Slide 1: 

Hi. My name is Cliff Zou. Today I will talk about Code Red worm propagation modeling and analysis.
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First, the “motivation” of this paper. On July 19th last year, the correct version of Code Red worm appeared and quickly spread across the Internet. In just one day it infected more than 350,000 computers.  It brought great attention among media and security researchers. 

Luck for us, this worm is a kind of “friendly” worm. It didn’t leave backdoor or destroy anything on compromised computers. And it didn’t really send out Denial of Service traffic to the Internet. 

We need to prepare for the future worm that can do real damages. We believe a good model on worm propagation can give us better understanding of worm behavior. It can predict and access damage of worm propagation.  It also might help us to find effective defense technique when we understand the weakness of worm spreading.
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 Some background on the Code Red worm. Code Red used HTTP get request to buffer overflow vulnerable Windows IIS servers.  It generated 100 threads to scan simultaneously. That’s one reason why it spread so fast. And since each copy of the worm generated so many scan packets, the huge scan traffic on that day might have caused congestion to the Internet.  

One important property of the Code Red worm is that it uniformly picked IP addresses to scan. I’ll discuss this property several times later.
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Our model is based on classical epidemic models.  Thus here I will first introduce some concepts on it. 

In epidemic modeling, a host can stay in one of the following three states: susceptible, infectious, and removed. 

These are the possible state transition considered in epidemic models and also in our model. 

 “Infectious” hosts mean that these hosts are infected by the virus. The virus on them keeps trying to infect others. “Removed” state means that the host is out of the circulation of the virus or worm. In epidemic area, it means the hosts either recover and immune to the virus, or they are dead of the disease. In computer area, it means these computers have been patched and immune to the virus, or the computers have been shutdown or been cut of the circulation of the worm.
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In epidemic modeling, the basic assumption is that the system is homogeneous. It means that any host has the equal probability to contact any other hosts in the system. 

Suppose the infectious hosts form one group, the susceptible hosts form another group. The group size is S and I, respectively. “Homogeneous” means that the number of contacts from infectious group to susceptible group is proportional to the product of the size of these two groups. 

Code Red spreading has such homogeneous property. First, Code Red use IP address to directly connect the target computer. So from the worm’s point of view, computers on Internet form a completely connected graph. Second, Code Red uniformly picks IP to scan, so it has equal probability to contact others.
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The simplest model in epidemic area is called “simple epidemic model”.  It only considers two states and only one state transition.  Suppose for a fixed population system with N hosts, S(t) is the number of susceptible hosts; I(t) is the infectious hosts. Then the dynamic of the system is described by this differential equation. It can be derived from previous homogeneous assumption.


This is the dynamic curve of the number of infectious hosts I(t). X axis is the time t. In the beginning only several hosts are infected. In the end all hosts are infected. From the equation, we can see that I(t) and S(t) are symmetric. It means that the shape of this increasing part at beginning is identical to the shape of this slowing down part at the end. 


The simple epidemic model is a simplified ideal case. It has some problems. The infection rate ( is fixed. And more important is that it has no “removed” state.
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Therefore, the next epidemic model, Kermack-Mckendrick model, considers the removed state. It adds the “removed” state in the system and adds one state transition as shown here.


KM model adds one term on simple epidemic model. R(t) is the number of removed hosts from infectious. So in a unit time, the increasing number of infectious hosts in a unit time should be the number of newly infected hosts in the unit time minus the removed hosts in the unit time. The blue items are what KM model adds on previous simple epidemic model.


Here is the curve of the number of infectious hosts over time. ( = 0 reduces the KM model to simple epidemic model. We can see that as removal rate, (, increases, the worm would spread slower. Because here it’s the value in the order of N square and here it’s in the order of N, so the ( is larger than ( in the order of N


There are some problems if we use KM model for modeling Internet worm. First, it still uses fixed infection rate (. Second, it has no state transition from susceptible to removed.  Actually, when we patch or upgrade a vulnerable computer before it is infected, the state transition of this computer is “susceptible” to “removed”.
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We have introduced two epidemic models in the previous slides. Now comes our own work.

