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1 INTRODUCTION

In the last several years, Internet malware attacks have evolved
into better organized and more profit-centered endeavors.
Email spam, extortion through denial-of-service attacks [1],
and click fraud [2] represent a few examples of this emerging
trend. “Botnets” are a root cause of these problems [3], [4], [5].
A “botnet” consists of a network of compromised computers
(“bots”) connected to the Internet that is controlled by a
remote attacker (“botmaster”) [5], [6]. Since a botmaster could
scatter attack tasks over hundreds or even tens of thousands
of computers distributed across the Internet, the enormous
cumulative bandwidth and large number of attack sources
make botnet-based attacks extremely dangerous and hard to
defend against.

Compared to other Internet malware, the unique feature of a
botnet lies in its control communication network. Most botnets
that have appeared until now have had a common centralized
architecture. That is, bots in the botnet connect directly to
some special hosts (called “command-and-control” servers, or
“C&C” servers). These C&C servers receive commands from
their botmaster and forward them to the other bots in the
network. From now on we will call a botnet with such a control
communication architecture a “C&C botnet”. Fig. 1 shows the
basic control communication architecture for a typical C&C
botnet (in reality, a C&C botnet usually has more than two
C&C servers). Arrows represent the directions of network
connections.

As botnet-based attacks become popular and dangerous,
security researchers have studied how to detect, monitor, and
defend against them [1], [3], [4], [5], [6], [7]. Most of the
current research has focused upon the C&C botnets that have
appeared in the past, especially Internet Relay Chat (IRC)
based botnets. It is necessary to conduct such research in
order to deal with the threat we are facing today. However,
it is equally important to conduct research on advanced botnet
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designs that could be developed by attackers in the near future.
Otherwise, we will remain susceptible to the next generation
of internet malware attacks.

From a botmaster’s perspective, the C&C servers are the
fundamental weak points in current botnet architectures. First,
a botmaster will lose control of her botnet once the limited
number of C&C servers are shut down by defenders. Second,
defenders could easily obtain the identities (e.g., IP addresses)
of all C&C servers based on their service traffic to a large
number of bots [7], or simply from one single captured bot
(which contains the list of C&C servers). Third, an entire
botnet may be exposed once a C&C server in the botnet is
hijacked or captured by defenders [4]. As network security
practitioners put more resources and effort into defending
against botnet attacks, hackers will develop and deploy the
next generation of botnets with a different control architecture.

1.1 Current P2P Botnets and Their Weaknesses

Considering the above weaknesses inherent to the centralized
architecture of current C&C botnets, it is a natural strategy for
botmasters to design a peer-to-peer (P2P) control mechanism
into their botnets. In the last several years, botnets such as
Slapper [8], Sinit [9], Phatbot [10] and Nugache [11] have
implemented different kinds of P2P control architectures. They
have shown several advanced designs. For example, some of
them have removed the “bootstrap” process used in common
P2P protocols1. Sinit uses public key cryptography for update
authentication [9]. Nugache attempts to thwart detection by
implementing an encrypted/obsfucated control channel [11].

Nevertheless, simply migrating available P2P protocols will
not generate a sound botnet, and the P2P designs used by
several botnets in the past are not mature and have many
weaknesses. To remove bootstrap procedure, a Sinit bot uses
random probing to find other Sinit bots to communicate with.
This results in poor connectivity for the constructed botnet and

1. Many peer-to-peer networks have a central server or a seed list of peers
who can be contacted in order for a new peer joining the network. This
bootstrap process is not a major problem for normal P2P networks, but it
poses a single point of failure for a P2P botnet.



Fig. 1. Command and control architecture of a C&C
botnet

Fig. 2. Command and control architecture of the pro-
posed hybrid P2P botnet

easy detection due to the extensive probing traffic [9]. Phatbot
utilizes Gnutella cache servers for its bootstrap process. This
botnet can be easily shut down if security community set up
filter on those Gnutella cache servers, or block any traffic
to and from those cache servers. In addition, its underlying
WASTE peer-to-peer protocol is not scalable across a large
network [10]. Nugache’s weakness lies in its reliance on
a seed list of 22 IP addresses during its bootstrap process
[11]. Slapper fails to implement encryption and command
authentication enabling it to be easily hijacked by others.
In addition, its list of known bots contains all (or almost
all) members of the botnet. Thus, one single captured bot
would expose the entire botnet to defenders [8]. Furthermore,
its complicated communication mechanism generates a large
amount of traffic, rendering it susceptible to monitoring via
network flow analysis.

