
Secure Smart Card Signing
with Time-based Digital Signature

Hossein Rezaeighaleh*, Roy Laurens**, Cliff C. Zou***
Department of Computer Science

University of Central Florida
 FL, USA

rezaei@knights.ucf.edu*, rlaurens@knights.ucf.edu**, czou@cs.ucf.edu***

Abstract— People use their personal computers, laptops, tablets
and smart phones to digitally sign documents in company’s
websites and other online electronic applications, and one of the
main cybersecurity challenges in this process is trusted digital
signature. While the majority of systems use password-based
authentication to secure electronic signature, some more critical
systems use USB token and smart card to prevent identity theft
and implement the trusted digital signing process. Even though
smart card provides stronger security, any weakness in the
terminal itself can compromise the security of smart card. In this
paper, we investigate current smart card digital signature, and
illustrate well-known basic vulnerabilities of smart card terminal
with the real implementation of two possible attacks including PIN
sniffing and message alteration just before signing. As we focus on
second attack in this paper, we propose a novel mechanism using
time-based digital signing by smart card to defend against message
alteration attack. Our prototype implementation and performance
analysis illustrate that our proposed mechanism is feasible and
provides stronger security. Our method uses popular
timestamping protocol packets and does not require any new key
distribution and certificate issuance.

Index Terms— Time-based Digital Signature, Java Card, Secure
Time Stamp, Terminal Attack, DER Decoder.

I. INTRODUCTION
Online documents and applications became common and

one of the main security challenges is trusted electronic or digital
signing. In the majority of cases, a user should identify himself
and prove that he is really a human and signs the document. On
the other hand, attackers will try to fool a user into signing a
rogue document. Currently, the main countermeasure
mechanism is authentication by username and password and
many popular services like DocuSign use that and trust the user’s
terminal. Even though user authentication is necessary, anybody
besides the actual user can impersonate the real user and sign the
documents. Therefore, in a more mission-critical application,
each user has a unique asymmetric key pair (public and private
keys) to digitally sign a document. Usually, the user must have
a security device such as personal smart card which stores her
private key and she can access it by entering her PIN. When the
user approves content of a document, her terminal computes the
hash of the document and sends it to her smart card. Then the
user enters her PIN and the smart card generates secure digital
signature using her private key.

At first glance, with this mechanism, the system can be sure
that only the owner of the smart card can sign the document
using the unique user’s private key, but that is not always the
case. The main security challenge of a smart card comes from its
non-direct user input/output, as a smart card does not have
monitor/keyboard and a user must rely on her terminal to
perform input/output operations. Since terminals such as
personal computers, laptops, tablets etc. are not secure at all, an
attacker can compromise and breach these terminals to mislead
a user’s smart card operations. For example, the attacker can
replace smart card driver library in a terminal to send an arbitrary
content to smart card for digital signing. Thus, in a normal digital
signature process, the user enters her PIN to digitally sign her
approved content, but the attacker’s fake driver sends another
content to the smart card and the smart card cannot detect the
attack because it relies on the terminal. This attack is applicable
in all smart cards that are used to digital sign documents on
untrusted terminals.

In this paper, we start by investigating and implementing two
well-known attacks to smart card terminals. Then, we will
present a novel protocol to secure digital signing on smart card
with untrusted terminal. Our contributions in this paper are as
follows:

• Proposing time-based digital signature with smart card
• Moving entire digital signature process from untrusted

terminal to trusted smart card
• Negating the need to use new packet format and keys by

utilizing existing keys, certificates and timestamping
protocol

• Designing a new technique which we call onetime-scanning
for DER (Distinguished Encoding Rules) decoding which
significantly reduces processing time on smart card

• Developing a fully-functional prototype using Java card,
and putting the code and library online as an open source
project.

II. SMART CARD TERMINAL VULNERABILITIES

A. Threat Model
Several authors[1] proposed a threat model for smart card

from abstract view, but in real world we can trust smart card
chips and firmware because of their high security standards [2].

2018 Workshop on Computing, Networking and Communications (CNC)

978-15386-3652-7/18/$31.00 ©2018 IEEE 182

In addition, card issuer, key manager and Certificate Authority
are trusted parties and use secure methods to issue smart cards.
Therefore, we assume that the smart card has been manufactured,
issued and delivered to user securely, and the main security
challenges occur during usage.

