Introductory Java – Multiple Choice Solutions
1) B – you can’t set an int to a double expression, but you can do the opposite and you can cast an double to an int, so only I causes an error.

2) E – The first character printed is a backslash, so this eliminates A and C. The second character printed is a star, which eliminates D. Finally, there is a newline in the middle so E must be the answer.

3) E – If we do the cast AFTER the computation, the data has already been lost and 2.0 is what answer will be set to. The other four choices do solve the problem correctly.

4) E – Do order of operations to get 13 – 18/4%3 = 13 – 4%3 = 13 – 1 = 12

5) C – Do addition and subtraction first: 2 + 3*12/7 – 4 + 8 = 5*12/11 = 5

6) D – Yes, this is a typical situation in which slight round-off error could occur.

7) D – Short-circuiting occurs and we never check the division and automatically proceed to statement 2.

8) D – The first if triggers but the second is false, so the else (which matches the innermost if) does trigger and print that 22 is negative.

9) A – Since a is 7, the first if is skipped. But nearly everything is in this if. We must go to its matching else which just sets p to 9. So we know that and we know that c is 6. That’s it.

10) A – Both if’s trigger, and y is set to 90, so that innermost if does NOT trigger. After that, we fall through to the end of the segment.

11) B – This is asking for order of operations. Not has the highest precedence so D and E are out. Then and has a higher precedence than or, so A and C are out, leaving B.
12) D – The first part of the expression simplifies to a > b, so putting it together with the second part, if a > b and b > 0, then the given expression will always be true.
13) A – If c < a is false, then the whole part inside the second set of parentheses will be false. But, because this as a not on the outside of it, it would turn to true. Finally, if you or something with true, you always get true.
14) A – These do the same thing…
15) D – value might not have been initialized. This is the compile time error. The other listed items are false.
16) C – Basically, the code tries successive multiples of x until it finds one that y divides evenly into, thus finding the smallest common multiple of x and y.
17) D – We enter the first while, then change y to 3. Then we enter the second while, changing y to 6 and then 12. Subsequently x changes to 7. We change y to 3 again. Then once again, y changes to 6 and then 12. Then x changes to 4 and we cut out of the loop with x = 4, y = 12.

18) B – This checks if the first three digits, when added are equivalent to the last digit mod 7. This is true for (B) only.
19) C – It’s not needed for functionality, but it does make the code easier to read, since it stands for how much of n is remaining.
20) B – The first line will have 5 values, then the second will have 4, etc. Only A, B and E fit this description. Of those, you’ll notice that the first number printed on each line is a large number, not necessarily 1, so E is out. Finally, the starting number of each row is different, so the answer must be (B). (Of course, the pattern of what B does matches this answer perfectly.)
21) E – They do it in different ways, but all three correctly print the output. The first one screens for the forward diagonal while the second and third split printing each row into three tasks: underscores before, number, underscores after.
22) D – II is true because num always gets smaller. III is true also because the loop is never entered. I turns out not to be true because we could have something like 200, where temp gets set to 0 right off the bat, so newNum stays at 0 and never gets to grow large enough.
23) D – I doesn’t work because the loop is set to run too long (to n), but then n is changing as well, so it’s a bizarre set up. The other two work just fine and are equivalent.
