Lecture 20

Last time:
- The inverse of a matrix
- Iterative methods for solving systems of linear equations
 - Gauss-Siedel
 - Jacobi

Today
- Relaxation
- Non-linear systems
- Random variables, probability distributions, Matlab support for random variables.

Next Time
- Linear regression
- Linear least squares regression
Relaxation

To enhance convergence, an iterative program can introduce relaxation where the value at a particular iteration is made up of a combination of the old value and the newly calculated value:

\[x_i^{\text{new}} = \lambda x_i^{\text{new}} + (1 - \lambda) x_i^{\text{old}} \]

where \(\lambda \) is a weighting factor that is assigned a value between 0 and 2.

- \(0 < \lambda < 1 \): underrelaxation
- \(\lambda = 1 \): no relaxation
- \(1 < \lambda \leq 2 \): overrelaxation
Nonlinear Systems

- Nonlinear systems can also be solved using the same strategy as the Gauss-Seidel method - solve each system for one of the unknowns and update each unknown using information from the previous iteration.
- This is called *successive substitution*.
Nonlinear systems may also be solved using the Newton-Raphson method for multiple variables.

For a two-variable system, the Taylor series approximation and resulting Newton-Raphson equations are:

\[
f_{1,i+1} = f_{1,i} + (x_{1,i+1} - x_{1,i}) \frac{\partial f_{1,i}}{\partial x_1} + (x_{2,i+1} - x_{2,i}) \frac{\partial f_{1,i}}{\partial x_2}
\]

\[
x_{1,i+1} = x_{1,i} - \frac{f_{1,i} \frac{\partial f_{2,i}}{\partial x_2} - f_{2,i} \frac{\partial f_{1,i}}{\partial x_2}}{\frac{\partial f_{1,i}}{\partial x_1} \frac{\partial f_{2,i}}{\partial x_2} - \frac{\partial f_{1,i}}{\partial x_2} \frac{\partial f_{2,i}}{\partial x_1}}
\]

\[
f_{2,i+1} = f_{2,i} + (x_{1,i+1} - x_{1,i}) \frac{\partial f_{2,i}}{\partial x_1} + (x_{2,i+1} - x_{2,i}) \frac{\partial f_{2,i}}{\partial x_2}
\]

\[
x_{2,i+1} = x_{2,i} - \frac{f_{2,i} \frac{\partial f_{1,i}}{\partial x_1} - f_{1,i} \frac{\partial f_{2,i}}{\partial x_1}}{\frac{\partial f_{1,i}}{\partial x_1} \frac{\partial f_{2,i}}{\partial x_2} - \frac{\partial f_{1,i}}{\partial x_2} \frac{\partial f_{2,i}}{\partial x_1}}
\]
function [x,f,ea,iter]=newtmult(func,x0,es,maxit,varargin)

% newtmult: Newton-Raphson root zeroes nonlinear systems
% [x,f,ea,iter]=newtmult(func,x0,es,maxit,p1,p2,...):
% uses the Newton-Raphson method to find the roots of
% a system of nonlinear equations
% input:
% func = function handle to function that returns f and J
% x0 = initial guess
% es = desired percent relative error (default = 0.0001)
% maxit = maximum allowable iterations (default = 50)
% p1,p2,... = additional parameters used by function
% output:
% x = vector of roots
% f = vector of functions evaluated at roots
% ea = approximate percent relative error (%)
% iter = number of iterations

if nargin<2,error('at least 2 input arguments required'),end
if nargin<3||isempty(es),es=0.0001;end
if nargin<4||isempty(maxit),maxit=50;end
iter = 0;
x=x0;
while (1)
 [J,f]=func(x,varargin{:});
dx=J\f;
x=x-dx;
 iter = iter + 1;
e=a=100*max(abs(dx./x));
 if iter>=maxit||ea<=es, break, end
end
Probability and statistics concepts

- See class notes:
 - Probability
 - NASA lecture