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Abstract. Many developments have taken place within dataflow programming
languages in the past decade. In particular, there has been a great deal of activity and
advancement in the field of dataflow visual programming languages. The motivation for
this article is to review the content of these recent developments and how they came
about. It is supported by an initial review of dataflow programming in the 1970s and
1980s that led to current topics of research. It then discusses how dataflow
programming evolved toward a hybrid von Neumann dataflow formulation, and
adopted a more coarse-grained approach. Recent trends toward dataflow visual
programming languages are then discussed with reference to key graphical dataflow
languages and their development environments. Finally, the article details four key
open topics in dataflow programming languages.
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1. INTRODUCTION

The original motivation for research into
dataflow was the exploitation of mas-
sive parallelism. Therefore, much work
was done to develop ways to program
parallel processors. However, one school
of thought held that conventional “von
Neumann” processors were inherently un-
suitable for the exploitation of parallelism
[Dennis and Misunas 1975; Weng 1975].
The two major criticisms that were lev-
eled at von Neumann hardware were di-
rected at its global program counter and
global updatable memory [Silc et al. 1998],
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both of which had become bottlenecks
[Ackerman 1982; Backus 1978]. The al-
ternative proposal was the dataflow archi-
tecture [Davis 1978; Dennis and Misunas
1975; Weng 1975], which avoids both of
these bottlenecks by using only local mem-
ory and by executing instructions as soon
as their operands become available. The
name dataflow comes from the conceptual
notion that a program in a dataflow com-
puter is a directed graph and that data
flows between instructions, along its arcs
[Arvind and Culler 1986; Davis and Keller
1982; Dennis 1974; Dennis and Misunas
1975]. Dataflow hardware architectures
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looked promising [Arvind and Culler 1986;
Dennis 1980; Treleaven and Lima 1984;
Veen 1986], and a number of physical im-
plementations were constructed and stud-
ied (for examples, see Davis [1978], Keller
[1985], Papadopoulos [1988], Sakai et al.
[1989], and Treleaven et al. [1982]).

Faced with hardware advances, re-
searchers found problems in compil-
ing conventional imperative programming
languages to run on dataflow hardware,
particularly those associated with side ef-
fects and locality [Ackerman 1982; Arvind
et al. 1977; Arvind and Culler 1986;
Kosinski 1973; Wail and Abramson 1995;
Weng 1975; Whiting and Pascoe 1994].
They found that by restricting certain
aspects of these languages, such as as-
signments, they could create languages
[Ackerman 1982; Ashcroft and Wadge
1977; Dennis 1974; Hankin and Glaser
1981; Kosinski 1978] that more naturally
fitted the dataflow architecture and could
thus run much more efficiently on it. These
are the so-called dataflow programming
languages [Ackerman 1982; Whiting and
Pascoe 1994] that developed distinct prop-
erties and programming styles as a conse-
quence of the fact that they were compiled
into dataflow graphs—the “machine lan-
guage” of dataflow computers.

The often-expressed view in the 1970s
and early 1980s that this form of dataflow
architecture would take over from von
Neumann concepts [Arvind et al. 1977;
Treleaven et al. 1982; Treleaven and Lima
1984] never materialized [Veen 1986]. It
was realized that the parallelism used
in dataflow architectures operated at too
fine a grain and that better performance
could be obtained through hybrid von
Neumann dataflow architectures. Many
of these architectures [Bic 1990] took
advantage of more coarse-grained paral-
lelism where a number of dataflow in-
structions were grouped and executed in
sequence. These sets of instructions are,
nevertheless, executed under the rules of
the dataflow execution model and thus
retain all the benefits of that approach.
Most dataflow architecture efforts being
pursued today are a form of hybrid

[Iannucci 1988; Nikhil and Arvind 1989],
although not all, for example, Verdoscia
and Vaccaro [1998].

The 1990s saw a growth in the field of
dataflow visual programming languages
(DFVPLs) [Auguston and Delgado 1997;
Baroth and Hartsough 1995; Bernini and
Mosconi 1994; Ghittori et al. 1998; Green
and Petre 1996; Harvey and Morris 1993,
1996; Hils 1992; Iwata and Terada 1995;
Morrison 1994; Mosconi and Porta 2000;
Serot et al. 1995; Shizuki et al. 2000; Shürr
1997; Whiting and Pascoe 1994; Whitley
1997]. Some of these, such as LabView
and Prograph were primarily driven by
industry, and the former has become a
successful commercial product that is still
used today. Other languages, such as NL
[Harvey and Morris 1996], were created
for research. All have software engineer-
ing as their primary motivation, whereas
dataflow programming was traditionally
concerned with the exploitation of paral-
lelism. The latter remains an important
consideration, but many DFVPLs are no
longer primarily concerned with it. Ex-
perience has shown that many key ad-
vantages of DFVPLs lie with the soft-
ware development lifecycle [Baroth and
Hartsough 1995].

This article traces the development of
dataflow programming through to the
present. It begins with a discussion of
the dataflow execution model, including
a brief overview of dataflow hardware.
Insofar as this research led to the de-
velopment of dataflow programming lan-
guages, a brief historical analysis of these
is presented. The features that define tra-
ditional, textual dataflow languages are
discussed, along with examples of lan-
guages in this category. The more recent
trend toward large-grained dataflow is
presented next. Developments in the field
of dataflow programming languages in the
1990s are then discussed, with an empha-
sis on DFVPLs. As the environment is key
to the success of a DFVPL, a discussion
of the issues involved in development en-
vironments is also presented, after which
four examples of open issues in dataflow
programming are presented.
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Fig. 1. A simple program (a) and its dataflow equivalent (b).

2. THE DATAFLOW EXECUTION MODEL

2.1. The Pure Dataflow Model

In the dataflow execution model, a pro-
gram is represented by a directed graph
[Arvind and Culler 1986; Davis and Keller
1982; Dennis 1974; Dennis and Misunas
1975; Karp and Miller 1966]. The nodes
of the graph are primitive instructions
such as arithmetic or comparison oper-
ations. Directed arcs between the nodes
represent the data dependencies between
the instructions [Kosinski 1973]. Concep-
tually, data flows as tokens along the
arcs [Dennis 1974] which behave like un-
bounded first-in, first-out (FIFO) queues
[Kahn 1974]. Arcs that flow toward a node
are said to be input arcs to that node, while
those that flow away are said to be output
arcs from that node.

When the program begins, special acti-
vation nodes place data onto certain key
input arcs, triggering the rest of the pro-
gram. Whenever a specific set of input arcs
of a node (called a firing set) has data on it,
the node is said to be fireable [Arvind and
Culler 1986; Comte et al. 1978; Davis and
Keller 1982]. A fireable node is executed at
some undefined time after it becomes fire-
able. The result is that it removes a data
token from each node in the firing set, per-
forms its operation, and places a new data

token on some or all of its output arcs. It
then ceases execution and waits to become
fireable again. By this method, instruc-
tions are scheduled for execution as soon
as their operands become available. This
stands in contrast to the von Neumann ex-
ecution model, in which an instruction is
only executed when the program counter
reaches it, regardless of whether or not it
can be executed earlier than this.

The key advantage is that, in dataflow,
more than one instruction can be executed
at once. Thus, if several instructions be-
come fireable at the same time, they can be
executed in parallel. This simple principle
provides the potential for massive parallel
execution at the instruction level.

An example of dataflow versus a tra-
ditional sequential program is shown in
Figure 1. Figure 1(a) shows a fragment of
program code and Figure 1(b) shows how
this is represented as a dataflow graph.
The arrows represent arcs, and the circles
represent instruction nodes. The square
represents a constant value, hard-coded
into the program. The letters represent
where data flows in or out of the rest of
the program, which is not shown. Where
more than one arrow emanates from a
given input, it means that the single value
is duplicated and transmitted down each
path.

ACM Computing Surveys, Vol. 36, No. 1, March 2004.



4 Johnston et al.

Fig. 2. Gates in a dataflow graph.

Under the von Neumann execution
model, the program in Figure 1(a) would
execute sequentially in three time units.
In time unit 1, X and Y are added and
assigned to A. In time unit 2, Y is di-
vided by 10 and assigned to B. In time unit
3, A and B are multiplied together and
assigned to C.

Under the dataflow execution model,
where the graph in Figure 1(b) is the ma-
chine code, the addition and division are
both immediately fireable, as all of their
data is initially present. In time unit 1, X
and Y are added in parallel with Y be-
ing divided by 10. The results are placed
on the output arcs, representing variables
A and B. In time unit 2, the multiplica-
tion node becomes fireable and is executed,
placing the result on the arc representing
the variable C. (In dataflow, every arc can
be said to represent a variable.) In this sce-
nario, execution takes only two time units
under a parallel execution model.

It is clear that dataflow provides the
potential to provide a substantial speed
improvement by utilizing data dependen-
cies to locate parallelism. In addition, if
the computation is to be performed on
more than one set of data, the calculations
on the second wave of values of X and
Y can be commenced before those on the
first set have been completed. This is
known as pipelined dataflow [Gao and
Paraskevas 1989; Wadge and Ashcroft
1985] and can utilize a substantial degree
of parallelism, particularly in loops, al-
though techniques exist to utilize greater
parallelism in loops [Arvind and Nikhil
1990]. A dataflow graph that produces
a single set of output tokens for each
single set of input tokens is said to be
well-behaved [Dennis 1974; Weng 1975].

Another key point is that the operation
of each node is functional. This is because

data is never modified (new data tokens
are created whenever a node fires), no
node has any side effects, and the absence
of a global data store means that there is
locality of effect. As a result of being func-
tional, and the fact that the data travels
in ordered queues, a program expressed
in the pure dataflow model is determi-
nate [Arvind and Culler 1986; Davis and
Keller 1982; Kahn 1974]. This means that,
for a given set of inputs, a program will
always produce the same set of outputs.
This can be an important property in cer-
tain applications. Some research has been
done on the implications of nondetermi-
nate behavior [Arvind et al. 1977; Kosinski
1978] and this is discussed further in
Section 6.4.

2.1.1. Controlling Data Tokens. In
Figure 1(b) the two arcs emanating
from input Y signify that that value is to
be duplicated. Forking arcs in this man-
ner is essential if a data token is needed
by two different nodes. A data token
that reaches a forked arc gets duplicated
and a copy sent down each branch. This
preserves the data independence and the
functionality of the system.

To preserve the determinacy of the
token-flow model, it is not permitted to
arbitrarily merge two arcs of flowing data
tokens. If this were allowed, data could
arrive at a node out of order and jeopar-
dize the computation. It is obvious, how-
ever, that it would be difficult indeed to
express a program in the dataflow model if
arcs could only be split and never merged.
Thus, the dataflow model provides spe-
cial control nodes called gates [Davis and
Keller 1982; Dennis 1974] that allow this
to happen within well-controlled limits.
Figure 2(a) shows a Merge gate. This gates
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takes two data input arcs, labeled the true
and false inputs, as well as a “control” in-
put arc that carries a Boolean value. When
the node fires, the control token is ab-
sorbed first. If the value is true, the token
on the true input is absorbed and placed on
the output. If it is false, then the token on
the false input is absorbed and placed
on the output. Figure 2(b) shows a Switch
gate. This gate operates in much the same
way, except that there is a single input and
the control token determines on which of
two outputs it is placed.

A full treatment of controlling tokens
to provide conditional and iterative execu-
tion is given in Section 6.2. At this stage,
it is sufficient to say that by grouping to-
gether three Switch gates, it is possible
to implement well-behaved conditional ex-
ecution, while the combined use of both
types of gate implements well-behaved it-
erative execution.

2.1.2. An Alternative to Token-Based
Dataflow. The pure dataflow execution
model outlined above is based on flowing
data tokens, like most dataflow models.
However, it should be pointed out that
an alternative, known as the structure
model, has been proposed in the liter-
ature. Expounded by Davis and Keller
[1982] and Keller and Yen [1981], it
contains the same arc-and-node format
as the token model. In the structure
model, however, each node creates only
one data object on each arc that remains
there: the node builds one or more data
structures on its output arcs. It is possi-
ble for these structures to hold infinite
arrays of values, permitting open-ended
execution, and creating the same effect as
the token model, but with the advantage
that the structure model permits random
access of the data structures and history
sensitivity.