Some other available distributed systems include
“censorship-resistant” system and “anonymous” P2P system.
However, their design goal is different from a botnet. For
example, these distributed systems try to hide the source node
of a message within a crowd of nodes. However, they do not
bother to hide the identities of this crowd. On the other hand,
a botnet needs to try its best to hide IP addresses of all bots
in it.

1.2 Proposed Hybrid P2P Botnet

Considering the problems encountered by C&C botnets and
previous P2P botnets, the design of an advanced botnet, from
our understanding, should consider the following practical
challenges faced by botmasters: (1). How to generate a robust
botnet capable of maintaining control of its remaining bots
even after a substantial portion of the botnet population has
been removed by defenders? (2). How to prevent significant
exposure of the network topology when some bots are captured
by defenders? (3). How to easily monitor and obtain the
complete information of a botnet by its botmaster? (4). How
to prevent (or make it harder for) defenders from detecting
bots via their communication traffic patterns? In addition,
the design should also consider many network related issues
such as dynamic or private IP addresses and the diurnal
online/offline property of bots [4].

By considering all the challenges listed above, in this paper,
we present our research on the possible design of an advanced
hybrid P2P botnet. The proposed hybrid P2P botnet has the
following features:

• The botnet requires no bootstrap procedure.
• The botnet communicates via the peer list contained in

each bot. However, unlike Slapper [8], each bot has a
fixed and limited size peer list and does not reveal its
peer list to other bots. In this way, when a bot is captured
by defenders, only the limited number of bots in its peer
list are exposed.

• A botmaster could easily monitor the entire botnet by
issuing areport command. This command instructs all
(or partial) bots to report to a compromised machine
(which is called asensor host) that is controlled by the
botmaster. The IP address of the sensor host, which is
specified in the report command, will change every time
a report command is issued to prevent defenders from
capturing or blocking the sensor host beforehand.

• After collecting information about the botnet through
the above report command, a botmaster, if she thinks
necessary, could issue anupdatecommand to actively let
all bots contact a sensor host to update their peer lists.
This effectively updates the botnet topology such that it
has a balanced and robust connectivity, and/or reconnects
a broken botnet.

• Only bots with static global IP addresses that are ac-
cessible from the Internet are candidates for being in
peer lists (they are calledservent botsaccording to P2P
terminologies [12] since they behave with both client and
server features). This design ensures that the peer list in
each bot has a long lifetime.

• Each servent bot listens on a self-determined service port
for incoming connections from other bots and uses a
self-generated symmetric encryption key for incoming
traffic. This individualized encryption and individualized
service port design makes it very hard for the botnet to
be detected through network flow analysis of the botnet
communication traffic.



1.3 Paper Organization

The rest of the paper is organized as follows. Section 2
introduces related studies. Section 3 introduces the control
communication architecture of the proposed botnet. Section
4 discusses the designs to ensure authentication, security, and
traffic dispersion of command communication. In Section 5,
we present how a botmaster is able to monitor her botnet
reliably and easily. We present how to construct the proposed
botnet in Section 6 and study its robustness against defense in
Section 7. In Section 8, we present possible defenses against
the botnet, and provide simulation studies and performance
analytical models of several defense themes. We give a few
discussions in Section 9 and finally conclude the paper in
Section 10.

2 RELATED WORK

Botnets are an active research topic in recent years. In 2003,
Puri [13] presented an overview of bots and botnets, and
McCarty [14] discussed how to use a honeynet to monitor
botnets. Arce and Levy presented a good analysis of how the
Slapper worm built its P2P botnet. Barford and Yegneswaran
[15] gave a detailed and systematic dissection of many well-
known botnets that have appeared in the past.

Current research on botnets is mainly focused on monitoring
and detection. [3], [6], [16], [17] presented comprehensive
studies on using honeypots to join botnets in order to monitor
botnet activities in the Internet. With the help from Dynamic
DNS service providers, [4] presented a botnet monitoring
system by redirecting the DNS mapping of a C&C server to
a botnet monitor. Ramachandran et al. [5] presented how to
passivelydetect botnets by finding botmasters’ queries to spam
DNS-based blackhole list servers (DNSBL).

