The vector equation of the lines L1 and L2 are given by



L1: r = i+j+k + λ(i+2j+3k)



L2: r = i+4j+5k + μ(2i+j+2k)

The two lines intersect at the point P. Find the position vector of P.

Solution
Here is the parametric equation of L1: x = 1+ λ, y = 1+2λ, z = 1+3λ

Here is the parametric equation of L2: x = 1+2μ, y = 4+μ, z = 5 + 2μ

Setting the x-coordinates of these two equations equal we find

1+ λ = 1+2μ, so λ = 2μ.

Setting the y-coordinates of these two equations equal we find

1+2λ = 4+μ, substitute for λ to yield

1 + 4μ = 4 + μ

μ = 1 so λ = 2.

This also satisfies the equation for z. Thus, the point of intersection can be obtained by either plugging in λ = 2 into L1 or μ = 1 into L2. Thus, P is (3, 5, 7).
7) ('01 P1 #9) Find the equation of the line of intersection of the two planes -4x + y + z = -2 and 3x – y + 2z = -1.

Solution
-4x + y + z = -2
8x – 2y – 2z = 4

3x – y + 2z = -1
3x – y   + 2z = -1

-------------------
--------------------

-x + 3z = -3

11x – 3y = 3

x = 3z + 3

x = (3y+3)/11

The equation of the line of intersection is x = (3y + 3)/11 = 3z + 3.

8) ('01 P1 #12) Find an equation of the plane containing the two lines
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Solution
The direction vectors of the lines are i – 2j + k and 3i – 3j + 5k. The normal to the plane is perpendicular to these to vectors. Obtain this normal using the cross product:
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Thus, the equation of the plane is of the form 7x + 2y – 3z = D. To solve for D, plug in a point on the plane. One of these points is (1, 1, 2). (This was obtained by plugging in x=1 in the equation of the first line.) D = 7 + 2 – 6 = 3. Thus, the equation of the plane is
7x + 2y – 3z = 3.
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