AP Computer Science Homework: Recursion

Due: Tuesday, March 16, 2010

For this assignment you will write four separate recursive methods. Feel free to write a main method that tests your four methods, but I will call your functions with my own test cases.

Write all of your solutions in a file called, Recursion.java in the Recursion class.

Here are the four methods for you to write:

1) A method that prints out a tip chart – a chart that tells you how much to tip for a list of dollar amounts. In particular the method takes in three parameters:


a) start – the integer starting value of the chart


b) end – the integer ending value of the chart


c) rate – a double (in between 0 and 1) representing the rate at which to tip.

For example, the method call Recursive.TipChart(5, 10, .2) should produce the following chart:

Meal Value
Tip Amount

----------
----------

5


1.00

6


1.20

7


1.40

8


1.60

9


1.80

10


2.00

Use printf to get the desired precision in the right column.

The prototype is below:
 public static void TipChart(int start, int end, double rate);

2) A method that calculates mathematical combinations. Here is the mathematical definition of combinations:

C(n, 0) = C(n, n) = 1, for all non-negative integers n.

C(n, k) = C(n-1, k-1) + C(n-1, k), for all integers n and k with 0 < k < n.

You may know these as binomial coefficients as well. Use the prototype below:

public static int combo(int n, int k);

3) Write a recursive method that returns the sum of the digits of a non-negative integer. Remember that this was a problem we solved iteratively earlier in the year and the key was to use % and / in concert. The same will be true in this solution, but this solution won’t have a loop. The method prototype is below:
public static int sumdigits(int n);

4) Write a recursive method that takes in a 2-dimensional character grid, a row location and column location, and changes the grid so that each adjacent character to the right, left, top or bottom that is the same as the original character gets changed to an ‘X’. So, for example, if the input grid looked like this:

abcde

fghij

klmmm

mqmmm

bbbbm

ccmmm

and the input row and column were 2 and 4, respectively, then the grid would look like the following:

abcde

fghij

klXXX

mqXXX

bbbbX

ccXXX

This is the hardest question of the bunch. The key is as follows. First change the initial square to an ‘X’, but then store the initial character in that square (in this example it’s ‘m’). Then, recursively call the function on the squares above, below, left and right, but ONLY if the character there is equal to the original character. Here is the prototype:

public static void fill(char[][] grid, int row, int col);