There are several entities involved during smart card usage,
including service provider (server), terminal (client) and card
reader. We assume that card reader is trusted, and service
provider is more secure than terminal because of common
network security mechanisms such as firewall, IDS, Antivirus
and so on, which are managed by professional administrators.
On the other hand, the terminal is usually a general-purpose
computer or mobile device that an attacker can compromise and
alter. Consequently, the least secure part of the system is the
terminal and in the rest of this paper, we assume that the terminal
is not secure at all.

We summarize our assumptions of the threat model as follows:

• The following entities in smart card signing process are

trusted: smart card manufacturer, smart card issuer, smart
card chip, service provider, and user.

• Terminal is not trusted, i.e., an attacker can compromise and
alter the terminal by installing malware.

B. Two Well-Known Attacks
In this section, we explain two possible well-known attacks

to smart card terminal, including sniffing smart card’s access
PIN and altering digital signature just before signing.

1) Sniffing smart card PIN
A smart card should receive its user’s password (PIN) to gain

access to keys on the card. The main security challenge is that a
smart card doesn’t have direct input device and must use the
terminal’s keyboard, mouse etc. to get the PIN from its user. In
this situation, an attacker can compromise terminal and install a
key logger or another malware to capture the user’s PIN. Then,
the attacker can use this PIN to authenticate himself to the card
without the user’s authorization.

2) Altering user’s digital signature
Another prevalent usage of smart card is digital signing. A

user, such as government employee, company staff, individual
etc. may use her smart card to sign emails, PDF files and other
digital documents. The regular digital signature mechanism is as
follows: a user sees the content of document in an online
application and if she approves it, she signs it using her smart
card. In this process, a cryptographic library, as part of the
application or part of the operating system, computes the hash of
the document and sends this hash value to smart card for signing.
The challenge is that a malware can change the hash value just
before transmitting it to the smart card, resulting in the user
signing an unwanted content with her private key.

C. Implementation of Smart Card Attacks
We implemented the mentioned attacks on Windows, but

they are applicable on other operating systems, too. The attack
code is called MinidriverSpy. We used Personal Identity

Verification (PIV) card [3] in our test. PIV is a smart card
standard which is supported with built-in drivers from Windows
7 SP1, from OpenSC 0.11.1 (in Linux), and from Mac OS Sierra
10.12.

Microsoft Windows uses a software stack to communicate
with smart card and conduct cryptography operations, and its
important module is minidriver [4]. Windows has a built-in
minidriver for PIV smart card which is MSCLMD.DLL. We
implemented a spyware “MinidriverSpy” as a hooking DLL and
replaced MSCLMD.DLL. Right side diagram in Figure 1 shows
our change on attack. The only permission we need to do this
action is file copy permission.

Fig. 1. Original Windows smart card software stack (left) and modified

software stack after an attacker installs MinidriverSpy (right)

Original minidriver (MSCLMD.DLL) has only one entry
point “CardAcquireContext”. This function returns a set of
function pointers of smart card minidriver. We added
“CardAcquireContext” in our MinidriverSpy and pass these
pointers from original minidriver to the caller, with some
changes to implement our attacks. To sniff the smart card PIN,
MinidriverSpy alters pointer of “CardAuthenticateEx” function
and copy this PIN value before sending it to the original
minidriver. To alter digital signature, MinidriverSpy modifies
pointer of “CardSignData” function to change hash value just
before sending it to smart card, and with this attacking tool, a
user will be tricked to sign a fake data using her private key on
smart card.

To test our attacks, we used two types of smart card including
embedded smart card in USB token and traditional ID-1 sized
smart card (credit card size) with USB card reader. We tested
our MinidriverSpy successfully on YubiKey 4, PIVKey T600
USB Tokens and PIVKey C910 PKI Smart Card on Windows 7
Service Pack 1 64-bit and Windows 10 64-bit. We published
basic parts of our MinidriverSpy as open-source software at
GitHub [5].

In the rest of this paper, we focus on altering digital signature
attack. For prevention of PIN sniffing attack, there are practical
solutions in the market such as card readers with numerical
pad [6] and smart card with embedded fingerprint scanner and
match-on-card capability [7]. These methods prevent PIN
sniffing but do not prevent the digital signature alteration attack.

