Inheritance and Polymorphism – Multiple Choice Solutions

1) D – the methods are addInterest, deposit, withdraw and getBalance.

2) C – I is wrong because super isn’t called first. Both II and III are okay because in Java, a int gets set to zero if it’s not manually initialized.

3) D – We must call super and the natural choice is the constructor with one parameter. Then we must set myInterestRate. (I tend to think that A would work also because the implicit super call would set the balance to zero and this would then get overwritten.)

4) E – I is the natural choice, but II accomplishes the goal by setting up a default account and then adding the money. III does the same thing because the super call is implicit.

5) C – You can’t access myBalance in the CheckingAccount class. This removes all but C and D from consideration. The correct way to call BankAccount’s withdraw is to use super. Without it, a recursive call is made, which is definitely not intended.

6) B – This was a definition taught in class. When you write a version of a method in a subclass that redefines a superclass method, you are overriding that method. This happens often with toString.

7) E – At compile time, since the reference of s is a BankAccount reference, the only valid calls on s are methods in BankAccount or superclasses of BankAccount. But, addInterest isn’t one of these methods. Thus, at compile time, we can’t guarantee that there will be at least one method to run on s, so it doesn’t compile.

8) D – This is the only method of the ones listed that has implementations in two classes.

9) C – This is fairly obvious, c is a CheckingAccount, so making that cast will cause no problems. For the other four choices, each reference is being cast to a type that the object it’s pointing to is not.

10) D – There’s enough money for all three transactions and the syntax used is correct on all three.

11) E – I is false, you don’t really inherit constructors, you can use them though through super. II is definitely true, since that’s the whole point of inheritance. III is also true, though if a method were private, you wouldn’t be able to call it from outside the class, but that doesn’t mean you can’t create another method in Teacher with the same name as the private method from Person.

12) E – The first four are true but we can list a private method in abstract class.

13) A – problem with B is that you can’t cast bird1 to a Parrot. In C you need to cast bird2 inside the printBirdCall method call. Both D and E have illegal casts.

14) A – The only incorrect one is s1 because you can’t create an object of an abstract class.
15) E – Polymorphism applies in any situation with inheritance; an abstract class method may still execute depending on which methods are defined where.

16) A – Everything is fine here. Half the time it’ll output the volume of sph the other half the time it will output the volume of rec.

17) E – How would you multiply BankAccount objects??? The other one that might be tough for multiplying is length, because two lengths multiplied together won’t be a length any more. I would probably give credit to D also for this reason.

18) C – You can declare REFERENCES of both interfaces and abstract classes. Remember we previously declared a Comparable reference.

19) C – I disagree, I could encode a chess move in a single integer. But, I suppose it’s easier to encode the rest of the moves as a single integer.

20) C – The problem with II is that we are trying to call the getMove method on a comparable reference. This just won’t compile since getMove is NOT in the comparable interface. The problem with III is that we are trying to call compareTo on a HumanPlayer reference, which also won’t compile, since HumanPlayer does NOT implement comparable.

21) E – All three of these are valid, even though III is quite meaningless because it says that one player is better than another because of where her name is alphabetically. Namely, compareTo just has to return an int, negative if this comes first, 0 if they are equal, and a positive int if this comes last.
22) B – You can never extend more than one class and you CAN implement more than one interface. The other two are correct.

23) A – Fairly arbitrary. I mean, how do you compare Employees??? I can think of a reasonable way to compare Points, actually.

24) B – Student must be abstract because it has instance variables but at least one method (gpa calculation) that shouldn’t be defined. From there, it’s clear that we want DocStudent to extend Graduate, since that’s the proper hierarchy.

25) B – A is wrong because there is no relationship necessary between those two methods, C makes no sense because you can’t extend a method, D doesn’t really make sense either because it’s not clear that we know what implementation for method2 would be appropriate, E doesn’t really make any sense – if you add what you need to a new class, there’s no reason it won’t compile.


26) B – There is no such thing as a Comparable constructor, so III is incorrect. (You can’t create a Comparable object!!!) The other two are fine though.