Since most botnets nowadays use Internet Relay Chat (IRC)
for their C&C servers, many people have studied how to detect
them by detecting their IRC channels or traffic. Binkley and
Singh [7] attempted to detect them through abnormal IRC
channels. Strayer [18] used machine-learning techniques to
detect botnet IRC-based control traffic and tested the system
on trace-driven network data. Chen [19] presented a system to
detect botnet IRC traffic on high-speed network routers.

Nevertheless, few people have studied how botmasters
might improve their attack techniques. [8], [9], [10], [11], [15]
only introduced the attack techniques already implemented in
several botnets appearing in the past. Zou and Cunningham
[20] studied how botmasters might improve their botnets to
avoid being monitored by a honeypot. Our research presented
in this paper belongs to this category.

Our research is conducted at the same time and independent
with the work done by Vogt et al. [21]. In [21], the authors
presented a “super-botnet”, which is a super-size botnet by
inter-connecting many small botnets together in a peer-to-peer
fashion. However, [21] largely ignored two important practical
issues, both of which have been addressed in our work: (1).
The majority of compromised computers cannot be used as
C&C servers since they are either behind firewall, behind NAT,
or have dynamic IP addresses; (2). The robust botnet topology
cannot be set up solely through reinfection mechanism, if a

botnet does not have substantive reinfections during its build-
up, which is the case for most botnets in reality.

3 PROPOSED HYBRID P2P BOTNET ARCHI-
TECTURE

3.1 Two Classes of Bots

The bots in the proposed P2P botnet are classified into two
groups. The first group contains bots that have static, non-
private IP addresses and are accessible from the global Inter-
net. Bots in the first group are calledservent botssince they
behave as both clients and servers2. The second group contains
the remaining bots, including: (1). Bots with dynamically
allocated IP addresses; (2). Bots with private IP addresses;
(3). Bots behind firewalls such that they cannot be connected
from the global Internet. The second group of bots are called
client botssince they will not accept incoming connections.

Only servent bots are candidates in peer lists. All bots,
including both client bots and servent bots, actively contact the
servent bots in their peer lists to retrieve commands. Because
servent bots normally do not change their IP addresses, this
design increases the network stability of a botnet. This bot
classification will become more important in the future as a
larger proportion of computers will sit behind firewall, or use
DHCP or private IP addresses due to shortage of IP space.

A bot could easily determine the type of IP address used
by its host machine. For example, on a Windows machine,
a bot could run the command “ipconfig /all ”. Not all
bots with static global IP addresses are qualified to be servent
bots—some of them may stay behind firewall, inaccessible
from the global Internet. A botmaster could rely on the col-
laboration between bots to determine such bots. For example,
a bot runs its server program and requests the servent bots in
its peer list to initiate connections to its service port. If the bot
could receive such test connections, it labels itself as a servent
bot. Otherwise, it labels itself as a client bot.

3.2 Botnet Command and Control Architecture

Fig. 2 illustrates the command and control architecture of the
proposed botnet. The illustrative botnet shown in this figure
has 5 servent bots and 3 client bots. The peer list size is 2
(i.e. each bot’s peer list contains the IP addresses of 2 servent
bots). An arrow from bot A to bot B represents bot A initiating
a connection to bot B. This figure shows that a big cloud
of servent bots interconnect with each other—they form the
backbone of the control communication network of a botnet.

A botmaster injects her commands through any bot(s) in the
botnet. Both client and servent bots periodically connect to the
servent bots in their peer lists in order to retrieve commands
issued by their botmaster. When a bot receives a new command
that it has never seen before (e.g., each command has a unique
ID), it immediately forwards the command to all servent bots
in its peer list. In addition, if itself is a servent bot, it will also
forward the command to any bots connecting to it.

2. In a traditional peer-to-peer file sharing system, all hosts behave both as
clients and servers and are called “servents” [22].



This description of command communication means that,
in terms of command forwarding, the proposed botnet has an
undirected graph topology. A botmaster’s command could pass
via the links shown in Fig. 2 in both directions. If the size of
the botnet peer list is denoted byM , then this design makes
sure that each bot has at leastM venues to receive commands.