2018 Workshop on Computing, Networking and Communications (CNC)

183

Fig. 2. Our proposed time-based digital signature using smart card

III. TIME-BASED DIGITAL SIGNATURE PROTOCOL
We propose a mechanism to prevent altering digital

signature just before sending message to the smart card to sign.
As explained in previous section, we assume that the smart card
and the service provider are trusted and the terminal is untrusted.
To deal with mentioned security challenge in the smart card
digital signature process, we move all critical steps from
terminal to smart card and transform the terminal into a simple
transmitter and receiver. To do that, we add a trusted authority,
and the smart card doesn’t sign any digest unless this trusted
authority has signed it beforehand. In other words, at first,
trusted authority “pre-signs” the digest, then the smart card signs
this digest if and only if it can verify the digest’s signature.
Therefore, an attacker cannot make changes in the digest
because of trusted authority’s signature, and any alteration will
be detected by the smart card. This pre-signing mechanism
follows the principle that a smart card signs a message if and
only if a trusted authority has signed it before.

Even though pre-signing guarantees the digest’s integrity,
signature verification is not a simple action on a smart card. To
verify a signature, a smart card should decrypt the signature and
compare it with the digest. Furthermore, the smart card must
verify the digital signature of the signer’s certificate with CA’s
public key and check that the certificate is currently valid and
has not expired. Another important step is to check certificate
revocation by Certificate Revocation List (CRL) [8], which
entails checking the CRL’s digital signature and its time validity
too. The big challenge in performing these steps on smart card
is that checking certificate’s and CRL’s validity requires a
trusted time but a smart card does not have any internal clock.

To solve time problem, we propose using Timestamp
Authority (TSA). A TSA [9] receives a digest, then adds time to
it and signs digest and time together. Therefore, when a smart
card receives a timestamp packet, it verifies signature and can
trust the time extracted from the timestamp packet. The smart
card verifies the TSA’s certificate by internal trusted CA’s
public key so that an attacker cannot use a fake TSA. Meanwhile,
because an attacker can use an old or expired TSA, we propose
that a smart card should insert received time in its response
packet and sign digest and time together. A service provider
accepts or rejects a packet which is signed by smart card by
checking its time. Furthermore, before starting the signing
process, a smart card generates a random nonce to guarantee

packet freshness, and after receiving signing request, it verifies
this nonce before signing.

Additionally, smart card, service provider and timestamp
authority store a common Certificate Authority’s certificate
which has issued TSA’s and smart card’s certificate and CRL.
The final process is illustrated in Figure 2 and is as follows:

Protocol 1: Time-based digital signing by smart card:
Input: Document that service provider requests user to sign
Output: Digital signature generated by user’s smart card
1. Service provider gets a nonce from smart card.
2. Service provider sends the document’s digest and nonce to

TSA.
3. TSA signs digest, nonce and time and combines them with

TSA’s signature, TSA’s certificate and up-to-date CRL.
Then TSA sends the resultant packet to the smart card via
service provider.

4. Smart card executes the following signing process:
a. Verifies PIN
b. Checks nonce
c. Verifies signature of packet
d. Extracts time from packet
e. Verifies TSA’s certificate by CA’s public key
f. Checks TSA’s certificate validity time
g. Verifies CRL’s signature by CA’s public key
h. Checks CRL validity time
i. Checks TSA’s certificate with CRL
j. Signs digest and time

5. Smart card sends the response packet to service provider.
6. Service provider executes the following verifying process:

a. Verifies signature of packet
b. Verifies smart card’s certificate
c. Verifies signature’s time with TSA’s time

In this mechanism, terminal doesn’t do anything except

sending and receiving packets, and if an attacker changes the
contents of a packet, the smart card and the service provider can
detect it and will not accept that packet.

IV. SECURITY ANALYSIS
To analyze the security of our proposed mechanism, we

assume that timestamp authority, service provider and smart
card are trusted. In addition, the actual user is authenticated to
the service provider and wants to sign a document. On the other

2018 Workshop on Computing, Networking and Communications (CNC)

184

hand, the terminal is untrusted and an attacker can install
malicious programs (such as rogue driver), and intends to
digitally sign an arbitrary document using the real user’s private
key which is stored on a smart card. In addition, we assume that
the user uses a secure way to enter her PIN number such as PIN
pad smart card reader.

