AP Computer Science First Semester Exam Solutions
1/19/2010
Directions: Please answer all questions on your own paper.
1) (5 pts) Write a single statement that will print the following to the screen, in Java:

\Do Ra Me

Fa So La

Ti Do\

System.out.println(\\Do Ra Me\nFa So La\nTi Do\\);

Grading: 2 pt \, 2 pt \n, 1 pt rest
2) (10 pts) Write statements inside of main for a Java program that that prompts the user to enter the circumference of a circle and then prints out the area of that circle (as a double). Please use the constant Math.PI for the value of π in your program.

Scanner stdin = new Scanner(System.in); // 2 pts
System.out.println(“Enter the circumference.”); // 1 pt
double cir = stdin.nextDouble(); // 2 pts
double rad = cir/2/Math.PI; // 2 pts
System.out.println(“Area = “+(Math.PI*rad*rad)); // 3 pts
3) (10 pts) A typical hourly employee gets paid a regular hourly rate. If they work more than 40 hours a week however, the employee gets “time and a half” for those extra hours. For example, if Sam’s hourly rate is $10, but he works 50 hours, he will make $550. In particular, he gets $10 an hour for the first 40 hours for $400, and he gets $15 (50% more) an hour for the last 10 hours, for an extra $150. Write a program that prompts the user to enter their hourly rate (double) and the number of hours they have worked (int), and prints out how much money they’ve made for the week. Just write the part of the program inside of main.

Scanner stdin = new Scanner(System.in); // I/O = 3 pts
System.out.println(“Enter yoru hourly pay.”);

double payrate = stdin.nextDouble();

System.out.println(“Enter hours worked.”);

double hrs = stdin.nextDouble();

double pay;

if (hrs <= 40) // 2 pts

 pay = hrs*payrate; // 1 pt

else

 pay = 40*payrate+(hrs-40)*1.5*payrate; // 3 pts

System.out.println(“You got paid “+pay+” dollars.”); // 1pt
4) (10 pts) The nth Harmonic number is defined as
[image: image1.wmf]n

1

...

3

1

2

1

1

+

+

+

+

. Write a static method that takes in n as a parameter and returns the nth Harmonic number. If the n passed to the method is 0 or negative, return 0. The method prototype is below:

public static double harmonic(int n) {
 double sum = 0; // 2 pts
 for (int i=1; i<=n; i++) // 3 pts
 sum = sum + 1.0/i; // 4 pts (1 for double div)
 return sum; // 1 pt
}

5) (15 pts) Each student in a class has a unique ID number from 1 to n. Your job is to write a static method that looks at a list of student ID numbers and prints out which ones are missing. You are guaranteed that no number will appear in the list more than once and that all numbers in the list will be valid ID numbers. The list will be passed to the method you write in the form of an integer array. The second parameter to the method will be n. The method prototype is below:

public static void missing(int[] students, int n) {
 // 3 pts for setting this up.

 boolean[] present = new boolean[n+1];
 for (int i=0; i<=n; i++)

 present[i] = false;

 // 6 points for marking who is there
 for (int i=0; i<students.length; i++)

 present[students[i]] = true;

 // 6 points for printing who is not.
 for (int i=1; i<=n; i++)

 if (!present[i])

 System.out.print(i+”, “);

 System.out.println();
 // Note: There are lots of ways to do this.

}
6) (20 pts) Imagine creating a beverage class. A beverage has a name and how much liquid (in oz.) is can carry and how much liquid is left in it. In the beginning, how much is left will be equal to the capacity of the beverage. For example, we can construct a can of coke to have the name "Coke" and to start off with 12 ounces. There are several operations that we can "do" to beverages. We can drink part of them, or throw them away, for example. We can also combine two beverages (but only if their names are the same!) into one. On the back of this page will be an incomplete specification of the beverage class. Fill in all of the methods that are not defined on your own paper.
public class beverage {

 private String name;

 private int capacity;

 private int numOunces;

 // Creates a new beverage with the name s, a capacity

 // of c and makes sure it's filled.

 public beverage(String s, int c) {}

 public boolean drink(int howmuch) {

 if (howmuch > numOunces)

 return false;

 numOunces -= howmuch;

 return true;

 }

 // Throws away the remaining drink that is left.

 public void dumpOut() {
 numOunces = 0; // 2 pts
 }

 // Fills in howmuch number of ounces in the current

 // beverage if there's room and returns true. Returns
 // false otherwise.

 public boolean refill(int howmuch) {
 if (howmuch+numOunces > capacity) // 2 pts
 return false; // 2 pts
 numOunces += howmuch; // 2 pts
 return true; // 2 pts
 }

 // if other does NOT have the same name as this object

 // then null is returned. Otherwise, a new beverage

 // is created that has a capacity that is the sum of the

 // two capacities and the numOunces is the sum of the

 // two containers and the name is the same.

 public beverage combine(beverage other) {
 if (!name.equals(other.name)) // 2 pts
 return null; // 1 pt
 beverage temp =

 new beverage(name,capacity+other.capacity);//3 pts
 int toDrink = capacity – numOunces;

 toDrink = toDrink + other.capacity – numOunces;

 temp.drink(toDrink); // 3 pts for all of this
 return temp; // 1 pt
 }

}
7) (30 pts) What is the output to the following code? (There are four classes below: a, b, c, and main. The last class is the one that is executed.) Hint: There will be in between 11 and 15 lines of output.
public class a {

protected int x;

public a() {

System.out.println("a default.");

x = 0;

}

public a(int num) {

System.out.println("a with int.");

x = num;

}

public boolean equals(a other) {

return this.x == other.x;

}

public boolean equals(c other) {

if (!(this instanceof c))

return false;

return true;

}

}
public class b extends a {

protected int y;

public b() {

System.out.println("b default.");

y = 0;

}

public b(int one) {

System.out.println("b with 1 int.");

y = one;

}

public b(int one, int two) {

super(one);

System.out.println("b with 2 ints.");

y = two;

}

public boolean equals(b other) {

return super.equals(other) && this.y == other.y;

}

}
public class c extends b {

protected int z;

public c() {

System.out.println("c default.");

z = 0;

}

public c(int one, int two, int three) {

super(one,two);

System.out.println("c with 3 ints.");

z = three;

}

public boolean equals(c other) {

return super.equals(other) && this.z == other.z;

}

}
public class main {

public static void main(String[] args) {

a one = new a();

a two = new b(0,4);

a three = new c(0,4,7);

b four = new b(0,5);

c five = new c(0,6,8);

if (one.equals(two))

System.out.println("One and two are equal.");

if (three.equals(five))

System.out.println("Three and five are equal.");

if (four.equals(five))

System.out.println("Four and five are equal.");

if (two.equals(four))

System.out.println("Two and four are equal.");

}

}
Answer

a default.

a with int.

b with 2 ints.

a with int.

b with 2 ints.

c with 3 ints.

a with int.

b with 2 ints.

a with int.

b with 2 ints.

c with 3 ints.

One and two are equal.

Two and four are equal.
Grading: 2 pts per line (15 lines – get points for omitting the two that ought to be omitted and lose them for printing them.)
_1293439752.unknown