The key difference between the struc-
ture model and the token model is the way
they view data. In the token model, nodes
are designed to be stream processors, oper-
ating on sequences of related data tokens.
In the structure model, however, the nodes
operate on structures and have no concept

of streams of data structures. As a conse-
quence, a structure model will need a more
complex supporting language [Davis and
Keller 1982].

Initially, the structure model seems at-
tractive. Token streams can be repre-
sented by infinite objects with the advan-
tage that the streams can be accessed
randomly and that the entire history of
a stream can be accessed without need-
ing to explicitly preserve earlier data from
the stream. Additionally, the point is made
that token models force the programmer
to model all programs as token streams,
while the structure model allows them to
make the choice [Davis and Keller 1982].

However, the structure model has the
key disadvantage that it cannot store data
efficiently. It requires all data generated
to be stored, to preserve the ability to ex-
amine the history of the program. Token
models are inherently more efficient at
storing data. Some of this problem can
be alleviated by compiler efficiency, but it
is a complex process. Despite research in
the area in the early 1980s [Davis and
Keller 1982; Keller and Yen 1981], the
structure model was not widely adopted
into dataflow, which remains almost exclu-
sively token-based.

2.1.3. Theoretical Implementation: Data and
Demand-Driven Architectures. The earliest
dataflow proposals imagined data tokens
to be passive elements that remained on
arcs until they were read, rather than ac-
tually controlling the execution [Kosinski
1973]. However, it quickly became normal
in dataflow projects for data to control the
execution. There were two ways of doing
this in a theoretical implementation of the
pure dataflow model.

The first approach is known as the
data-driven approach [Davis and Lowder
1981; Davis and Keller 1982; Dennis 1974;
Treleaven et al. 1982], although this term
is slightly misleading as both approaches
can be said to be driven by data, in-
sofar as they follow the principles of
dataflow. This approach should really be
termed the data-availability-driven ap-
proach because execution is dependent on
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the availability of data. Essentially a node
is inactive while data is arriving at its in-
puts. It is the responsibility of an over-
all management device to notify and fire
nodes when their data has arrived. The
data-driven approach is a two-phase pro-
cess where (a) a node is activated when its
inputs are available, and (b) absorbs its in-
puts and places tokens on its output arcs.

The second approach is the demand-
driven approach [Davis and Keller 1982;
Kahn 1974]. In this approach, a node is
activated only when it receives a request
for data from its output arcs. At this point,
it demands data from all relevant input
arcs. Once it has received its data, it exe-
cutes and places data tokens on its output
arcs. The demand-driven approach is thus
a four-phase process [Davis and Keller
1982] where (a) a node’s environment re-
quests data, (b) the node is activated and
requests data from its environment, (c) the
environment responds with data, and (d)
the node places tokens on its output arcs.
Execution of the program begins when the
graph’s environment demands some out-
put from the graph.

Each of these approaches has certain ad-
vantages. The data-driven approach has
the advantage that it does not have the ex-
tra overhead of propagating data requests
up the dataflow graph. On the other hand,
the demand-driven approach has the ad-
vantage that certain types of node can be
eliminated, as pointed out by Davis and
Keller [1982]. This is because only needed
data is ever demanded. For example, the
Switch, node, shown in Figure 2(b), is not
required under a demand-driven approach
because only one of the True or False out-
puts will demand the input, but not both.
Therefore, they can both be attached di-
rectly to the input. This is one example of
how programming with dataflow can be af-
fected by the choice of physical implemen-
tation, or at least by the choice of execution
model.

It can also be argued that the demand-
driven approach prevents the creation of
certain types of programs. For example,
modern software is often event-driven,
such as for business software or real-time
systems. It is not enough for the output

environment to simply demand input.
These examples seem to require a data-
driven approach.

2.2. Early Dataflow Hardware Architectures

While dataflow seems good in theory,
the practical implementation of the pure
dataflow model has been found to be an
arduous task [Silc et al. 1998]. There are
a number of reasons for this, primarily
the fact that the pure model makes as-
sumptions that cannot be replicated in the
real world. First, it assumes that the arcs
are FIFO queues of unbounded capacity,
but creating an unbounded memory is im-
possible in a practical sense. Thus any
dataflow implementation is heavily tied
to token-storage techniques. Second, it as-
sumes that any number of instructions can
be executed in parallel, while in reality
the number of processing elements will
be finite. These restrictions mean that no
hardware implementation of the dataflow
model will exactly mirror the pure model.
Indeed, this fact can make subtle but
important changes to the pure dataflow
model that mean that the implementa-
tion may deadlock in cases where the pure
model predicts no deadlock [Arvind and
Culler 1986]. It is useful to summarize the
early development of dataflow hardware
in order to reinforce this point.

2.2.1. The Static Architecture. When the
construction of dataflow computers began
in the 1970s, two different approaches to
solving the previously mentioned prob-
lems were researched. The static architec-
ture was proposed by Dennis and Misunas
[1975]. Under this architecture [Dennis
1974, 1980; Silc et al. 1998], the FIFO de-
sign of arcs is replaced by a simpler de-
sign where each arc can hold, at most,
one data token. The firing rule for a node
is, therefore, that a token be present on
each input arc, and that there be no to-
kens present on any of the output arcs. In
order to implement this, acknowledge arcs
are implicitly added to the dataflow graph
that go in the opposite direction to each
existing arc and carry an acknowledgment
token.
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Fig. 3. The static dataflow architecture (based on Arvind and Culler [1986]).

The static architecture’s main strength
is that it is very simple and quick to de-
tect whether or not a node is fireable. Addi-
tionally, it means that memory can be allo-
cated for each arc at compile-time as each
arc will only ever hold 0 or 1 data token.
This implies that there is no need to create
complex hardware for managing queues of
data tokens: each arc can be assigned to a
particular piece of memory store.

The graph itself is stored in the com-
puter as a series of templates, each repre-
senting a node of the graph. The template
holds an opcode for the node; a memory
space to hold the value of the data token
on each input arc, with a presence flag
for each one; and a list of destination ad-
dresses for the output tokens. Each tem-
plate that is fireable (the presence flag for
each input is set, and that of each out-
put is not set) has its address placed in
an instruction queue. A fetch unit then
repeatedly removes each template from
this queue and sends an operation packet
to the appropriate operation unit. Mean-
while, the template is cleared to prepare it
for the next set of data tokens. The result is
sent from the operation unit to an update
unit that places the results onto the cor-
rect receiving arcs by reading the target
addresses in the template. It then checks
each template to see if it is fireable and,
if so, places it in the instruction queue to
complete the cycle. This process is shown
in Figure 3.

Unfortunately the static model has
some serious problems. The additional

acknowledgment arcs increase data traffic
in the system, without benefiting the com-
putation. According to Arvind and Culler
[1986], traffic can increase by a factor of
1.5 to 2.0. Because a node must wait for
acknowledgment tokens to arrive before
it can execute again, the time between
successive firings of a node increases.
This can affect performance, particularly
in situations of linear computation that
do not have much parallelism. Perhaps
most importantly, the static architecture
also severely limits the execution of loops.
In certain cases, the single-token-per-arc
limitation means that a second loop itera-
tion cannot begin executing until the pre-
vious one has almost completed, thereby
limiting parallelism to simple pipelining
and preventing truly parallel execution of
loop iterations. Despite these limitations,
a number of static dataflow computers
have been built and studied [Davis 1978;
Dennis and Misunas 1975; Dennis 1980].

2.2.2. The Dynamic, or Tagged-Token
Architecture. An alternative approach was
proposed by Watson and Gurd [1979],
Arvind and Culler [1983], and Arvind
and Nikhil [1990]. Known as the dynamic
model, it exposes additional parallelism
by allowing multiple invocations of a sub-
graph that is often an iterative loop. While
this is the conceptual view of the tagged-
token model, in reality only one copy of
the graph is kept in memory and tags are
used to distinguish between tokens that
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belong to each invocation. A tag contains
a unique subgraph invocation ID, as well
as an iteration ID if the subgraph is a
loop. These pieces of information, taken
together, are commonly known as the
color of the token.

Instead of the single-token-per-arc rule
of the static model, the dynamic model rep-
resents each arc as a large bag that can
contain any number of tokens, each with
a different tag [Silc et al. 1998]. In this
scenario, a given node is said to be fire-
able whenever the same tag is found in a
data token on each input arc. It is impor-
tant to note that, because the data tokens
are not ordered in the tagged-token model,
processing of tokens does not necessarily
proceed in the same order as they entered
the system. However, the tags ensure that
the tokens do not conflict, so this does not
cause a problem.

The tags themselves are generated by
the system [Arvind and Culler 1986]. To-
kens being processed in a given invoca-
tion of a subgraph are given the unique
invocation ID of that subgraph. Their it-
eration ID is set to zero. When the token
reaches the end of the loop and is being fed
back into the top of the loop, a special con-
trol operator increments the iteration ID.
Whenever a token finally leaves the loop,
another control operator sets its iteration
ID back to zero.

A hardware architecture based on the
dynamic model is necessarily more com-
plex than the static architecture outlined
in Section 2.2.1. Additional units are re-
quired to form tokens and match tags.
More memory is also required to store the
extra tokens that will build up on the arcs.
Arvind and Culler [1986] provided a good
summary of the architecture.

The key advantage of the tagged-token
model is that it can take full advantage
of pipelining effects and can even execute
separate loop iterations simultaneously. It
can also execute out-of-order, bypassing
any tokens that require complex execution
and that delay the rest of the computa-
tion. It has been shown that this model
offers the maximum possible parallelism
in any dataflow interpreter [Arvind and
Gostelow 1977].

Another noteworthy benefit of the
tagged-token model is that less care needs
to be taken to ensure that tokens re-
main in order. For example, the pure
dataflow model requires Merge operators
(see Section 2.1.1) to ensure that data to-
kens are merged in a determinate way. In
the dynamic model, however, this is not
required as the tags ensure the determi-
nacy, and so token streams can be merged
arbitrarily.

The main disadvantage of the tagged-
token model is the extra overhead re-
quired to match tags on tokens, instead
of simply their presence or absence. More
memory is also required and, due to the
quantity of data being stored, an asso-
ciative memory is not practical. Thus,
memory access is not as fast as it could
be [Silc et al. 1998]. Nevertheless, the
tagged-token model does seem to of-
fer advantages over the static model. A
number of computers using this model
have been built and studied [Arvind
and Culler 1983; Barahona and Gurd
1985].

As stated above, the choice of target ar-
chitecture can have implications on the
programming of software. Depending on
the model chosen, certain types of nodes,
such as merge or switch nodes, are not re-
quired. Additionally, the performance of
the program will be affected and some
properties of the system (such as its ten-
dency to deadlock, which can be veri-
fied under the pure dataflow model) may
change subtly under certain implemen-
tations [Arvind and Culler 1986; Naggar
et al. 1999]. For example, some networks
that deadlock under the static model may
not deadlock under the dynamic model.
This is due to the pure model’s theoret-
ically valid but impractical assumptions
that there are an infinite number of pro-
cessing elements and infinite space on
each arc [Kahn 1974].

2.3. Synchronous Dataflow

A later development in dataflow, but
one that became quite widely used, was
synchronous dataflow (SDF) [Lee and
Messerschmitt 1987]. This is a subset of
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the pure dataflow model in which the
number of tokens consumed and produced
on each arc of a node is known at compile-
time [Bhattacharyya 1996]. Under SDF,
the number of tokens initially on each arc
is also specified at compile-time. In this
scenario, there are certain limitations that
mean that some kinds of program can-
not be represented. For example, loops can
only be specified when the number of iter-
ations is known at compile-time.