In order to model Internet virus or worm, we first need to consider the factor of human countermeasures. For example, people download a cleaning program to kill the worm; download the patch to fix the security hole; Put up filters on firewalls, gateways to cut off worm traffic; Or maybe simply disconnect their computers when they have no other choices. This really happened during the Code Red spreading period. For example, UCSD has a big network space, a class A network. It recorded Code Red traffic for several hours and then blocked all Web traffic from outside. So we can only see partial Code Red data to their network.


Human countermeasures are the major reasons for suppressing most newly appeared viruses and worms. Only very very few of them could spread out. And eventually all of them will be eliminated because of the countermeasures.


From the description of countermeasures, we need to consider both removal from infectious hosts and removal from susceptible hosts. The state transition should be like this: we add this blue arrow state transition on the previous KM epidemic model.
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Naturally, we add one term in the KM model equations. Q(t) is the number of removed from susceptible hosts.

We define J(t) equals to I(t)+R(t). We call it the number of infected hosts. It means that all these hosts have EVER been infected. 

These are the differential equations when we consider human countermeasures. These black items here are previous KM model. The blue items are what we add to the KM epidemic model in order to consider the state transition from susceptible to removed. 

We think the dynamic of Q(t) is similar to an epidemic spreading. The equation here is a simple epidemic equation. When the number of infected hosts J(t) increases, the news of the worm will spread out. More and more people will know this worm, take it seriously, and implement countermeasures. So the increasing of Q(t) is proportional to how wide the news spread out. At beginning, J(t) is small, few people know the worm so patching rate is small. At the end, not many susceptible computers are left, S(t) is small, so the patching rate is small, too. Only in the middle when the news spread out and there are still many susceptible computers, the increasing rate of Q(t) will be large.
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Besides the human countermeasure, we also need to consider another factor when we model Code Red worm.  What if the worm had caused some congestion to Internet? 


According to BGP routing table, only about 30% of IP address space has been allocated today. Remember that Code Red worm randomly picked IP address to scan. So routers would deal with huge number of scan packets that have unused destination addresses. It would cause cache misses frequently on routers and therefore slow down routers’ performance.  In addition, some routers would generate router error ICMP messages in case of invalid IP. These two cases would lower the routers’ performance and might cause some routers to crash. 


In addition, a technical report from Renesys said that the BGP might be unstable during Code Red spreading period on July 19th. 


The effect is that the infection rate of Code Red worm would not be fixed. The constant rate ( should be a variable.


Here are the final equations of our two-factor worm model. The black items are simple epidemic model. The blue items are added to consider human countermeasures. This is removal of infectious and this is removal of susceptible hosts. The orange items are added to consider the effect of congestion. The infection rate ( should decrease when there are more infectious hosts sending scan traffic on the Internet. The parameter ( here is to adjust how severe the worm propagation affects the Internet traffic. 
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After we derive the two-factor worm model, we try to use it on some observed data of the Code Red incident. On July 19th, some people have put monitors and record the Code Red scan traffic into their own local networks. 


The Code Red worm has an important property that it uniformly picks IP address to scan. Suppose this is the whole IP address space. There are two monitoring networks, A and B. Cite B is 4 times larger than cite A in the term of number of IP addresses. Because of the Code Red uniformly scan property. If Cite A receives, for example, one million Code Red scan packets in one hour, then Cite B should receive about 4 million scan packets in the same hour. 

Suppose cite A is a tiny space compared to the whole IP space. If during this hour, for example, one third of the infectious hosts on the whole Internet have sent scans into Cite A, then in the next hour, even the number of infectious hosts changes, there should also be one third of the infectious hosts sending scans to Cite A. So the ratio should be same.


It means that the local observation can preserve the Code Red propagation pattern on the whole Internet ( that’s why we can use those local observed data to study the global Code Red propagation.
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The following data sets are collected independently by Goldsmith and Eichman on two different class B networks. Each network only covers 1 over 65536 of the whole IP address space. But these curves should have the same pattern as the global Code Red propagation.

For each hour, they counted the number of Code Red scan packets and the number of infectious hosts that sent scans to their small cites. Because these numbers are recounted by each hour, they correspond to the online infectious hosts I(t) during each hour, not the infected hosts J(t), J(t) includes some previously infected hosts that have stopped sending scan traffic.


