Classes and Objects – Multiple Choice Solutions
1) D – The time class has only two constructors, a default and one that takes in 3 ints. The other statements are true. (Note: I don’t think of equals, lessThan and toString as accessor methods traditionally, because I use that term only for methods which simply return an instance variable, but given the choices, D is unambiguously false whereas A is somewhat of an opinion.)

2) B – Instance variables must be on the left-hand side. The other choices all have problems (A sets each to zero, which isn’t intended, C can’t make any sense since the instance variables have yet to be given values, D leaves the instance variables uninitialized and E is calling the constructor for Time, not defining it.)

3) C –Since it’s a client class, you can’t access the instance variables. This is the problem with II. Similarly, we have no clue what h, m and s would be inside of that display method, so I can’t be correct. III does work, invoking the Time class toString method.

4) C – The parameter names in overloaded methods are immaterial. It’s their types that matter; they must differ in at least one corresponding slot. The rest of the statements are true. In particular, technically, everything in Java is pass-by-value – the value copied when Objects are passed is the memory reference. Picture-wise, it’s easier to draw and explain how Objects are passed as pass-by-reference.

5) B – On the right-hand-side, you need new Date(…) and only B satisfies this.

6) C – You can’t call a method on an object that doesn’t exist. Only III attempts calling the year() method on an object that doesn’t exist. The other two don’t call any objects on methods that don’t exist. It’s perfectly fine to set references to null.

7) E – It’s in a client program, so you can’t access the instance variables of a date object, which is what E is attempting to do. (Note: This is because the instance variables are private…)
8) E – Since we’re in the Date class, we CAN access the instance variables, so I is okay. II is okay as well since it’s fine to call those methods. Finally III works, invoking the class’s toString method.
9) A – The problem with II is you can’t set methods to anything. The problem with III is that it creates a int with an invalid name. You can’t have an integer variable name with a dot in it. I is fine though.
10) A – I sets d2 pointing to the same object that d1 points to, so no real copy is made. Both II and III call the constructor, thus creating a new object that is a copy of the old one.
11) C – Draw the picture out here. In the code shown, no null pointer error occurs because nothing ever gets called on the null reference recentDate. oldDate does change in the addCentury method, since the object itself is manipulated through the reference old. C is true, this STILL points to null. Even though recent in the function temporarily points to the date 1/13/2000, this function does NOT have the ability to change where recentDate is pointing. Clearly D is false since oldDate is pointing to an object. E is also false, since recentDate is pointing to no object.
12) C – This is why we make methods private, since we don’t want clients to use them.
13) D – The problem with D is that there is no constructor for Rational that takes in a double. Everything else is fine.
14) E – We must create the object before we reduce it. Only D and E make a correct attempt at creating the appropriate object. Next we must reduce it. The problem with D is that is calls reduce in a static context, but it MUST BE called on an object, like E is doing. Thus, E is correct.


15) D – n is an int, you can’t call a method on an int. The rest are fine.
16) B – A, C, D and E represent information about a frog that is stored in its instance variables. B represents information about a separate object that is NOT stored in the Frog class.
17) E – When we pass in the values 6 and 3 to the method strangeMethod, x changes from 6 to 9, and then y changes from 3 to 27, so either C or E must be right, because these are the only two choices with 9 and 27 printing on the first line. When we return to main, no change has been made to a and b, they are 6 and 3 respectively. A void method can NOT change the values of int variables within the calling method.
18) B – This one is tricky, but the comment to the lower method says that it changes the current object and also returns it. In particular, no new object has been created. This is the key. So, the whole time, there’s ONLY one object and all four references are pointing to it.
19) C – You need to check for validity first, so I is out. The problem with II is that the code is being called from a different class, TempTest, thus we MUST specify the class within which inValidTemp resides. Thus, II is out. Only III works.
20) D – I and II both work, implementing the formula in different ways. I does it in one step, while II creates a temperature that is 32 degrees Fahrenheit too low and then adds 32 degreess Fahrenheit to it. The problem with III is that it changes the current objects, which is NOT what should happen. The current object is still in Celsius, but at a different number.
21) A – The count in main is different than the count in doSomething(). doSomething() does NOT have the ability to change the count in main. Since nothing changes the count in main, it remains 0 the whole time.
22) A – Draw this out. Before the method calls, x points to an object with 2, y and a point to the same object with 7. The first method call changes the object y is pointing to contain 8. The assignment statement sets x to point to this object also. At this point, x, y and a are all pointing to the same object. When we call the method again, we increment this same one object, so that it contains 9. When we are done, all three references point to the same object, which stores 9.

23) C – calling the Tester constructor doesn’t change x and y in main, so these must be 6 and 8 respectively. Thus, the answer must be A or C. The problem with evaluating temp right before the program ends is that temp doesn’t exist then. It ceases to exist as soon as the constructor call is finished. Thus, C is the only correct answer.
