
Slide #1: 
 
Hi, my name is Cliff Zou. I will talk about our work on “monitoring and early warning 
for Internet worms”. 
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This paper tries to answer this question: how to detect an unknown worm at the early 
stage of its propagation? If we can early detect a worm, we may have time to set up 
efficient counteractions before it is too late. First, we have to set up a monitoring 
system, which will monitor and collect worm scan traffic, such as connections to 
nonexistent IP addresses.  However, monitored traffic is very noisy: some old worms 
can probe the same port; some hackers can use port-scanning toolkits to scan our 
monitors, or monitored traffic can be caused by misconfigured routers or computers on 
the Internet. 
 
For the detection part, for unknown worms, we have to rely on anomaly detection. 
Currently, most anomaly detection techniques are threshold-based. That is to say, they 
check monitored traffic burst, either short-term burst or long-term burst. If the burst is 
over their threshold, they will raise an alarm. However, threshold-based anomaly 
detection systems usually have high false alarm rate and their threshold is very hard to 
adjust. 
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Therefore, in this paper, we propose a very different approach, which is a non-
threshold-based worm detection method. We call it “trend detection”, the detection 
principle is: detect the traffic trend, not burst.  
 
We believe worm exponentially propagates at the beginning. So the trend means the 
exponential growth trend of a worm. For detection, we use on-line recursive estimation 
algorithm to estimate the exponential rate \alpha of this trend. If the estimated 
exponential rate is a positive, constant value, we believe we have detected a worm; 
otherwise, the monitored traffic is just some noise burst. 
 
These two figures show the monitored illegitimate traffic in two situations. They can be 
the number of packets, or number of connections we observe at each unit time. They 
will cause threshold-based detection system to give alarms if the threshold is below this 
in this figure and below this value in this figure. However, we think that they are just 
noise, not caused by a worm, because they do not have the exponentially increasing 
trend. From our estimation point of view, the estimated value is either value 0, or is 
oscillating around 0.   
 



(click) On the other hand, this figure shows the monitored traffic in another case. It has 
exponential growth trend; the estimated value is a positive constant value. So we 
believe this incident is caused by a worm.  
 
You can think that the “trend detection” is a transformation that is similar to Fourier 
Transform. The trend detection transforms the original problem in this domain (the 
three figures above) to the “trend domain” (the three estimation figures in the bottom). 
In this trend domain, the worm detection will become much easier. 
 
In these three scenarios, these first two will cause trouble or false alarms to traditional 
threshold-based detection systems, but they will not cause any trouble to our trend 
detection system. 
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Now, many of you may think that: why worms will propagate exponentially at the 
beginning? Can’t the author of a worm change the worm code to make it not propagate 
exponentially?  
 
Here I want to say that exponential growth is the law of natural growth of any 
reproduction system. In fact, a reproduction system will have exponential growth when 
it satisfies these three conditions: (1). The interference between objects are negligible, 
this is suitable for the beginning phase of the system. (2). All objects have similar 
reproductive ability, not required to be same. (3). The system is a large-scale system, 
and then we can use law of large number and do not consider some random effects. 
 
These conditions are very general. Thus many reproductive systems satisfy them and 
follow exponential growth at the beginning. For example, the rabbit population growth 
when we bring several rabbits into new grassland; the sales of a good product in a new 
market place. 
 
Based on this natural phenomenon, we believe that fast spreading worms have to 
follow exponential growth at the beginning. The main reason is because of the 
attacker’s incentive: attacker wants a worm to infect as many vulnerable hosts as 
possible before people can take counteractions. If an attacker wants to mess up our 
early detection system, then his worm will not propagate with its speed limit, will 
propagate slower. For slow spreading worm, we can rely on other ways to detect the 
worm, such as security staff’s manual check. And slow spreading worm will be easier to 
control. 
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Our trend detection relies on worm propagation model. We will first use simple 
epidemic model for it. The model assumes that any host is either infectious or 
susceptible. It also assumes that the contact between infectious group and susceptible 
group are proportional to the product of their sizes. Denote I(t) the number of infectious 
hosts, S(t) the number of susceptible hosts, N is the total population size.  Then the 
simple epidemic is this. In this paper, we use discrete-time model, which is this one. 
\alpha is called infection rate. This figure shows the number of infected hosts as a 
function of time t. This curve is also called logistic curve, or simple “S” curve. 
 