The advantage of the SDF approach,
however, is that it can be statically sched-
uled [Buck and Lee 1995]. This means
that it can be converted into a sequential
program and does not require dynamic
scheduling. It has found particular appli-
cations in digital signal processing where
time is an important element of the com-
putation [Lee and Messerschmitt 1987;
Plaice 1991]. Even dataflow graphs which
are not SDF in themselves may have
subgraphs that are, and this may allow
partial static scheduling [Buck and Lee
1995], with the rest scheduled according to
the usual dataflow scheduling techniques.
This has applications to coarse-grained
dataflow discussed in Section 4.3.

3. EARLY DATAFLOW PROGRAMMING
LANGUAGES

3.1. The Development of Dataflow
Languages

With the development of dataflow hard-
ware came the equally challenging prob-
lem of how to program these machines.
Because they were scheduled by data de-
pendencies, it was clear that the program-
ming language must expose these depen-
dencies. However, the data dependencies
in each class of language can be exploited
to different degrees, and the amount of
parallelism that can be implicitly or ex-
plicitly specified also differs. Therefore,
the search began for a suitable paradigm
to program dataflow computers and a
suitable compiler to generate the graphs
[Arvind et al. 1988]. Various paradigms
were tried, including imperative, logical,
and functional methods. Eventually, the
majority consensus settled on a specific

type of functional language that became
known as dataflow languages.

An important clarification must be
made at this stage. In early publica-
tions, dataflow graphs are often used to
illustrate programs. In many cases, these
graphs are simply representations of the
compiled code [Dennis and Misunas 1975]
that would be executed on the machine,
where the graph was generated either
by hand or by a compiler from a third-
generation programming language. Un-
til the advent of Dataflow Visual Pro-
gramming Languages in the 1980s and
1990s, it was rarely the intention of re-
searchers that developers should gener-
ate these graphs directly. Therefore these
early graphs are not to be thought of as
“dataflow programming languages.”

3.1.1. What Constitutes a Dataflow Program-
ming Language?. While dataflow programs
can be expressed graphically, most of the
languages designed to operate on dataflow
machines were not graphical. There are
two reasons for this. First, at the low level
of detail that early dataflow machines re-
quired, it became tedious to graphically
specify constructs such as loops and data
structures which could be expressed more
simply in textual languages [Whiting and
Pascoe 1994]. Second, and perhaps more
importantly, the hardware for displaying
graphics was not available until relatively
recently, stifling any attempts to develop
graphical dataflow systems. Therefore,
traditional dataflow languages are pri-
marily text-based.

One of the problems in defining ex-
actly what constitutes a dataflow lan-
guage is that there is an overlap with other
classes of language. For example, the use
of dataflow programming languages is not
limited to dataflow machines. In the same
way, some languages, not designed specifi-
cally for dataflow, have subsequently been
found to be quite effective for this use (e.g.,
Ashcroft and Wadge [1977]; Wadge and
Ashcroft [1985]). Therefore, the bound-
ary for what constitutes a dataflow lan-
guage is somewhat blurred. Nevertheless,
there are some core features that would
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appear to be essential to any dataflow lan-
guage. The best list of features that con-
stitute a dataflow language was put for-
ward by Ackerman [1982] and reiterated
by Whiting and Pascoe [1994] and Wail
and Abramson [1995]. This list includes
the following:

(1) freedom from side effects,
(2) locality of effect,
(3) data dependencies equivalent to sche-

duling,
(4) single assignment of variables,
(5) an unusual notation for iterations due

to features 1 and 4,
(6) lack of history sensitivity in proce-

dures.

Because scheduling is determined from
data dependencies, it is important that
the value of variables do not change be-
tween their definition and their use. The
only way to guarantee this is to disallow
the reassignment of variables once their
value has been assigned. Therefore, vari-
ables in dataflow languages almost uni-
versally obey the single-assignment rule.
This means that they can be regarded as
values, rather than variables, which gives
them a strong flavor of functional pro-
gramming. The implication of the single-
assignment rule is that the compiler can
represent each value as one or more arcs in
the resultant dataflow graph, going from
the instruction that assigns the value to
each instruction that uses that value.

An important consequence of the single-
assignment rule is that the order of state-
ments in a dataflow language is not
important. Provided there are no circular
references, the definitions of each value,
or variable, can be placed in any order in
the program. The order of statements be-
comes important only when a loop is be-
ing defined. In dataflow languages, loops
are usually provided with an imperative
syntax, but the single-assignment rule is
preserved by using a keyword such as next
to define the value of the variable on the
next iteration [Ashcroft and Wadge 1977].
A few dataflow languages offer recursion
instead of loops [Weng 1975].

Freedom from side effects is also es-
sential if data dependencies are to de-
termine scheduling. Most languages that
avoid side effects do so by disallowing
global variables and introducing scope
rules. However, in order to ensure the va-
lidity of data dependencies, a dataflow pro-
gram does not even permit a function to
modify its own parameters. All of this can
be avoided by the single-assignment rule.
However, problems arise with this strat-
egy when data structures are being dealt
with. For example, how can an array be
manipulated if only one assignment can
ever be made to it? Theoretically, this prob-
lem is dealt with by conceptually viewing
each modification of an array as the cre-
ation of a new copy of the array, with the
given element modified. This issue is dealt
with in more detail in Section 6.3.

It is clear from the above discussion that
dataflow languages are almost invariably
functional. They have applicative seman-
tics, are free from side effects, are determi-
nate in most cases, and lack history sen-
sitivity. This does not mean that dataflow
and functional languages are equivalent.
It is possible to write certain convo-
luted programs in the functional language
Lucid [Ashcroft and Wadge 1977], which
cannot be implemented as a dataflow
graph [Ashcroft and Wadge 1980]. At the
same time, much of the syntax of dataflow
languages, such as loops, has been bor-
rowed from imperative languages. Thus it
seems that dataflow languages are essen-
tially functional languages with an imper-
ative syntax [Wail and Abramson 1995].

3.1.2. Dataflow Languages. A number of
textual dataflow languages, or functional
languages that can be used with dataflow,
have been implemented. A representative
sample is discussed below. (Whiting and
Pascoe [1994] presented a fuller review
of these languages.) Dataflow Visual Pro-
gramming Languages are discussed in de-
tail in Section 5.

—TDFL. The Textual Data-Flow Lan-
guage was developed by Weng [1975] as
one of the first purpose-built dataflow
languages. It was designed to be
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compiled into a dataflow graph with
data streams in a relatively straight-
forward way and supported compile-
time deadlock detection. A program
expressed in TDFL consisted of a se-
ries of modules, analogous to proce-
dures in other languages. Each module
was made up of a series of statements
that were either assignments (obeying
the single-assignment rule), conditional
statements, or a call to another mod-
ule. Iteration was not provided directly,
as Weng could find no way to make it
compatible with the single-assignment
rule, but modules could call themselves
recursively.

—LAU. Developed in 1976 for the
LAU static dataflow architecture,
the LAU language was developed by
the Computer Structures Group of
ONERA-CERT in France [Comte et al.
1978; Gelly 1976]. It was a single-
assignment language and included
conditional branching and loops that
were compatible with this rule through
the use of the old keyword. It was one
of the few dataflow languages that
provided explicit parallelism through
the expand keyword that specified
parallel assignment. LAU had some
features that were similar to object-
oriented languages, such as the ability
to encapsulate data and operations
[Comte et al. 1978].

—Lucid. Originally developed indepen-
dently of the dataflow field by Ashcroft
and Wadge [1977], Lucid was a func-
tional language designed to enable for-
mal proofs. Recursion was regarded as
too restrictive for loop constructs, but
it was realized that iteration introduced
two nonmathematical features into pro-
gramming: transfer and assignment.
Thus, Lucid was designed to permit iter-
ation in a way that was mathematically
respectable, through single assignment
and the use of the keyword next to define
the value of the variable in the next iter-
ation. It quickly became apparent, how-
ever, that Lucid’s functional and single-
assignment semantics were similar to
those required for dataflow machines,

and Ashcroft and Wadge [1980] brooded
on the topic in literature before publish-
ing a book in 1985 [Wadge and Ashcroft
1985] that firmly established Lucid’s
claim to be a dataflow language.

—Id. Originally developed by Arvind et al.
[1978] for writing operating systems, Id
was intended to be a language with-
out either sequential control or memory
cells, two aspects of the von Neumann
model that Arvind et al. felt must be
rejected. The resultant language had
single-assignment semantics and was
block-structured and expression-based.
Id underwent much evolution, and later
versions tackled the problem that data
structures were not comfortably com-
patible with the single-assignment rule
through the inclusion of I-structures
[Arvind et al. 1989] (which are them-
selves functional data structures and
are explained in Section 6.3).

—LAPSE. Developed by Glauert [1978],
LAPSE was derived from Pascal and
was designed for use on the Manchester
dataflow machine. The language had
single-assignment semantics and pro-
vided functions, conditional evaluation,
and user-defined data types. It provided
iteration without using any qualifying
keywords to differentiate between the
current and next value of the loop vari-
able. Rather, the compiler assumed that
the old value was intended if it appeared
in an expression, and the next value was
assumed if it appeared on the left of an
assignment. Like LAU, LAPSE provided
a single explicit parallel construct, for
all for parallel array assignment.

—VAL. VAL was developed by Dennis
starting in 1979 [Ackerman and
Dennis 1979; Dennis 1977], and obeyed
the single-assignment rule. A pro-
gram in VAL consisted of a series of
functions, each of which could return
multiple values. Loops were provided
by the Lucid technique [Ashcroft and
Wadge 1977], and a parallel assignment
construct, for all, was also provided.
However, recursion was not provided
as it was not thought necessary for the
target domain. Other disadvantages
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[Whiting and Pascoe 1994] included the
lack of general I/O and the fact that
nondeterministic programs could not
be expressed.

—Cajole. First developed under this name
in 1981 [Hankin and Glaser 1981],
Cajole was a functional language de-
signed to be compiled into acyclic
dataflow graphs. It did not provide
loops, but did permit recursion. Cajole
was later used in a project that explored
structured programming with dataflow
[de Jong and Hankin 1982].

—DL1. Developed by Richardson [1981] to
support research into hybrid dataflow
architectures, DL1 was a functional lan-
guage designed to be compiled into
low-level dataflow graphs. This tar-
get was made more explicit than in
other languages, as evidenced by key-
words such as subgraph. The language
provided for recursion and conditional
execution.

—SISAL. Like Lucid, SISAL was not orig-
inally written specifically for dataflow
machines, but found that application
later. Originally developed in 1983
[Gurd and Bohm 1987; McGraw et al.
1983], SISAL is a structured functional
language, providing conditional evalu-
ation and iteration consistent with the
single-assignment rule. Although it pro-
vides data structures, these are treated
as values and thus cannot be rewrit-
ten like I-structures [Arvind et al. 1989].
The only parallel construct provided is
a parallel loop.

—Valid. Designed by Amamiya et al.
[1984], Valid was an entirely functional
language designed to demonstrate the
“superiority” of dataflow machines. It
provided recursion as a key language
element, but also provided functional
loops using the Lucid method [Ashcroft
and Wadge 1977]. A simple parallel loop
construct was also provided.

The above list represents much of the
population of dataflow programming lan-
guages in existence. Many are similar and
the majority have (1) functional seman-
tics, (2) single assignment of variables,

and (3) limited constructs to support
concurrency.

3.1.3. Using Imperative Languages with
Dataflow. While the majority consensus
settled on the previously mentioned
dataflow languages, this does not mean
that other directions were not pursued.
Dataflow compilers have been built for
several imperative languages [Wail and
Abramson 1995]. These include For-
tran, Pascal, and several dialects of C
[Whiting and Pascoe 1994]. All of these
approaches had to deal with the major
problem of how to generate code based on
data dependencies from languages that
allow a lot of flexibility in this regard.
Wail and Abramson [1995] confirmed
that when programming dataflow ma-
chines with imperative languages, the
generation of good parallel code can be
extremely difficult. They also confirmed
that the implementation of nonfunctional
facilities, such as global variables, will
reduce possible concurrency. Their main
motivation for pursuing this line of re-
search was that much software is already
written in imperative languages and most
programmers are already familiar with
the paradigm.