Message alteration attack: As we mentioned before, under
our proposed protocol, an attacker cannot mutate the document
digest before sending it to a smart card, because the TSA has
pre-signed it and the smart card verifies TSA’s digital signature
before signing, and hence, can detect any document
modification by the attacker.

Fake TSA attack: If an attacker attempts to build a fake TSA
to sign his rogue digest, the smart card will discard signing
request because the smart card verifies TSA’s certificate and the
fake TSA’s certificate is not issued by the trusted CA, whose
public key is stored on the smart card.

Compromised TSA: Considering the case where a TSA
server has been compromised and CA has revoked certificate of
the TSA and put its serial number in CRL. The attacker who
hacked this TSA server can pre-sign a request and send it to a
smart card. To bypass revocation checking, he can also provide
an old CRL. In this case, the smart card signs the document with
provided time and, in verification phase, the service provider
determines that TSA was revoked at that time.

Expired TSA: If the attacker uses an old expired TSA to pre-
sign request, the smart card will detect it by checking time
validity of TSA’s certificate. Additionally, if the attacker sends
a past time to the smart card, the smart card signs the document
with that time and service provider will detect that the timestamp
is not the current time and discard digital signature.

Replay attack: Attacker can conduct replay attack by
sending pre-signed packet which is generated for one smart card
to another smart card; since this pre-signed packet has TSA’s
signature, the second smart card can possibly accept it. The use
of nonce in our protocol will prevent this replay attack. In the
first step, the TSA must receive a nonce from the smart card and
sign digest, time and nonce together, and when the smart card
receives a packet, it checks the embedded nonce before signing,
and after that resets its internal nonce value.

In order to implement the aforementioned countermeasure,
the verification of the given TSA’s certificate requires the
current time on the smart card. A straightforward solution is to
leverage the embedded clock in the smart card chips to provide
current time, but the internal clock has not been traditionally
built in these devices because they lack internal power.
Considering the existing challenges, the current time of the TSA
which has been inserted in the received packet will be considered
as current time, and the smart card inserts this time to its
signature packet to inform the service provider about current
time which the smart card has used. Therefore, the service
provider decides to accept or reject the smart card’s digital
signature based on whether this time is current or not.

V. IMPLEMENTATION
To implement our proposed mechanism, we employ existing

timestamp protocol [9]. A timestamp token includes message

digest, nonce, time and signature with attached signer certificate
and CRL. Although we use timestamp token as defined in its
protocol [9], we have changed its messaging sequence in our
protocol to better serve the specific needs of smart card digital
signature. In regular timestamp messaging, a requester sends a
timestamp request containing message digest and optional nonce
to the TSA, then the TSA returns timestamp response. In our
proposed protocol, we use same messaging between the service
provider and the TSA, but the service provider redirects TSA’s
response to a smart card, and the smart card generates another
timestamp response and returns this to the service provider again.
Since we still use standard timestamp message format, our
proposed protocol does not need any change in the TSA.

We developed a prototype of our proposed method as proof-
of-concept. We implemented this program with Java Card [10].
Java card is a smart card that executes limited Java bytecodes on
smart card chip and the program code is called java card applet.
We have to develop parsing libraries from scratch because there
are no built-in features in existing java card API or open source
projects. For this reason, we developed our own codes on DER
decoder and X.509 certificate, X.509 CRL [8], and timestamp
response [9] parsers.

The main challenge that we met in developing our codes is
that a smart card has very limited resource (1 to 8 kilobyte
memory) and decoding certificate, CRL and timestamp packets
usually requires a significant amount of memory. This is because
these packets usually are ASN.1 encoded content [11] and
parsing them requires recursive back-and-force traverse in a
binary-tree method, which is used by all open source projects
like [12]. In [13], a file system has been proposed for smart card
while also claiming the implementation of a DER decoder.
However, the proposed algorithm and its impact on the
performance has not been presented.