Our objective is to detect the presence of the worm as early as possible in this area. At 
early stage, a worm almost exponentially increases. If we only check this beginning part 
and show it with log-format on Y-axis, it’s almost a straight line. These two lines show 
the time when the worm infects 1% and 2% of the overall population. Thus at 
beginning, the worm can be accurately modeled by this exponential equation.  
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We use simple epidemic model for worm modeling because it can model most scan-
based worms, such as Code Red, Slammer, even recent Blaster worm that did not 
uniformly scan the Internet. It can at least model the beginning part of a worm’s 
propagation accurately, because at the beginning there is not much human intervention 
or network congestion. These two graphs are taken from a paper that analyzes Slammer 
and Code Red. They show the observed Code Red and Slammer propagation compared 
with the simple epidemic model. Code Red propagation matches well with the model. 
Because of congestion, Slammer quickly saturated network and slowed down its 
spreading speed, but at the beginning it still followed the model.  
 
In addition, our trend detection method is not just useful for simple epidemic model. 
With minor modification, we can use our trend detection method on any worm models 
as well. 
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In our trend detection, we use Kalman filter to estimate the infection rate \alpha at each 
time step. In the estimation case, Kalman filter is equivalent to recursive least square 
estimation. We choose Kalman filter because it can give estimated value at each discrete 
time, and it is robust to noise.  
 
The system is modeled by the discrete-time simple epidemic model. From monitor, we 
can have two types of observation data: C_i is the cumulative number of infected hosts 
we have observed until the discrete time i; Z_i is the number of worm scans we observe 
during the discrete time interval i. They all have this relationship with I_t by replacing 



y_t to C_i or Z_i. The estimation parameters are \alpha, the infection rate and \beta, the 
parameter in epidemic model. 
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The system is described by this. X_t is the system state we want to estimate at each time 
step.  The discrete epidemic model is presented in this y_t equation.  
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We run Code Red simulation to check our trend detection system.  Note that we use a 
normal distribution to give different infected hosts with different scan rates. We assume 
that we can collect worm scans to 2^{20} IP address space. It is about 16 Class B network 
space, which is not hard to achieve. We also consider background noise in the 
simulations.  
 
The blue line shows the number of infected hosts on the Internet, the red curve shows 
what we observed. Based on the observation data, this figure shows the estimated 
infection rate \alpha as time goes on. In this simulation, the worm infects 2% of 
population at time 223 minutes. From this figure, we can see that at that time, the 
estimated value is already stabilized and oscillating a little bit around a positive 
constant value. The black dash line is the real value of \alpha. Thus we can see that we 
can detect the worm before 2% of vulnerable hosts are infected. We have run the 
simulation for many times; all of them have the similar results. 
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We also run Slammer simulation. These are simulation parameters. This figure shows 
the estimated result. In the simulation run shown here, the worm infects 1% population 
at time 45 seconds. The estimation shows that at this time, the estimated value is 
already stabilized and oscillating a little bit around a positive constant value, although 
at this time the estimated value is higher than the real value. Therefore, for this fast 
spreading worm, we still can detect this worm when it infects only 1% of vulnerable 
hosts. 
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We also studied early detection for Blaster worm. Blaster sequentially scans from a 
starting point in IP space. The starting IP address has 40% chance to be a local address, 
60% chance to be a randomly picked address. Our simulations show that Blaster still 
follows simple epidemic model.  
 



We use the same simulation parameters of Code Red for Blaster. We simulate Code Red 
and Blaster for 100 runs, respectively. This figure shows 95 percentile and 5 percentile 
of these two worms. The 95 percentile and 5 percentile means that in those 100 
simulation runs, 90 runs of Blaster are between these two red curves. Thus they exhibit 
how the worm varies in different simulation runs.  
 
Blaster will cause some trouble to our monitoring system. If we still monitor 2^{20} IP 
space and use 16 distributed Class B for monitoring, then the observation data is the red 
line. If we distribute the monitoring space into 1024 blocks of space, the observation 
data is the blue curve. You can see that the observation data is very noisy. How to deal 
with it? If you check this blue curve, you can still see the exponential trend at the 
beginning. From frequency domain, the exponential trend is low frequency information 
embedded in the data. On the other hand, these noises are high frequency information 
in the data. Thus it is suitable to use a simple low-pass filter to filter out those noises. 
(click) This figure shows the observation data after the low-pass filter. You can see the 
1024-block monitoring can have much better data. By using this data, we can detect the 
worm when it infects about 2% population. But the 16-block monitoring is not good. It 
means that in order to early detect Blaster, our monitoring system must be well 
distributed, not just a bit chunk of IP space. 
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Our monitor can only cover a very small percentage of IP address space. If a worm 
uniformly scans the Internet, it takes some time to send a scan into our monitoring 
space and be observed by us. Thus the observation data, the cumulative number of 
observed infected hosts, is biased and smaller than the real value of infected hosts at 
any time. For example, if we monitor only two Class B network space, the number of 
Code Red infected hosts is the blue curve in here and this black curve is the number of 
infected hosts that we observed.  
 