In their 1982 paper, Gajski et al. [1982]
offered the opinion that using dataflow
languages offered few advantages over
imperative languages, on the grounds
that the compiler technology was as com-
plex for one as for the other. They ar-
gued that the use of sophisticated com-
piler techniques and explicit concurrency
constructs in an imperative language
could provide the same level of paral-
lel performance on dataflow machines as
a dataflow language. While not deny-
ing the advantages of the syntactical
purity of dataflow languages, they ar-
gued that these advantages do not jus-
tify the effort required for the introduc-
tion of a totally new class of programming
languages.

The possibility of placing explicit con-
currency constructs into dataflow lan-
guages has been largely resisted by re-
searchers (parallel assignment/loops have
been provided in some cases—see Dennis
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[1977], Gelly [1976], and Glauert [1978]—
but almost no other concurrency features
have been included). It is probable that
the explanation for this resistance is that
implicit parallelism is an extremely ap-
pealing idea, and to introduce explicit
concurrency constructs into their dataflow
languages would destroy one of the most
appealing parts of the dataflow concept.

The argument of Gajski et al. [1982]
against creating specifically “dataflow”
programming languages would be valid
if the only justification for the pursuit of
dataflow were the pursuit of improved per-
formance through exploiting parallelism.
However, as they themselves commented,
dataflow languages have features that are
very advantageous to the programmer.
The future development of dataflow visual
programming languages provides much
evidence for this, where the emphasis has
moved toward benefits in software engi-
neering. Therefore, contrary to the asser-
tions of Gajski et al. [1982] it is proposed
that further research into dataflow pro-
gramming languages is justified.

3.2. The Dataflow Experience in the 1980s

In the 1980s, proponents confidently
predicted that both dataflow hardware
and dataflow languages would supersede
von Neumann-based processors and lan-
guages [Arvind et al. 1977; Treleaven et al.
1982; Treleaven and Lima 1984]. How-
ever, looking back over the 1990s, it is clear
that this did not happen [Silc et al. 1998;
Veen 1986; Whiting and Pascoe 1994].
In fact, research into dataflow languages
slowed after the mid-1980s. In their re-
view paper of 1994, Whiting and Pascoe
[1994] reported that several dataflow re-
searchers had concluded that dataflow
had been mostly a failure—cost-effective
dataflow hardware had failed to materi-
alize. Given that the dataflow concepts
looked promising, the languages were ap-
pealing, and much research effort was put
into the subject, there must be good rea-
sons for the decline of these early dataflow
concepts.

It is widely believed that a main rea-
son was that the early dataflow hardware

architectures operated at a level that was
too fine-grained. While von Neumann ar-
chitectures operate at process-level gran-
ularity (i.e., instructions are grouped
into threads or processes and then exe-
cuted sequentially), dataflow operates at
instruction-level granularity. This point
had been recognized by 1986, when Veen
[1986, p. 393] remarked that “there are
signs that a deviation is also necessary
from the fine-grain approach” because
it led to “excessive consumption of re-
sources.” This is because it required a high
level of overhead to prepare each instruc-
tion for execution, execute it, propagate
the resultant tokens, and test for further
enabled firings. Indeed, algorithms which
exhibit a low degree of natural paral-
lelism can execute unacceptably slowly on
dataflow machines because of this degree
of overhead. Veen [1986] defended these
claims, arguing that the overhead can be
reduced to an acceptable level by com-
piling techniques, but later experiences
seem to demonstrate that the criticism
was valid. For example, Bic [1990, p. 42]
commented that “inefficiencies [are] in-
herent to purely dataflow systems” while
Silc et al. [1998, p. 9] commented that
“pure dataflow computers . . . usually per-
form quite poorly with sequential code.”

The reason for the decline in dataflow
research in the late 1980s and early
1990s was almost entirely due to prob-
lems with the hardware aspects of the
field. There was little criticism of dataflow
languages—other than those leveled at
functional languages in general [Gajski
et al. 1982]—which are still unrivaled in
the degree of implicit parallelism that they
achieve [Whiting and Pascoe 1994]. The
dataflow execution model can be used with
or without dataflow hardware, and, there-
fore, any decline in the hardware aspect
does not necessarily affect dataflow lan-
guages, provided they have advantages on
their own merit. This article contends that
they do.

4. EVOLUTION OF DATAFLOW

It is not surprising, on the basis of
Section 3.2, that when research into
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dataflow again intensified in the early
1990s [Lee and Hurson 1993], the is-
sue of granularity was one of the key
points to be addressed. One of the pri-
mary realizations that made this shift
possible was the recognition that, con-
trary to what was popularly believed
in the early 1980s, dataflow and von
Neumann techniques were not mutually
exclusive and irreconcilable concepts, but
simply the two extremes of a contin-
uum of possible computer architectures
[Papadopoulus and Traub 1991; Silc et al.
1998].

Fine-grained dataflow could now be
seen as a multithreaded architecture in
which each machine-level instruction was
executed in a thread on its own. At the
same time, von Neumann architectures
could now be regarded as a multithreaded
architecture in which there was only one
thread—the program itself. For example,
in their survey paper, Lee and Hurson
[1993, p. 286] observed that “the foremost
change is a shift from the exploitation
of fine- to medium- and large-grain par-
allelism.” The primary issue in dataflow
thus immediately became the question of
granularity.

The result of this shift in viewpoint was
the exploration of what has become known
as hybrid dataflow.

4.1. The Development of Hybrid Dataflow

Although hybrid dataflow concepts had
been explored for many years [Silc et al.
1998], it was only in the 1990s that they
became the dominant area of research in
the dataflow community. In their 1995 pa-
per, Sterling et al. [1995] explored the per-
formance of different levels of granularity
in dataflow machines. Although the range
of possible test scenarios is huge, they did
produce a generalized graph that summa-
rized their findings. A simplified version
of this is shown in Figure 4.

Figure 4 indicates that neither fine-
grained (as in traditional dataflow) nor
coarse-grained (as in sequential execu-
tion) dataflow offers the best parallel per-
formance, but rather a medium-grained

Fig. 4. Dataflow granularity optimization curve,
(based on Sterling et al. [1995]).

approach should be used. This suggests
that some form of hybrid—dataflow with
von Neumann extensions, or vice versa—
would offer the best performance. The
question then was, what level of medium
granularity was best?

In terms of hardware architectures,
there is no universal consensus on how
best to achieve this hybrid. Some ap-
proaches are essentially von Neumann
architectures with a few dataflow addi-
tions. Others are essentially dataflow ar-
chitectures with some von Neumann addi-
tions. (For examples see Iannucci [1988];
Nikhil and Arvind [1989]; Papadopoulos
and Traub [1991]). It is not our intention
to explore the hardware aspects of hybrid
dataflow in depth here, as the concentra-
tion of this article is on dataflow program-
ming, but a good summary was published
by Silc et al. [1998].

While this new research was aimed
at improving hardware architectures, the
rejection of fine-grained dataflow and
the move toward more coarse-grained
execution has also freed the dataflow pro-
gramming of its restriction to fine-grained
execution. This allows a much wider range
of research to be conducted into dataflow
programming, taking advantage of these
new degrees of granularity.

Essentially the now-accepted require-
ment for more coarse-grained execu-
tion has caused a divergence in the
dataflow programming community. The
first group advocates generating fine-
grained dataflow graphs as before, but
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they then propose analyzing these graphs
and identifying subgraphs that exhibit
low levels of parallelism that should al-
ways execute in sequence. These nodes
are grouped together into segments. Thus,
when the first node in the segment is
fired, the remaining nodes can be fired
immediately. They are still executed in
a fine-grained manner, but the costly
token-matching process is avoided for the
subsequent nodes in the sequence, sav-
ing time and resources. This approach
is termed threaded dataflow [Silc et al.
1998].

The second group advocates dispens-
ing with fine-grained dataflow execution,
and instead compiling the subgraphs into
sequential processes. These then become
coarse-grained nodes, or macroactors. The
graphs are executed using the traditional
dataflow rules, with the only difference
being that each node contains, for exam-
ple, an entire function expressed in a se-
quential language as opposed to a sin-
gle machine-level instruction. This second
approach is usually termed large-grain
dataflow [Silc et al. 1998].

It was noted as early as 1974 that the
mathematical properties of dataflow net-
works are valid, regardless of the degree
of granularity of the nodes [Arvind et al.
1988; Jagannathan 1995; Kahn 1974; Lee
1997; Sterling et al. 1995], and, therefore,
the hybrid approaches to dataflow pro-
gramming do not in any way compromise
the execution model. Both the threaded
and large-grain approaches are exciting
developments but it is the latter that of-
fers the most potential for improvements
to dataflow programming.

4.2. Threaded Dataflow

The threaded dataflow approach takes ad-
vantage of the fact that dataflow program
graphs display some level of sequential ex-
ecution. For example, in the case where
the output of one node goes into the next
node, the two nodes could never execute
in parallel when they are operating on
a single wave of data. Therefore, there

is little point in scheduling them to two
different processors. Under fine-grained
dataflow, the output token from the first
node must be mapped back through the
system, added to the input arc for the sec-
ond node, which must then wait to be fired.
It is much more efficient to place the two
instructions in a single execution quanta,
so that the output of the first node can
be immediately used by the second [Bic
1990].

This principle was used by Bic [1990],
who proposed analyzing a dataflow graph
and producing sequential code segments
(SCS), which are nodes that are in a chain
and cannot be executed in parallel. Under
the modified execution model, the granu-
larity is at the SCS level. However, other
than the fact that the execution of the first
instruction in an SCS causes the rest of
the chain to be executed, the model obeys
the standard dataflow rules. Bic [1990]
also proposed a method to automatically
identify the SCSs without programmer
intervention.

The advantage of the threaded dataflow
approach is that those parts of the
dataflow graph that do not exhibit good po-
tential parallelism can be executed with-
out the associated overhead, while those
that do show potential parallelism can
take advantage of it. In their study of
this approach, Papadopoulus and Traub
[1991] confirmed these conclusions, al-
though they warned that it is not wise
to carry the line of sequentiality too
far. An analysis of these proposals un-
dertaken by Bohm et al. [1993] demon-
strated that medium-grained dataflow did
indeed improve performance, as predicted
by Sterling et al. [1995].

A key open question is how best to par-
tition programs into threads and what
degree of granularity is best [Bohm
et al. 1993; Lee and Hurson 1994]. The
Pebbles group in the U.S. is examin-
ing the relationship between granular-
ity of parallelism and efficiency in hybrid
dataflow [Bohm et al. 1993; Najjar et al.
1994], although the group is primarily con-
cerned with large-grain dataflow. Another
consequent benefit of this area of research
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has been that it is easier to encode certain
functions (e.g., resource management) if
some sequential execution is permitted
[Lee and Hurson 1994].

4.3. Large-Grain Dataflow

Large-grain dataflow can begin with
a fine-grained dataflow graph. This
dataflow graph is analyzed and divided
into subgraphs, much like the threaded
approach. However, instead of remaining
as groupings of associated nodes, the
subgraphs are compiled into sequential
von Neumann processes. These are then
run in a multithreaded environment,
scheduled according to the usual dataflow
principles. The processes are termed
macroactors [Lee and Hurson 1994].
Much recent work has been done in the
area of large-grain dataflow systems
and it offers a great opportunity for
improvements to the field of dataflow
programming.

One important point is that, since the
macroactors in large-grain dataflow are
sections of sequential code, there is no rea-
son why these have to be derived from fine-
grained dataflow graphs. The macroactors
could just as easily be programmed in an
imperative language, such as C or Java.
Each macroactor could represent an en-
tire function, or part of a function, and
could be designed to be used as off-the-
shelf components. It is the fact that the
macroactors are still executed according
to dataflow rules that lets this approach
retain the clear advantages of dataflow,
but solve the high-overhead problem
of fine-grained dataflow. Research has
been conducted into the best degree of
granularity by Sterling et al. [1995],
who found a medium-grained approach
to be optimal.