Fig. 3. Sample DER content template for timestamp response

2018 Workshop on Computing, Networking and Communications (CNC)

185

 (a) (b)

Fig. 4. (a) TspSign and TspSign2 Java Card applets’ detailed process time, and (b) their performance test results in comparison with classic sign on three different
Java Cards for RSA 1024-bit and 2048-bit key lengths

Thus, we developed a novel approach using a so-called one-
time scanning technique to implement these steps on a smart
card with limited resource. In this technique, we use a pre-
defined pattern (template) to decode a DER-Encoded content.
Our pre-defined pattern of timestamp response is illustrated in
Figure 3. We store the it in a one-dimensional array, while
considering one movement in each single element. The values
of 0x00, 0x01, and 0x02 indicate no movement, visit the child,
and visit the brother, respectively. In this way, we don’t parse
unnecessary nodes whose data are not required by the applet.
This one-time scanning approach can significantly save the
smart card resource. Therefore, our code parses certificate, CRL
and timestamp response with pre-defined templates, and builds
four flat arrays offsets, tags, lengths and value indexes. As a
result, indexes of fields are fixed and the applet accesses them
quickly.

One-time scanning technique works for mandatory fields,
but there are some optional fields like revoked certificate serial
numbers in CRL. We use classic DER decoding just for this part
of content. We published our java card applet and developed
parsing libraries as an open source project in GitHub [14] so that
other researchers can use and improve the project.

VI. PERFORMANCE EVALUATION
We developed our code based on Java Card 2.2.2 [10]

specification and tested it on Java Card 3.0 classic edition [15]
too. Furthermore, we developed a simulator for service provider
and TSA as a regular computer program to test our applets. We

implemented java card applet of our proposed mechanism with
classic DER decoding technique and called it “TspSign”. Then,
we analyzed on-card process and measured the processing time
in each of the step listed in Protocol 1, and its results are
illustrated in Figure 4(a) with dark bars. As shown in the chart,
the majority of time is consumed for parsing steps. To reduce the
time consumed by parsing, we developed one-time scanning
technique to decode DER-Encoded contents (described in
previous section) and called it “TspSign2”. By using TspSign2,
we measured the processing time of steps again, and its results
are illustrated in the same Figure 4(a) with bright bars. It is clear
that there is a drastic performance improvement with this
technique. We also developed a simple applet which only signs
a message digest regularly with no security enhancement to
compare the performance of implementation of our prototypes
with it. We call it “Sign” applet in our experiments.

In addition, while normal sending/receiving buffer in smart
card is 255 bytes, our applet needs to transmit a significantly
longer data. To achieve this, we used extended length commands
and chaining protocol methods. To generate digital signature, we
used PKCS#1 PSS encoding with RSA 1024 and 2048-bit keys
and SHA-1. We tested our code with simple RSA key and CRT
RSA key [10] which requires primitives of private key, and
because of performance considerations we used CRT version in
all tests.

We used two different configurations to test 1024 and 2048-
bit key lengths. To test 1024-bit key length, we generated a self-
signed CA, TSA and card certificates with 1024-bit RSA keys

2018 Workshop on Computing, Networking and Communications (CNC)

186

and to test 2048-bit length, we generated all of them with 2048-
bit RSA keys. Therefore, we did not mix 1024-bit and 2048-bit
keys in our tests.

For “Sign” applet, the test tool sends 20 bytes SHA-1 hash
value to the smart card and receives 128/256 bytes response
which is 1024/2048-bit RSA signature value. For TspSign and
TspSign2 applets, the test tool sends 1501/2022 bytes which
includes a timestamp response conveying nonce, time, message
digest, TSA certificate and CRL, and receives 1131/1523 bytes
which includes timestamp response generated by smart card
conveying message digest, time and card certificate for
1024/2048-bit RSA keys.

To evaluate the performance, we loaded our applets to three
popular Java Cards from three different brands including NXP
J3A081, Feitian JavaCOS A22 and G&D SmartCafe Expert 6.0.
Also, we used OmniKey Card Man 3121 USB card reader with
T=1 communication protocol for all tests. We repeated each test
case 10 times and calculated their average values. Thus, we
loaded our three applets “Sign”, “TspSign” and “TspSign2” to
all three smart cards for both 1024 and 2048-bit configurations,
and totally, we executed 180 successful tests. The results are
illustrated in Figure 4(b) top and bottom charts.

VII. RELATED WORKS
There is a popular security mechanism to provide

confidentiality and integrity for smart card transactions which is
called Secure Messaging [16]. In secure messaging mode, smart
card and terminal encrypt some parts of or entire smart card’s
command and response, and any intermediate entity cannot sniff
or change data between terminal and smart card. But secure
messaging cannot prevent terminal attacks because data is
unencrypted in terminal.

