AP Computer Science

Inheritance Test Solutions
Date: 2/5/2010

1) Consider writing a class called WildUnoCard which extends the UnoCard class shown below:
public class UnoCard {

final private static String[] colors =
 {"Yellow", "Red", "Green", "Blue"};

private int color;

private int number;

public UnoCard(Random r) {

color = Math.abs(r.nextInt()%4);

number = Math.abs(r.nextInt()%9) + 1;

}

public UnoCard(int c, int n) {

color = c;

number = n;

}

public String toString() {

return colors[color]+" "+number;

}

public boolean canPlay(UnoCard other) {

return this.color == other.color ||
 this.number == other.number;

}
}

A WildUnoCard object is different than a regular Uno card in that its String representation should simply be “WildCard” and that it can be played on any UnoCard object. Write the WildUnoCard class on the following page. Explain why this class does NOT need access to color or number.
public class WildUnoCard extends UnoCard {
 public String toString() {

 return “WildCard”;

 }

 public boolean canPlay(UnoCard other) {

 return true;

 }

}
The way this type of object “plays” in the game, there’s no associated color or number to it, because it can be played on any card, regardless of color or number. Also, its name (as printed) does not include a color or number. This is why this class does NOT need access to color or number.
2) Fill in either a yes or a no in each of the boxes below to indicate whether the following items are allowed in abstract classes and interfaces:

	
	Abstract Classes
	Interfaces

	Method signatures
	Yes
	Yes

	Method definitions (with code)
	Yes
	No

	Instance Variables
	Yes
	No

3) What separates/distinguishes an abstract class from a regular class, other than the keyword abstract?

An abstract class must have at least one abstract method, a method that isn’t actually defined.

4) What is the output of the executing the following file with classes A, B and C?
1

2

4

4

6

(14)

(4,11)

(2,7)

(4,10,3)

(2,2,9)

(4,7,15)
 5) Consider the following interface:

public interface Addable<T> {

public T add(T elem);

}
Write a ComplexNumber class that implements this interface. Your class must have the following:

1) Two instance variables that are doubles, representing the real and imaginary components of the number.

2) A constructor that takes in two doubles, representing the real and imaginary components of the complex number, respectively, to be created.

3) A method that satisfies the requirements of the interface that properly adds two complex numbers. Remember, given two complex numbers (a+bi) and (c+di), their sum is ((a+c) + (b+d)i). For example, (2+4i) + (3 – 7i) = 5 – 3i.

public class ComplexNumber implements Addable<ComplexNumber> {

private double real;

private double img;

public ComplexNumber(double r, double i) {

real = r;

img = i;

}

public ComplexNumber add(ComplexNumber other) {

double r = real + other.real;

double i = img + other.img;

return new ComplexNumber(r,i);

}

}