A related field is the “flow-based pro-
gramming” methodology advocated by
Morrison [1994]. Morrison advocated the
use of large-grain components, expressed
in an imperative language, but linked to-
gether in a way reminiscent of dastaflow.
Although it is not dataflow—it does not
strictly obey the dataflow firing rules—
Morrison’s proposals do suggest features

that could be incorporated into dataflow,
including greatly simplified schemes for
providing iteration and the use of sub-
streams within streams. The book empha-
sizes the benefits of these principles to
business software, and to software engi-
neering in general.

The key benefit of Morrison’s [1994] ap-
proach is a much reduced development
time. Empirical evidence of this is of-
fered in his book, where real-life experi-
ence of a large piece of software devel-
oped with flow-based techniques is cited.
The approach led to a considerable sav-
ings of time and effort on the part of
the programmers, particularly when it
came to modifying the program after ini-
tial completion. Morrison expounded at
length on the benefits of the stream-based,
large-grained modular approach to busi-
ness software engineering in particular.
If these concepts were applied to large-
grain dataflow, the advantages of both
dataflow execution and Morrison’s graph-
ical component-based software could be
merged.

Similar techniques have already
been used in one key area—digital sig-
nal processing [Bhattacharyya 1996;
Naggar et al. 1999]. Many signal-
processing environments, such as Ptolemy
[Bhattacharyya 1996], operate by letting
the user connect together components,
each of which performs a medium-grained
programming task. The whole network
is essentially a dataflow network. Some
work has been done in formalizing such
networks [Lee and Parks 1995]. It has
been noted that these principles were
used by the signal-processing community
before being formalized in research, and
have, therefore, already been demon-
strated to be beneficial to software
engineering [Lee and Parks 1995].

5. RECENT DEVELOPMENTS IN DATAFLOW
PROGRAMMING LANGUAGES

5.1. Introduction

The last major reviews of dataflow pro-
gramming languages were Hils [1992] and
Whiting and Pascoe [1994]. In the decade
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since then, the field of dataflow has ex-
panded and diverged to include many
disparate areas of research. However, the
focus of this section is strictly on program-
ming languages that are based upon the
dataflow execution model. Indeed, there
are some languages that have the appear-
ance of dataflow, but upon examination, it
is clear that they are sufficiently different
from the pure dataflow execution model to
make such a label questionable, for exam-
ple, JavaBeans.

Since the majority of developments in
dataflow programming languages in the
past decade have been in the field of vi-
sual programming languages, this sec-
tion also concentrates on visual program-
ming languages. It should be stressed that
the textual dataflow languages detailed in
previous sections still exist and are being
developed, although most of the current
research in that area is in the field of hard-
ware and compilation technology. Since
the emphasis in this article is on software
engineering rather than hardware, these
issues are beyond the scope of this section.
Hardware issues are mentioned only inso-
far as they have affected the development
of dataflow languages.

As has already been outlined in the pre-
vious section, the major development in
the past 10 years in dataflow has been
the move away from fine-grained paral-
lelism toward a more coarse-grained ap-
proach. These approaches ranged in con-
cept from adding limited von Neumann
hardware to dataflow architectures, to
running dataflow programs in a multi-
threaded manner on machines that were
largely von Neumann in nature.

To some extent, dataflow languages
evolved to meet these new challenges. A
greater emphasis was placed upon com-
piling dataflow programs into a set of
sequential threads that were themselves
executed using the dataflow firing rules.
However, these changes did not have a ma-
jor effect upon the languages themselves
whose underlying semantics did not have
to change.

From a software engineering perspec-
tive, however, the major development in
dataflow in the past 15 years has been the

growth of dataflow visual programming
languages (DFVPLs). Although the the-
ory behind DFVPLs has been in existence
for many years, it is only the availability
of cheap graphical hardware in the 1990s
that has made it a practical and fruitful
area of research.

Investigations of DFVPLs have indi-
cated many solutions to existing problems
in software engineering, a point which
will be expanded upon below. It has also
led to the introduction of new problems
and challenges, particularly those associ-
ated with visual programming languages
in general [Whitley 1997], as well as con-
tinuing problems, such as the represen-
tation of data structures and control-flow
structures [Auguston and Delgado 1997;
Ghittori et al. 1998; Mosconi and Porta
2000]. Research has been fairly intense in
the past decade, and it is the subject of
this section to identify some of the main
trends in dataflow programming over this
period.

5.2. The Development of Dataflow Visual
Programming Languages

In Section 3, textual dataflow languages
were discussed, and much of the research
into dataflow hardware utilizes these tex-
tual languages. The “machine” language of
programs designed to be run on dataflow
hardware architectures is the dataflow
graph. Most textual dataflow languages
were translated into these graphs in order
to be scheduled on the dataflow machine.

However, early on it was realized that
these graphs could have advantages in
themselves for the programmer [Davis
1974; Davis and Keller 1982]. Graphs
allow easy communication of ideas to
novices, allowing much more productive
meetings between the developer and the
customer [Baroth and Hartsough 1995;
Morrison 1994; Shürr 1997]. In addition, a
range of research into VPLs has indicated
the existence of significant advantages in
a visual syntax [Green and Petre 1996],
for example, dynamic syntax and visual-
ization [Hils 1992; Shizuki et al. 2000].
The fact that several dataflow environ-
ments have been the basis of successful
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commercial products adds weight to this
case [Baroth and Hartsough 1995]. Fi-
nally, research has shown that most devel-
opers naturally think in terms of dataflow
in the design phase, and DFVPLs re-
move the paradigm shift that is forced on
a programmer when entering the coding
phase. Indeed, DFVPLs arguably remove
this distinction altogether [Baroth and
Hartsough 1995; Iwata and Terada 1995].

Researchers published papers on
DFVPLs intermittently in the 1980s.
Their ideas were intriguing and showed
great promise, but were restricted by the
expense and low diffusion of graphical
hardware and pointing devices. Davis
and Keller [1982] recognized the now
universally accepted trend toward more
graphically based computer systems,
and made the argument that textual
languages could be completely replaced
by graphical ones in the future. Although
this prediction has not fully come to pass,
they judiciously proposed that human
engineering rather than concurrent
execution would become the principal
motivation for developing dataflow visual
programming languages, a motivation
that has indeed been at the fore of more
recent DFVPL research.

5.2.1. Early Dataflow Visual Programming
Languages. In the 1970s, Davis [1974,
1979] devised Data-Driven Nets (DDNs), a
graphical programming concept that was
arguably the first dataflow visual lan-
guage (as opposed to a graph used purely
for representation). In DDN, programs are
represented as a cyclic dataflow graph
with typed data items flowing along the
arcs which are FIFO queues. The pro-
gram is stored in a file as a parenthe-
sized character string, but displayed as a
graph. The language operates at a very
low level and, in fact, Davis [1978] com-
mented that it was not the intention that
anyone should program directly in DDNs.
Nevertheless, they illustrated key con-
cepts such as the feasibility of providing
iteration, procedure calls, and conditional
execution without the use of a textual
language.

By the early 1980s, Davis had devel-
oped a more practical, higher-level DFVPL
known as GPL (Graphical Programming
Language). Davis and Lowder [1981] con-
tended that text-based programming lan-
guages lacked intuitive clarity and pro-
posed going further than using graphs
as a design aid by creating an environ-
ment in which the program is a graph.
GPL was also an attempt to create a
higher-level version of DDNs [Davis 1979;
Whiting and Pascoe 1994]. In the GPL en-
vironment, every node in the graph was
either an atomic node or could be ex-
panded to reveal a sub-graph, thereby
providing structured programming with
top-down development. These subgraphs
could be defined recursively. Arcs, in the
graph were typed and the whole environ-
ment had facilities for debugging, visu-
alization and text-based programming if
desired. The lack of suitable graphical
hardware for their system was the main
reason for a lack of rapid development of
these concepts.

In the early 1980s, researchers Keller
and Yen [1981] developed FGL, indepen-
dently from Davis. FGL stands for Func-
tion Graph Language, and was born from
the same concept of developing dataflow
graphs directly. Unlike the token-based
dataflow model of GPL, FGL was based
around the structure model, of which
Keller was a proponent [Davis and Keller
1982] (see Section 2.1.2). Under this
model, data is grouped into a single struc-
ture on each arc rather than flowing
around the system. In other regards, FGL
was similar to GPL in its support for top-
down stepwise refinement. The relative
advantages and disadvantages of GPL and
FGL mirror those of the token-flow model
and structure model, respectively.

Shortly afterwards, the Grunch system
was developed by de Jong et al. [1982], the
same researchers who created the Cajole
textual dataflow language [Hankin and
Glaser 1981]. While not a programming
language in the proper sense, it was a
graphical overlay for Cajole that allowed
the developer to graphically express a
dataflow program using stepwise refine-
ment, and then use the tool to convert
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the graph into Cajole. The actual con-
version was performed by an underlying
tool called Crunch. The development of
Grunch supported the claims of Davis and
Keller [1982] that software engineering
could be as much a motivation for pursu-
ing graphical dataflow as the pursuit of
efficient parallelism.

5.2.2. More Recent Dataflow Visual Program-
ming Languages. Interestingly, from the
mid-1980s on, further development of
DFVPLs often came from different sources
than direct research into dataflow. Indeed,
industry played a part in this phase of de-
velopment. The most common source was
signal- and image-processing, which lends
itself particularly well to a dataflow ap-
proach [Buck and Lee 1995]. Therefore,
many DFVPLs were produced to solve
specific problems and utilized dataflow
because it provided the best solution to
the problem. As Hils [1992] commented,
DFVPLs in this period were most success-
ful in narrow application domains and in
domains where data manipulation is the
foremost task.

Hils [1992] provided details of 15 lan-
guages developed in the 1980s and very
early 1990s that could be classed as
DFVPLs. In order to avoid repetition,
only two examples of these are discussed
here. NL, a significant language that ap-
peared after Hils wrote his paper, is also
described.

LabView is a well-known DFVPL devel-
oped in the mid-1980s to allow the con-
struction of “virtual” instruments for data
analysis in laboratories. As such, it was
intended for use by people who were not
themselves professional programmers. A
program in LabView is constructed by con-
necting together predefined functions, dis-
played as boxes with icons, using arcs for
data paths. Each program also has a vi-
sual interface to allow the design of the vir-
tual instrument. Components that have a
visual representation appear both in the
interface and the program, whereas func-
tions only appear in the program window.
The whole program is executed accord-
ing to the dataflow firing rules. LabView

makes the programming experience less
cumbersome by providing iterative con-
structs and a form of stepwise refinement
whereby programmers can produce their
own function nodes.

Empirical evidence reported by the
Jet Propulsion Laboratory [Baroth and
Hartsough 1995] has shown a very favor-
able experience with LabView when used
for a large project, compared to develop-
ing the same system in C. In particular,
they found that the DFVPL led to a sig-
nificantly faster development time than C,
mainly due to the increased communica-
tion facilitated by the visual syntax. An
example of a program written in LabView
is shown in Figure 5. As well as its
demonstrated and continuing industrial
successes, LabView has proved particu-
larly popular with researchers [Ghittori
et al. 1998; Green and Petre 1996].

ProGraph was a more general-purpose
DFVPL than LabView, and involved
combining the principles of dataflow
with object-oriented programming. The
methods of each object are defined us-
ing dataflow diagrams. Like LabView,
ProGraph includes iterative constructs
and permits procedural abstraction by
condensing a graph into a single node.
ProGraph has also been used as a subject
in research [Cox and Smedley 1996;
Green and Petre 1996; Mosconi and Porta
2000]. Example screenshots of ProGraph
programs can be found in Mosconi and
Porta [2000].

In the mid 1990s, the language NL was
developed by Harvey and Morris [1993,
1996], along with a supporting program-
ming environment. It is fully based on the
dataflow model of execution. NL has an
extended typing system, whereby arrays
can behave as arbitrarily long lists, to the
point of being infinite. It provides an in-
genious method of control flow, through
combined use of “block” and “guard” nodes.
For example, a guard node may contain a
condition that, if evaluated to true, causes
its associated block node to be executed.
Sequences of guard nodes can be created,
and once one guard has been executed, all
others are ignored. This has the advan-
tage of reducing screen clutter and making
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Fig. 5. Example program in LabView designed to find the real roots of a quadratic equation.

the flow of control more explicit. Loops are
supported by a related method.