Based on the uniformly scanning property of a worm, we derive this bias-correction 
formula. From it we can derive unbiased estimation of how many hosts are really 
infected based on monitored data. The red curve here is the estimated result. However, 
the bias correction will amplify the noise in observation data. We have analyzed this 
phenomenon in the paper. This figure shows that if we only monitor 2^{14} IP space, 
this is the observation data and the red curve is the estimated I_t after bias correction, 
just a little bit noisy. We have proved in the paper that bias correction can give us 
unbiased estimate of I_t. 
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Based on observation data, we can also predict the number of overall vulnerable 
population on the Internet at the beginning of a worm’s propagation. It’s like a weather 



forecast and it can give us some guideline on what we should do in face of a worm’s 
attack.  
 
One simple way to estimate the population N is to use this relationship. We can get the 
estimated value \alpha and \beta from our Kalman filter, thus N is equal to \alpha 
over \beta. However, N is a very big number, \beta is a very small value that cannot be 
estimated accurately by the Kalman filter. This approach will give very noisy 
estimation.  
 
To overcome this, we find an alternative way to estimate the population size. Suppose 
we have egress monitors and we can observe most traffic sent out by individual 
infected hosts. Then we can observe and estimate the worm scan rate \eta, which is the 
number of scans sent out by an infected host in a unit time. Then we can use this 
equation to estimate N. At each time step, we estimate \alpha from previous Kalman 
filter, and then use it to estimate the population N. The red curve shows the estimated 
population from this equation; the blue curve is the estimated result directly from 
Kalman filter. We can see that the alternative way is much better. The worm infects 5% 
population after time 250. We can see that at this time, the error of estimation is less 
than 10%.  
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This figure shows typical worm propagation. If we want to detect the worm during this 
beginning part, we can use the exponential model directly. If we only show the 
beginning part and use log on Y-axis, (click) this shows that the exponential model is 
quite accurate for the beginning part.  
 
On average, the observation data y_i is proportional to the number of infected hosts. 
Y_I can either be the number of scans in each unit time, or the observed number of 
infected hosts after bias correction. In previous Kalman filter, we use ARMA model, so 
a simple linear equation for exponential model is this Autoregressive (AR) model. We 
can use this AR model to estimate \alpha.  
 
After taking log, the exponential model naturally becomes a linear model of \alpha, 
thus we can use this third model, we call it transformed linear model, to estimate 
\alpha.  
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For the same worm propagation, we use those three models and get these estimation 
results of worm infection rate \alpha. We have shown this figure in previous slides. It is 
based on epidemic model. This is based on AR model and this is based on transformed 
linear model. The transformed linear model is much better than the other two. If we use 



this worm model, we can detect a worm when the worm infects less than 0.5% of 
vulnerable population in the Internet.   
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Here we show some intuitive explanations of why these three models are so different. 
The major reason is the error introduced by these models. In epidemic model, there will 
be three errors introduced, here, here and here, while in AR exponential model, only 
two errors are introduced. 
 
The error introduced in AR model has these two items. On the other hand, in the 
transformed linear model, there is only one error \nu_i and it is smaller than w_i.  
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Summary. In this paper, we present a new non-threshold-based worm detection 
methodology. We call it trend detection. The basic principle is: detect traffic trend, not 
burst. We hope that it can give researchers a different view besides traditional 
threshold-based methods. Trend detection has the advantage that it is robust to 
background noise and will have small false alarm rate. Trend detection relies on the 
accuracy of the dynamic model, and how good the observation data can represent the 
real worm propagation. 
 
In addition, we have derived these two formulas for uniformly scanning worms. One is 
bias correction, it can correct the bias in observed number of infected hosts to estimate 
the real infected population; another is the forecasting of population N at the early stage 
of worm propagation. Note that the 2^{32} here means that a worm scans the whole 
IPv4 space. When the worm scans different size of IP space, such as \Omega IP space, 
the equation should be this (blue equation). This equation is a very basic equation in 
worm analysis. Actually, from this equation, we have found a theoretical worm called 
routing worm. The routing worm can use BGP routing prefixes and can reduce the 
scanning space to be only 30% of Ipv4 space. In this way, this equation shows that the 
worm could have more than three times faster spreading speed. Why 30%? Because 
currently, from BGP routing table we know that only less than 30% of IP space is 
routable. For a worm, why bother to scan those 70% IP space that is empty and non-
routable?  
 
 