These two pictures are their observation results. The X-axis is the time in UTC hour, Y-axis is the number of scan packets and the number of source IPs. The worm stopped spreading at 00:00 UTC of July 20th, it’s 8:00pm in US Eastern daylight time. So the curves dropped to almost zero at this time. 


Only these dots are their data for each hour. We use straight line to connect them together.


We can see that the data collected on these two different networks are almost identical. It shows that Code Red really was uniformly picking IP address to scan.
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Staniford in the silicon defense company is the first one to model the Code Red worm. He used the simple epidemic model. These are the observed data curves shown in previous slide, this is the comparison between the model and the observed data. The purple line is the model, the black line is the increasing part of the observed data by Eichman. 

We can see that the simple epidemic model can fit well with the increasing part of observed data. The conclusion from this model is that at around 20:00 UTC, which is 4:00pm in US Eastern time, Code Red worm had already infected all susceptible hosts on the Internet since the model stops increasing at that time. It means that Code Red has achieved its infection task at this time.
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The question with the simple epidemic model is that it probably overestimates the worm spreading. Since it doesn’t consider human countermeasures, including removal of susceptible and infectious computers from the worm circulation. It also doesn’t consider the congestion caused by the rampant spreading of the worm. All these factors will slow down the worm spreading speed.
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So here we try our two-factor model on the observation data. We cannot get the closed-form solution for two-factor worm model. So we use Matlab simulink to numerically analysis it. This figure shows the numerical solutions of two-factor worm model. The black curve is the number of infected hosts, J(t). The blue curve is the number of infectious hosts I(t). These are the hosts that keep sending scan packets to Internet.  The difference between these two curves are the hosts that have been infected but stopped sending scan traffic to Internet. Here we try to match it with the Goldsmith and Eichman data sets. 


In this figure, the red dots are the average value of the data collected by Goldsmith and Eichman. Each dot corresponds to the number of infectious hosts that sent scans to their networks during each hour. So they are just some discrete dots, not a continuous curve. The model, the blue curve, matches pretty well with the observation. Simple epidemic model can only match the increasing part. 


If we use the two-factor model for Code Red, the conclusion is that: at around 20:00 UTC, 4:00pm in the afternoon here, 60% to 70% of susceptible hosts has been infected. Here at this time, the number of infectious hosts reached maximum point. The infected hosts reached 60% to 70% of the whole population. The population here includes all vulnerable computers on Internet at the beginning of the worm propagation. On the other hand, the conclusion from simple epidemic model is that all vulnerable computers have been infected at this time. From this, we think simple epidemic model might overestimate the worm propagation.

The removal rate ( =0.14 in this analysis. It means that in one hour roughly 14% of infectious hosts would be removed. 
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There are not enough evidences to support the congestion assumption. So if we do not include the congestion of Code Red in our model. Here are the results. No matter how we change the parameters, we can’t fit the model with observed data.


Of cause, this figure doesn’t prove that there must be congestion caused by Code Red. It only shows that our guess of the congestion is reasonable. 
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We think the most important lesson we can learn from this research is a guideline for modeling: when we try to model a dynamic process, if the process changes the environment as it evolves, then we can’t model it just based on the normal conditions. For virus or worm modeling, we need to consider human countermeasures and behavior changes. We also need to consider the virus or worm impact on Internet infrastructure. This impart cannot be ignored if the virus or worm propagates very quickly across the Internet and sends out large amount of scan traffic. 


There are some limitations for current worm modeling. First, it can only model the continuously spreading part of the worm. The Code Red worm stopped spreading at 00:00 UTC of July20th, and it restarted spreading on Aug 1st. We can only find such kind of events by manually analyze the worm code. So code analyze is on one hand, modeling is on the other hand to give us the big picture. We need them both. Second, our two-factor worm model and the epidemic models here are for homogeneous system. For some simple graph, like random graph, we can extend the model without difficulty. But for other complex graph, for example, the power law topology, we still need to do more work.


Finally, in this paper we adjust the model’s parameters in order to fit the model curve with the observation data. But how can we predict the worm propagation before the outbreak of the worm? Currently, we don’t know an effective way to determine the parameters beforehand. Even for simple epidemic model, we still need to determine the infection rate (. We are trying to find some ways on this research direction.