Authors of [17] proposed to use a smart card that has LCD
monitor to directly display information to a user. It’s clear that
this solution is not practical because there is no widely-used
smart card with this special feature. Additionally, this type of
monitor has limited capability and cannot show full text or
handle any complicated digital document format.

Authors of [18] introduced a secure digital signature which
is a two-phase signing process. In this mechanism, a user signs
data by her smart card on an untrusted terminal and has a limited
time (deadline) to reject it in a trusted terminal, otherwise the
signature becomes committed. It is similar to a credit card which
user can cancel his unwanted transactions. In other words, a user
can sign data on any untrusted terminal, but should check the
data in a trusted terminal such as his personal computer after the
signing and cancel unknown signatures. The disadvantage of this
scenario is that there should be at least one trusted terminal.

VIII. CONCLUSION
In this paper, we proposed a novel protocol to secure smart

card signing with time-based digital signature. At first, we
explained our threat model and illustrated our implementation of
two well-known attacks against smart card terminal. Then, we

proposed our new protocol to prevent altering digital signature
just before signing and presented our security analysis. In
addition, we developed a prototype with one-time scanning DER
decoder to improve performance due to smart card’s limited
resource, and our test results show that this technique has
significantly reduced processing time in smart card.

REFERENCES
[1] B. Schneier, A. Shostack, “Breaking up is hard to do: modeling

security threats for smart cards”, USENIX Workshop on Smart
Card Technology, USENIX Press, 1999, pp. 175-185.

[2] “FIPS PUB 140-2: Security requirements for cryptographic
modules”, National Institute of Standards and Technology,
December 2002

[3] “SP 800-73-3. Interfaces for Personal Identity Verification”,
National Institute of Standards and Technology, February 2010

[4] “Windows smart card minidriver specification”, Version 7.07,
Microsoft corporation, February 2016

[5] “MinidriverSpy”, https://github.com/hosseinpro/MinidriverSpy
[6] ACR83 PINeasy Smart Card Reader,

http://www.acs.com.hk/en/products/34/acr83-pineasy-smart-
card-reader/

[7] Thumbs Up: Mastercard Unveils Next Generation Biometric
Card, https://newsroom.mastercard.com/press-releases/thumbs-
up-mastercard-unveils-next-generation-biometric-card/

[8] R. Housley, W. Polk, W. Ford, and D. Solo, Internet X.509 Public
Key Infrastructure certificate and certificate revocation list (CRL)
profile, Request for Comments RFC 3280, 2002

[9] C. Adams, P. Cain, D. Pinkas, R. Zuccherato, Internet X.509
Public Key Infrastructure Time-Stamp Protocol (TSP), Request
for Comments RFC 3161, 2001

[10] “Java Card Runtime Environment (JCRE) Specification,” 2nd
Edition, 2002

[11] Information technology – ASN.1 encoding rules: Specification of
Basic Encoding Rules (BER), Canonical Encoding Rules (CER)
and Distinguished Encoding Rules (DER), ITU-T
Recommendation X.690, 2002

[12] https://www.bouncycastle.org
[13] M. Imam, M. Sobh, “Novel File System with ASN.1 Support for

Java Card Applications”, 23rd IEEE International Symposium on
Industrial Electronics (ISIE), June 2014

[14] “TspSign”, https://github.com/hosseinpro/TspSig
[15] “Java Card Runtime Environment (JCRE) Specification,” 3rd

Edition, 2011
[16] “ISO/IEC 7816: Identification cards - Integrated circuit cards -

Part 4: Organization, security and commands for interchange”,
International Organization for Standardization, 2013

[17] S. Li, A.R. Sadeghi, S. Heisrath, R. Schmitz, J.J. Ahmad,
“hPIN/hTAN: a lightweight and low-cost e-banking solution
against untrusted computers”, 15th International conference on
financial cryptography and data security, volume 7035 of Lecture
Notes in Computer Science, Springer, 2011

[18] I.Z. Berta, L. Buttyan, I. Vajda, “A framework for the revocation
of unintended digital signatures initiated by malicious terminals”,
IEEE Transaction on dependable and secure computing,
September 2005.

2018 Workshop on Computing, Networking and Communications (CNC)

187

		2018-06-06T15:52:14-0400
	Certified PDF 2 Signature