The NL environment reported in
Harvey and Morris [1996] features a
visual debugger. Screenshots of typical
NL programs can also be found in this
article. Programmers sees their program
in the same way that they developed it
and can choose to step one firing at a
time, or use breakpoints. A node that
is firing is highlighted, and placing the
cursor over a port allows them to examine
and change values. When it comes to
loops, a slider allows the programmers
to select any of the iterations that are
taking place and examine them in any
order.

5.2.3. Dataflow as a Coordination Language.
Gelernter and Carriero [1992] emphasized
the concept of the coordination language,
that is, the concept that programming con-
sists of two tasks, not one: computation,
which specifies what is to be done, and
coordination, which specifies how the com-
putations are to proceed. They argued that
the need for such a distinction was becom-
ing more necessary with the advent of dis-
tributed and heterogeneous computer sys-
tems. The proposal was for a separation

of the computation language and the co-
ordination language.

Dataflow researchers have taken this
idea on board. Indeed, since dataflow
graphs explicitly express the relationships
between computations, it is clear that
dataflow is a natural coordination lan-
guage. While few researchers have gone
so far as to create an entirely indepen-
dent general-purpose co-ordination lan-
guage based on dataflow ideas, many have
produced DFVPLs that strongly display
the distinction. For example, the Vipers
DFVPL [Bernini and Mosconi 1994] is a
coordination language where the nodes in
the graph are expressed using the lan-
guage Tcl.

Morrison’s [1994] flow-based program-
ming concept, while it does not strictly
obey the rules of dataflow, describes a sys-
tem where nodes are built in arbitrary
programming languages which the pro-
grammer arranges using a single network
editing environment. Morrison [1994]
reported empirical evidence that appears
to support his assertion that this method
is practical in real-world situations.

An excellent example of such a system
is Granular Lucid (GLU) which was devel-
oped by Jagannathan [1995]. It is based
upon Lucid, with the key addition that

ACM Computing Surveys, Vol. 36, No. 1, March 2004.



Advances in Dataflow Programming Languages 21

functions are defined in a foreign, proba-
bly sequential, language such as C. Data
types are also of a foreign format. Since
Lucid itself is a textual dataflow language,
GLU allows a much more coarse-grained
approach to dataflow by the programmer.
Instead of primitive operations being ex-
ecuted in a fine-grained manner, this al-
lows the rules of dataflow to be applied to
a much coarser granularity. Jagannathan
[1995] went on to show how this degree
of granularity achieves performance simi-
lar to conventional parallel languages and
concluded that using dataflow program-
ming languages to develop applications
for conventional parallel processors is
feasible.

All of the above-mentioned languages
are examples of how dataflow program-
ming may be moved to a higher level
of abstraction. For example, a language
in which entire functions are enclosed
within a node could be envisaged, while
the nodes themselves are executed, using
the dataflow semantics. This would be a
development of the ideas put forward by
Bernini and Mosconi [1994] and by Rasure
and Williams [1991].

With the recent trend toward het-
erogeneous distributed systems and
component-based programming, it is
believed that thinking of dataflow as a co-
ordination language has much merit and
one that deserves further investigation.

5.3. Assessment of Visual Dataflow
Programming Environments

The power of any visual programming
language depends more heavily upon its
environment than its text-based counter-
parts. The ease with which tasks can be
performed has a large bearing on how
it compares to other languages. Those
who have used DFVPLs in industry have
commented that the visual nature is an
essential component of the language, not
simply an interface, and that without the
visualization tools offered by the environ-
ment, DFVPLs would have limited use
[Baroth and Hartsough 1995].

In keeping with this fact, the trend
in the late 1990s has been toward de-

veloping programming environments in
tandem with the DFVLPs that they use.
Indeed, so tightly have the two become
that it has become difficult to distinguish
where the language ends and the envi-
ronment begins. Therefore, this section
necessarily overlaps with language issues.
Many of the advantages of DFVPLs are ad-
vantages of their environments as much as
of the language.

Burnett et al. [1995] discussed what is
needed in order to scale up a visual pro-
gramming language to the point of be-
ing a practical proposition for a sizeable
real world project. They came up with a
list of four things that VPLS are trying
to achieve. These are the reduction in key
concepts, such as pointers; a more concrete
programming experience, such as explor-
ing data visually; explicit definitions of re-
lationships between tasks; and immediate
visual feedback.

DFVPLs have the potential to achieve
all of these to some degree. The dataflow
graph itself is an ideal example of an
explicitly defined relationship, and it is
true that they have a smaller set of key
concepts than their textual counterparts.
A number of the languages reviewed by
Hils [1992] feature a high degree of live-
ness, that is, immediate visual feedback,
with one, VIVA [Tanimoto 1990], allow-
ing programmers to dynamically edit the
programs while it is running visually in
front of them. Finally, the visual debug-
ger in Harvey’s NL environment [Harvey
and Morris 1996] is a good example both
of the immediate feedback of information
and the visual exploration of data.

Of course, it is more difficult to mea-
sure how well a DFVPL meets the crite-
ria that it sets out to achieve. There are
few metrics available in literature at this
stage, although Kiper et al. [1997] offered
one set of subjective metrics for measuring
VPLs in general. Their criteria included
its scalability, its ease of comprehension,
gauging the degree of visual nature of the
language, its functionality, and its support
for the paradigm. The first of these points,
that of scalability, has been answered to
some degree by Burnett’s work, mentioned
above [Burnett et al. 1995].
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An attempt to measure the compre-
hension of dataflow languages was made
by Green and Petre [1996]. They stud-
ied ProGraph and LabView at length, and
concluded that they had clear advantages.
They drew the following interesting con-
clusions regarding the current state of
DFVPLs:

—that DFVPLs allow the developer to pro-
ceed with design and implementation in
their own order, thus making the design
process freer and easier;

—that secondary notation could be uti-
lized much more than it currently was;

—that more work needed to be con-
ducted on incorporating control-flow
constructs;

—that the effectiveness of program ed-
itors remained to be investigated in
literature;

—that the problem of real estate was not
as major as many assume it to be.

Further feedback on what is needed
in DFVPLs was provided by Baroth and
Hartsough [1995]. Having used a DFVPL
for a real-world project, they concluded
that the advantages offered lie more to-
ward the design end of the software lifecy-
cle, and less in the later stages of coding.
They found increased communication be-
tween developer and customer, comment-
ing, “We usually program together with
the customer at the terminal, and they
follow the data flow diagrams enough to
make suggestions or corrections in the
flow of the code. It is difficult to imagine
a similar situation using text-based code”
[Baroth and Hartsough 1995, p. 26]. The
development time improvement in this
case was a factor of 4.

By contrast, Baroth and Hartsough
[1995] commented that the provision
of software libraries, while speeding up
coding, is merely a case of “who can type
faster,” and is not an advantage in itself.
And so, the issue of the provision of a
library of nodes is not a major one for
DFVPLs. Already, a DFVPL can be used
with a very primitive set of nodes and the
provision of nodes that can be built up

from these primitives is really an issue for
the vendor of the programming environ-
ment, not for academia.

A point that Baroth and Hartsough
[1995] were keen to stress was that vi-
sualization, and animation in particular,
is absolutely essential to making the tool
useful. Indeed, they went so far as to
comment that “the graphics description of
the system without the animation would
not be much more than a CASE tool with
a code generator” [Baroth and Hartsough
1995, p. 28].

A final point made by Baroth and
Hartsough [1995] was that the bound-
aries between the requirements, design,
and coding phases of the software lifecycle
collapse and blend into one another. This
appears to be both an advantage and a dis-
advantage. It is a problem in that the ex-
isting methodologies in place were unable
to support the tool and this led to an inabil-
ity to assess the progress in the project.
On the other hand, the single phase al-
lows the customer to be involved at all
stages, reducing the prospect for expen-
sive mistakes, and also reducing develop-
ment time.

It is the previously mentioned empha-
sis on the design phase that prompted the
development of Visual Design Patterns
(VDPs) by Shizuki et al. [2000; Toyoda
et al. 1997]. Under the VDP approach, the
user is equipped with generic design pat-
terns of common task layouts. Developers
choose a VDP to suit their needs and then
insert specific components into the holes in
the pattern in order to produce an actual
implementation. The concept has been in-
troduced into the KLIEG environment and
demonstrated in the literature. In their
more recent paper, Shizuki et al. [2000].
extended the idea to include the possibility
that the use of VDPs could help to focus a
smart environment on the specific aspects
of dataflow execution that a developer is
likely to be interested in.

Animation is an important concept that
was highlighted above. There is a sig-
nificant difference between viewing a
program graphically, and viewing it dy-
namically. The animation of executing
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dataflow programs is an exciting topic,
but one in which research has only re-
cently been undertaken in detail. A good
example is Shizuki et al. [2000], which ex-
plored how a large program can be ani-
mated for a programmer. This addressed
the problems of how to view multiple lay-
ers at once, how to view different areas
of the program at once, how to change fo-
cus rapidly so as to avoid loss of concentra-
tion, and how to create sufficiently smooth
animation that will not appear disjointed
to the developer. The solution proposed
is a smart, multifocal, fisheye algorithm.
Much research deserves to be done in this
area.

On the basis of this discussion, the fol-
lowing conclusions concerning Dataflow
Visual Programming Environment can be
drawn:

—In a DFVPL there is a blur in
the distinction between language and
environment.

—In addition, DFVPLs tend to sig-
nificantly blur the distinctions be-
tween the requirements, design, cod-
ing, and testing phases of the software
lifecycle.

—This blurring offers the opportunity for
rapid prototyping.

—The design phase benefits the most
from the use of DFVPLs over textual
languages.

—The animation offered by a DFVPL en-
vironment is vitally important to its
usefulness.

—The dataflow semantics of DFVPLs are
intuitive for nonprogrammers to un-
derstand and thus improve communi-
cation between the customer and the
developer.

—The library of functions included with
a DFVPL is not a major factor in
productivity.

—Key areas requiring work include the
use of secondary notation, and control-
flow constructs.

6. OPEN ISSUES IN DATAFLOW
PROGRAMMING

Dataflow programming is an active area
of research, and many problems remain
open. Four of these issues are discussed
in more detail in this section:

—the provision of iteration in textual
dataflow languages,

—iteration structures in DFVPLs,
—the use of data structures,
—nondeterminism.

6.1. Iteration in Textual Dataflow Languages

Most dataflow programming languages
provide loops of some form, but the way
in which loops are expressed as a dataflow
graph is quite different from most other
representations of iteration. The prob-
lem arises because iteration does not fit
neatly into the functional paradigm, as
it involves repeated assignment to a
loop variable and sequential processing.
Nevertheless, most dataflow researchers
recognized that programmers’ demands
made it necessary to provide iteration
[Ackerman 1982] and worked on ways
to make it mathematically respectable
[Ashcroft and Wadge 1977]. Ways of mak-
ing it efficient were also studied [Ning
and Gao 1991]. It should be noted that
many dataflow languages provide itera-
tion through tail-recursion. However, as
this is usual practice in functional lan-
guages, this section deals specifically with
the more explicit iterative constructs.

The exact syntax of the various solu-
tions offered differed, but they were all
fundamentally the same. The idea was
to think of the body of an iteration as
being executed in an environment where
the loop variable had a certain value that
remained the same throughout the itera-
tion. Thus, a single pass of the loop can
be regarded as a set of definitions like any
other. The loop variable is updated by us-
ing an identifier such as “NEW” to refer to
the value that the loop variable will have
on the next iteration. For example,

NEW X = X + 1;
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Fig. 6. Dataflow graph representing the factorial program.

As the value of X has not actually been
changed by this statement, this is a math-
ematically acceptable way of representing
iteration. When the loop has completed
the iteration, the value of NEW X is as-
signed to X, but again, this is acceptable
since all that is required is that the value
of X remain unchanged during the sin-
gle iteration. Some languages use an “old”
keyword to achieve the same effect.

A piece of code to calculate factorial(N)
by iteration, when translated into the
functional loop favored by dataflow pro-
gramming languages, looks like this:

LOOP WITH i = N, fact = 1
NEW fact = fact ∗ i;
NEW i = i − 1;

WHILE i > 1;

In this code, the values of “fact” and “i” are
defined functionally, using the loop. They
are modified using the keyword “NEW.”
Note that the definitions of “NEW fact”
and “NEW i” can be placed in any order.
If the definition of “NEW i” were placed
first, the definition of “NEW fact” would
still be valid because the original value of i
is unchanged until the end of the iteration.
Note also that the value “fact” must be de-

clared as a loop variable in the dataflow
version of the loop because that is the
only way that a variable can be assigned
multiple times in the manner required by
iteration.

While this code definitely looks differ-
ent from the imperative example, it does,
nevertheless, retain a strong imperative
feel and could be used more intuitively
by programmers when compared to tail-
recursion.

Of course, this code has to be translated
into a dataflow graph before it can be ex-
ecuted. While a loop in a dataflow graph
can look complicated, most loops can be
coded in the same way. Figure 6 shows a
dataflow graph that could result from the
above dataflow code example.

It cannot be denied that this repre-
sentation is much less succinct than the
text-based loop. However, the point is not
that a loop can be drawn directly as a
graph, but that the text-based loop can
be converted into a well-behaved dataflow
graph. Few dataflow researchers would ex-
pect any programmer to manually gener-
ate the graph shown in Figure 6. This also
illustrates one of the failings of early
graphical dataflow languages. However,
as we shall note in the next section, recent
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development in dataflow research permit
programs to be specified graphically with-
out this level of detail.

In Figure 6, the rectangles marked
“Switch” and “Merge” operate as explained
in Section 2.1.1. The “Delay” gate sim-
ply waits until data appears at both in-
puts before outputting the data on the left
arc and discarding the data on the right
arc. This acts as a trigger, preventing the
loop from repeatedly executing ad infini-
tum. With the Delay gate, a single token
passed down the trigger arc will cause one
execution of the loop. The squares with
“1” in them are constants, that repeat-
edly generate tokens with the value “1.”
The circles are nodes that perform opera-
tions. These operations produce either nu-
merical or Boolean results. The small grey
circles labeled “F” signify tokens that are
defined to be present on the given arcs
when the program first activates. Three
horizontal parallel lines denote a sink,
which destroys any tokens that fall into it.
A small open square at a crossing of two
arcs indicates that the arcs are joined. In
all other cases, arcs pass over each other
without being joined.

If executed under the pure token-based
dataflow model, with N = 3, the 32 sepa-
rate firings necessary to complete the exe-
cution are performed in 14 time units, with
parallelism in each time unit of either two
or three instructions. The left-hand side of
the graph produces a sequence of tokens
representing the counter “i,” starting at 1.
The right-hand side produces a series of to-
kens representing the accumulating facto-
rial by multiplying the previous factorial
token by a token from the first sequence
each time. The node in the center of the
graph halts the feedback once the value
of i ≤ N becomes false, and the Switch
gates are used to output the completed val-
ues. The value of “i” is discarded, while the
value of the factorial is sent out of this por-
tion of the graph.

When executed under the pure token-
based dataflow model, as above, the graph
exhibits some pipelining within one in-
stance of the loop, as the next iteration
can begin before the previous one has
completed. However, the necessary condi-

tional check delays the execution of the
Switch nodes that could otherwise begin
to execute sooner. When the situation of
several loops being executed at once is con-
sidered, that is, by several triggers arriv-
ing simultaneously, the pure model per-
mits very little overlap of separate loop
instances: in this case, the maximum over-
lap is under 10%. This is because the to-
ken that will begin the next loop is delayed
by the Merge gate until a false token ar-
rives, and this only occurs when the pre-
vious loop has completed.

When executed under the dynamic
model, the loop does not provide any more
pipelining of iterations within a loop, but
it does provide excellent overlap of sepa-
rate iterations. In fact, they can occur si-
multaneously and independently. Under
the dynamic model, the “false” tokens that
are initially placed at the two Merge gates
will be present initially for each separate
instance of the loop, rather than having
to be generated by the previous loop as
it completes. It should also be noted that
other loops, such as those which populate
arrays, do not have the pipelining prob-
lems mentioned above.

As illustrated above, some loops in
dataflow graphs have the potential to
limit concurrency. However, the use of al-
ternative models of execution can limit
this restriction. Although it is not to-
tally natural in functional languages, it-
eration has been accepted as necessary
by most researchers. Indeed, Whiting and
Pascoe [1994, p. 53] commented that “the
introduction of this form of loop con-
struct . . . was responsible for much of the
acceptance of data-flow languages.” The
efficient execution of dataflow loops has
been a subject of active and ongoing re-
search [Bic et al. 1995; Ning and Gao 1991;
Yu and D’Hollander 2001].

6.2. Iteration in Dataflow Visual
Programming Languages

Although iteration remains an open ques-
tion in DFVPLs as well as textual dataflow
languages, it is a different kind of prob-
lem. Here the problem is how to express a
repetitive structure in a graphical model
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that does not naturally allow such struc-
tures. Figure 6 shows how a loop looks
under the pure dataflow model. Few pro-
grammers would wish to construct such a
graph, and, if they did, it would be un-
clear and error-prone. It has long been
recognized that a practical DFVPL must
provide a better way to support iteration.
The question has been what constructs are
most appropriate for expressing iteration.
It should also be noted that iteration is
merely an example of the wider issue of
how to express control-flow constraints in
DFVPLs. However, since iteration is ar-
guably the most important and heavily
researched problem, this section concen-
trates on it.

A key recent article on this topic was
Mosconi and Porta [2000], and we do not
intend to reproduce their review. Instead,
each of five examples of iteration con-
structs will be described briefly.

—Show-And-Tell. Show-and-Tell [Kimura
and McLain 1986] was an early dataflow
visual language designed for children.
In its approach to iteration, a special
node is used to enclose an area of code
that is to be executed iteratively. Each
loop box has what is known as a consis-
tency check. Data can only flow through
a node if it is consistent. If the consis-
tency check evaluates to false, the node
becomes inconsistent, and execution of
the loop stops. The loop has the same
number of inputs, as outputs and data
is fed back from the outputs into the in-
puts, as long as the box is consistent.
When it becomes inconsistent, the data
is ejected to the rest of the graph.

For example, a loop might contain one
input that identifies the number of it-
erations required. This value is decre-
mented and sent to the output during
each iteration. The consistency check
is that this value is greater than zero.
Thus, when the iteration count reaches
zero, the loop stops executing. Screen-
shots of Show-and-Tell loops can be
found in Mosconi and Porta [2000].

—LabView. LabView, a commercial prod-
uct, has two kinds of loop, a FOR loop
and a WHILE loop [LabView 2000]. Like

Show-and-Tell, a FOR loop is a special
node that encloses all of the nodes to be
executed iteratively. Unlike Show-and-
Tell, it has an additional input port that
specifies how many times the loop is to
run. All other values that are output
ports conceptually reenter on identical
input ports. Another port visible only in-
side the loop specifies the current value
of the loop variable.

The WHILE loop operates in a sim-
ilar way, except that it does not have
the loop variable. Instead, it has a port
only visible inside the loop that termi-
nates after the current iteration once it
receives a value of “false.” A construct
unique to LabView allows the timings
of the loop to be specified, for example,
loop every 250 ms. This is due to its
application of reading scientific instru-
ments. A LabView program is shown in
Figure 5. Further screenshots can be
found in Mosconi and Porta [2000].

—Prograph. In Prograph [Cox et al. 1989],
any user-defined node that has the same
number and type of inputs as outputs
can be deemed to be a loop. Its icon
changes to illustrate this fact. Prograph
provides a special “terminate” node for
use within a loop. When the condition
specified within the terminate node is
satisfied, the iteration is terminated af-
ter the current iteration is complete.

—Cantata. Cantata [Rasure and Williams
1991] is a coarse-grained language in
which nodes contain entire functions,
rather than just a primitive operation.
Its approach is to conceal the entire loop
within one node. Each input is desig-
nated a name by the programmer, who
also specifies either a loop variable and
bounds, or a WHILE-condition, using
the names. The programmer then sets
up a series of assignments that are to
take place within each loop. The node
then executes the loop internally.

Note that this is far removed from
pure dataflow philosophy. For exam-
ple, a loop assignment may contain
the expression j = j + 1, a statement
which traditionally makes no sense
in a dataflow language. Examples of
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Cantata programs can be found in
Mosconi and Porta [2000].

—VEE. In contrast with Cantata, loops in
VEE [Helsel 1994] are expressed most
closely to the pure dataflow model, that
is, through cycles in the graph. However,
the model has been augmented with a
number of additional nodes in order to
simplify the appearance of the cycles. In
a FOR loop, a special FOR node gener-
ates a series of indexes between a range
that are queued. The programmer does
not need to worry about incrementing
and feeding back the loop variable, being
free instead to concentrate on the val-
ues being calculated. A WHILE loop can
be set up by using three related nodes.
The UNTIL BREAK node repeatedly ac-
tivates the graph it is connected to, un-
til the graph activates a related BREAK
node which halts the repetition. Data ar-
riving instead at the NEXT node trig-
gers the next iteration.

Mosconi and Porta [2000] concluded
their paper by proposing a syntax that is
consistent with the pure dataflow model.
They were keen to stress that they were
not proposing their syntax for actual use,
but to prove that practical iteration is
possible without sacrificing the pure se-
mantics of the model. Their loop system,
implemented as part of the Vipers envi-
ronment [Ghittori et al. 1998], includes
cycles, but is simplified by the use of en-
abling signals. They also demonstrated
a way to collapse an iteration into a
single node without sacrificing the pure
model.

All of these approaches have advantages
and disadvantages. Some, such as Can-
tata, introduce imperative structures that
are inconsistent with dataflow, although
Cantata also offers the simplest loops in
terms of visual syntax. Others, such as
VEE, involve relatively complex graphs.
All of them suffer from the inability to dy-
namically express the concept of a repet-
itive loop with a static icon. The whole
area of control-flow constructs, and itera-
tion in particular, remains an open topic in
DFVPLs.

6.3. Data Structures

One of the key issues in the drive for an ef-
ficient implementation of dataflow is that
of data structures. Whiting and Pascoe
[1994] commented that “data structures
sit uneasily within the data-flow model”
(see also Treleaven et al. [1982] and Veen
[1986]). However, they went on to note that
much research has been undertaken in
this area and that a number of quite suc-
cessful solutions have been proposed, most
notably I-structures [Arvind et al. 1989].

The “pure” token model of dataflow
states that all data is represented by val-
ues that, once created, cannot be modified.
These values flow around the dataflow
graph on tokens and are absorbed by
nodes. If a node wishes to modify this
value, it creates a new token, containing
new data which is identical to the origi-
nal data, except for the element that had
to be altered. Some of the earliest dataflow
languages that had support for data struc-
tures worked in this way [Davis 1979]. If
this way of treating data as values rather
than variables were not part of the to-
ken model of dataflow, then the single-
assignment rule would have been violated
and thus the data-dependent scheduling of
the entire graph would be compromised.

While this conceptual view of data struc-
tures is perfectly fine for the theoreti-
cal study of dataflow, and perhaps even
for dataflow graphs that deal only with
primitive data types, this approach is
clearly unsatisfactory for graphs that re-
quire the use of data structures. With the
era of structured programming, followed
by the era of object-oriented programming,
the idea of software development with-
out the use of data structures is virtu-
ally incomprehensible. Thus, any practical
implementation of dataflow must include
an efficient way of providing data struc-
tures, although it should be stated that
some languages designed for research pur-
poses solved the problem by not providing
data structures at all [Hankin and Glaser
1981].

6.3.1. Dennis’s Method. Dennis [1974]
was the first to provide realistic data
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Fig. 7. Showing the effect on Dennis’s data heap
of modifying a value.

structures in a dataflow context by propos-
ing that the tokens in the dataflow pro-
gram hold not the data itself, but rather
a pointer to the data (see also Davis and
Keller [1982]). He devised a memory heap
in the form of a finite, acyclic, directed
graph where each node represents either
an elementary value or a structured value
which behaves much like an indexed ar-
ray. Each element of a structured value is,
in turn, a node that represents either an
elementary value or a structured value.
The pointers in the data tokens refer to
one of these nodes and a reference count
is maintained. A node which is no longer
referred to, either directly or indirectly,
in the graph is removed by an implicit
garbage collector.

Dennis [1974] went on to show that
implementation is possible without need
of copying arbitrarily complex values. As
Dennis’s dataflow programs were always
functional, it was necessary that modify-
ing a value should result in a new value,
without changing the original. Whenever
an elementary value is modified, a new
node is simply added to the heap. When-
ever a structured value is modified, and
there is more than one reference to the
value, a new root node is added to the heap,
pointing to the same values as the orig-
inal root node, with the exception of the
one value that was to have been modified
for which a new node is created. This is
illustrated by Figure 7, which shows the
effect on Dennis’s data heap when a value
A, which represents the array [a, b, c],
is modified. The second element is modi-
fied to create a new value B, which rep-
resents the array [a, e, c]. In the memory

heap, value B retains references to all the
data that is not modified, thus saving time
by not copying the entire data structure.
Meanwhile, value A remains unmodified,
preserving the functional semantics of the
model.

This method prevents the unbounded
copying of arbitrarily complex values. It
also permits the sharing of identical data
elements which saves memory. However, it
is not an ideal solution for all situations.
For example, if the values in a 100-element
array are being modified sequentially by a
loop, this solution would require making
100 new data structures in the process,
notwithstanding the fact that they are not
copying the entire array each time. A good
compiler could detect such a loop and pre-
vent needless copying such as this. Ex-
cessive overhead in the Dennis approach
was also examined and reported by Gajski
et al. [1982].

A second problem, and one which be-
came more evident as research progressed
[Ackerman 1982], was that the use of data
structures can reduce parallelism in a
dataflow program due to the long delay be-
tween creating the structure, and all parts
of it being completed. To use Ackerman’s
[1982] example, consider a dataflow pro-
gram that has two main sections. The first
creates a 100-element array and populates
it, one element at a time. The second takes
the array and reads the elements, one at
a time. In this case, the second part can-
not begin to execute until the first part is
complete, even though it could be reading
element 1 while the first part of the pro-
gram is writing element 2, and so on. In
this case, a program that could conceiv-
ably execute in 101 time units, takes 200
time units to complete. This delay proved
to be frequently unnecessary, and led to
the development of I-structures.

6.3.2. I-Structures. To overcome this
problem, Arvind and Thomas [1980]
proposed a system that they called
I-structures. They observed that the
problem with Dennis’s approach was that
it imposed too strict a control structure
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on the computations that filled in the
components of the data structure [Arvind
et al. 1989]. Ideally, what was needed
was some way of allowing more flex-
ible access to the data structures but
which—crucially—would not destroy the
functional semantics of dataflow.

I-structures are related to lazy evalua-
tion. A data structure is created in mem-
ory, but its constituent fields are left blank.
Each field can either store a value or be
“undefined.” A value can only be stored in
a field that is currently undefined. Thus
I-structures obey the single-assignment
rule. Any attempt to read from an unde-
fined field is deferred until that value be-
comes available, that is, until a value is
assigned to it.

By following this set of rules, a data
structure can be “transmitted” to the rest
of the program as soon as it is created,
while the sender continues to populate the
fields of that structure. Meanwhile, the re-
ceiver can begin to read from the struc-
ture. Referring again to Ackerman’s [1982]
example, this would dramatically improve
the performance of some programs. Al-
though they are somewhat opposed to the
purity of dataflow, I-Structures have been
widely adopted [Arvind et al. 1988; Culler
et al. 1995; Keller 1985].

However, while I-structures do solve
problems of unnecessary delays in func-
tional dataflow programs, they do not ad-
dress the initial problem of copying data
structures in order to modify them. Gajski
et al. [1982] pointed out other issues re-
lated to the overhead of storing and ful-
filling deferred reads in this approach, al-
though Arvind and Culler [1986] argued
that this overhead is small and easily out-
weighed by the benefits. This latter view
appears to be supported by the experi-
ments of Arvind et al. [1988].

6.3.3. Hybrid Structures. Hurson et al.
[1989] examined both Dennis’s copying
strategy and the later I-structures. As dis-
cussed above, they found that the for-
mer had high-overhead issues and wasted
potential parallelism, while the latter

wasted space as it was unable to share
common substructures. They claimed that
their proposed hybrid structures carefully
combined the advantages brought forth
by both copying and sharing. To demon-
strate their proposed structure, they used
arrays, although the method can be ap-
plied to any form of data structure.

Their method represents each array as
an array template (for full details, see
Hurson et al. [1989]). The array template
has a reference count and can either refer
to an original array or a modified array.
In the case of an original array, the tem-
plate points to a sequential area of mem-
ory that contains the elements of the array.
Whenever an element of the array is “mod-
ified,” a new “modified” array template is
created to represent the new array. It con-
tains an area of memory that represents
the new array, but with only the modi-
fied value filled in. The other values are
marked as absent and a link is provided
back to the original array. An attempt to
read from the new array will either re-
turn a modified value or, if the value is not
there, the link to the original array will
be followed and the value retrieved from
there.

If another value is modified in the new
array, and its reference count remains 1,
it can be modified in situ without hav-
ing to create a new array template. In
order to prevent copying the entire array
each time, a new array is required; hybrid
structures allow large arrays to be broken
up into equally sized blocks, each storing
a certain number of elements. Because the
blocks are of identical size, looking for an
element within them can be achieved in
constant time. Blocks themselves have ref-
erence counts, allowing for sharing of sub-
portions of arrays.

Experiments reported in the same paper
[Hurson et al. 1989] suggest that hybrid
structures lead to improvements in both
performance and storage over the copying
method of Dennis [1974] and I-structures,
although it does contain a certain element
of overhead.

While the three approaches outlined
above, and their derivatives, have resolved
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many of the problems related to effi-
ciently implementing data structures in
the dataflow model, those problems nev-
ertheless remain open issues. A brief
overview of data structures and dataflow
was given in Lee and Hurson [1993]. Ef-
forts to reduce unnecessary copying and
to reduce wasted memory from needless
duplication, and the desire not to re-
duce parallelism when implementing data
structures, remain topics for further re-
search. Data structures will always sit un-
easily within pure dataflow models, but
as their provision is virtually essential,
it is an issue that must necessarily be
examined.

6.4. Nondeterminism

The deterministic nature of dataflow
graphs has been promoted many times
as an advantageous feature [Kahn
1974; Karp and Miller 1966; Kosinski
1973; Naggar et al. 1999; Verdoscia and
Vaccaro 1998]. This is because the
dataflow concept lends itself well to
mathematical analysis and proofs [Kahn
1974] and nondeterminism would destroy
or limit many essential properties. Weng
[1975] observed that in von Neumann
languages, concurrency constructs almost
always introduce unwanted concurrency
into programs, and that developing dis-
tributed systems in this model is made
extremely difficult by this fact. Most
dataflow programming languages are
determinate, and the nondeterminacy in
some of those that are not is not always
intentional—often being the result of
imperfect implementation decisions.
Valid, Cajole, and DL1 have very limited
nondeterminate features.

However, it is also widely accepted that
there are many applications that actually
require non-determinacy. These are sys-
tems that are essentially operating in non-
determinant environments, such as book-
ing systems and database access systems.
This was recognized early in the develop-
ment of dataflow languages. Dennis [1974]
conceded the point, and Kahn [1974], after
his detailed mathematical analysis of de-
terminate dataflow graphs, conceded that

his model was severely limited because it
could produce only determinate programs.
While not dismissing the possibility of ex-
tending the theory to nondeterminate pro-
grams, the task appears daunting: Kahn
[1974] remarked only that he did not
think it was impossible, but did not find
it obvious how to do it satisfactorily. This
view was supported by Kosinski [1978],
who reported that attempts to formal-
ize nondeterminate dataflow graphs had
been rather unsatisfactory due to their
complexity.

The dichotomy in regard to nondeter-
minism appears to be the result of a di-
vision between those who wish to use
dataflow as a means to ease the formal
proof and analysis of programs and those
who wish to use dataflow for all varieties
of programming problems. The former re-
gard determinacy as essential, whereas
the latter regard the provision of nonde-
terminacy as essential.

This problem can be resolved by pro-
viding well-structured nondeterminacy. In
admitting the need for nondeterminacy,
Dennis [1974] nevertheless insisted that
he wanted to be able to guarantee users of
his language that his program was deter-
minate if they desired such a guarantee.
Arvind et al. [1977] proposed that nonde-
terminacy be permitted only by very ex-
plicit means, to provide it for those who
want it, but guarantee its absence, if not.
They demonstrated two constructs: the
dataflow monitor and the nondeterminis-
tic merge as vehicles for this.

The nondeterminate merge appears to
be able to solve many of the problems as-
sociated with the lack of nondeterminacy.
Semantically, it is a node that takes two
input arcs and one output arc and merges
the two streams in a completely arbitrary
way. In most cases, such as a booking
system, this is all the nondeterminacy that
is required. The advantage of this is that
the nondeterminism can be readily identi-
fied. It is even possible to have nondeter-
minate subgraphs within a graph that is
otherwise determinate. Therefore, it may
be possible to apply mathematical princi-
ples to the graph even if it does have non-
determinate sections.

ACM Computing Surveys, Vol. 36, No. 1, March 2004.



Advances in Dataflow Programming Languages 31

If dataflow is to become an accept-
able basis for general-usage programming
languages, nondeterminacy is essential.
As well as having disadvantages for for-
mal proofs, nondeterminacy also damages
the software engineering process by mak-
ing debugging more difficult. Therefore,
the question is how to successfully con-
trol the propagation of nondeterminacy in
dataflow systems, but still permit the soft-
ware engineer to write usable programs.

7. CONCLUSION

In this article, the history of dataflow pro-
gramming has been charted to the present
day. Beginning with the theoretical foun-
dations of dataflow, the design and imple-
mentation of fine-grained dataflow hard-
ware architectures have been explored.
The growing requirement for dataflow pro-
gramming languages was addressed by
the creation of a functional paradigm of
languages, and the most relevant of these
have been discussed.

The discovery that fine-grained
dataflow had inherent inefficiencies led
to a period of decline in dataflow research
in the 1980s and early 1990s. However,
research in the field resumed in the 1990s
with the acceptance that the best dataflow
hardware techniques would come from
merging dataflow and von Neumann
techniques. This led to the development
of hybrid architectures, whose primary
trait was a move away from fine-grained
parallelism toward more coarse-grained
execution.

The most important development in
dataflow programming languages in the
1990s was the advent of dataflow visual
programming languages, DFVPLs, which
have been explored. Integral to a DFVPL
is its development environment, and these
have been discussed. The change in moti-
vation for pursuing DFVPLs toward soft-
ware engineering has been noted. Finally,
many issues remain open in dataflow pro-
gramming, and four of these have been
discussed.

Five key conclusions can be drawn re-
garding the current state of dataflow
programming.

—The major change in dataflow re-
search as a whole has been the move
away from fine-grained parallelism to-
wards medium- and coarse-grained
parallelism.

—The major change in the past decade
in dataflow programming has been the
advent of dataflow visual programming
languages.

—As it is visualization that is key to a
visual programming language, the dis-
tinction between a dataflow visual pro-
gramming language and its environ-
ment has become blurred and the two
must now be treated as one unit.

—Dataflow languages increasingly de-
serve to be treated as coordination lan-
guages, an important area of research
with the advent of heterogeneous dis-
tributed systems.

—The three key open issues in dataflow
programming remain the representa-
tion of control-flow structures, the rep-
resentation of data structures, and the
visualization of execution.
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