3.3 Relationship Between Traditional C&C Botnets
and the Proposed Botnet

Compared to a C&C botnet (see Fig. 1), it is easy to see that
the proposed hybrid P2P botnet shown in Fig. 2 is actually
an extension of a C&C botnet. The hybrid P2P botnet is
equivalent to a C&C botnet where servent bots take the role
of C&C servers: the number of C&C servers (servent bots)
is greatly enlarged, and they interconnect with each other.
Indeed, the large number of servent bots is the primary reason
why the proposed hybrid P2P botnet is very hard to be shut
down. We will explain these properties in detail later in Section
6 and Section 7.

4 BOTNET COMMAND AND CONTROL

The essential component of a botnet is its command and
control communication. Compared to a C&C botnet, the pro-
posed botnet has a more robust and complex communication
architecture. The major design challenge is to generate a botnet
that is difficult to be shut down, or monitored by defenders or
other attackers.

4.1 Command Authentication

Compared with a C&C botnet, because bots in the proposed
botnet do not receive commands from predefined places,
it is especially important to implement a strong command
authentication. A standard public-key authentication would be
sufficient. A botmaster generates a pair of public/private keys,
〈K+,K−〉, and hard codes the public keyK+ into the bot
program before releasing and building the botnet. There is no
need for key distribution because the public key is hard-coded
in bot program. Later, the command messages sent from the
botmaster could be digitally signed by the private keyK− to
ensure their authentication and integrity.

This public-key based authentication could also be readily
deployed by current C&C botnets. So botnet hijacking is not
a major issue.

4.2 Individualized Encryption Key

A botmaster may also wish to encrypt her command messages
to prevent being eavesdropped by defenders or other attackers.
The peer-list based architecture of the proposed P2P botnet
makes it easy to implement a strong encryption.

In the proposed botnet, each servent boti randomly gener-
ates its symmetric encryption keyKi. Suppose the peer list
on bot A is denoted byLA. It will not only contain the IP
addresses ofM servent bots, but also the symmetric keys used
by these servent bots. Thus, the peer list on bot A is:

LA = {(IPi1 ,Ki1), (IPi2 ,Ki2), · · · (IPiM
,KiM

)} (1)

where(IPij ,Kij ) are the IP address and symmetric key used
by servent botij . With such a peer list design, each servent
bot uses its own symmetric key for incoming connections from
any other bot. This is applicable because if bot B connects to
a servent bot A, bot B must have(IPA,KA) in its peer list.

This individualizedencryption guarantees that if defenders
capture one bot, they only obtain keys used byM servent bots
in the captured bot’s peer list. Thus the encryption among the
remaining botnet will not be compromised.

4.3 Individualized Service Port

The peer-list based architecture also enables the proposed
botnet to disperse its communication traffic in terms of service
port. Since a servent bot needs to accept connections from
other bots, it must run a server process listening on a service
port. The service port number on servent boti, denoted by
Pi, could be picked by the bot, either randomly or selectively.
Considering this, a peer list needs to contain the service port
information as well. For example, the peer list on bot A is:

LA = {(IPi1 ,Ki1 , Pi1), · · · , (IPiM ,KiM , PiM )} (2)

With the new peer listLA shown above, bot A can connect to
any servent bot in its peer list using the correct service port
without any difficulty.

This individualized service port design has two benefits for
botmasters:
• Dispersed network traffic: Since service port is a critical

parameter in classifying network traffic, this individual-
ized port design makes it extremely hard for defenders to
detect a botnet based on monitored network traffic. When
combined with the individualized encryption design, a
P2P botnet has a strong resistance against most (if not
all) network traffic flow based detection systems, such as
the ones introduced in [18], [19].

• Secret backdoor: The individualized port design also
ensures that servent bots in a P2P botnet keep their
backdoors “secret”. Otherwise, defenders could scan the
specific port used by a botnet to detect potential servent
bots, or monitor network traffic targeting this service port
to facilitate their botnet detection.

As we mentioned above, the service port number can
be chosen either randomly or selectively by each bot. A
randomly-generated service port may not be good for botnets
since network traffic going to a rarely used port is abnormal.
Thus a more realistic approach is that each servent bot
selectively picks its service port by choosing one standard
encryption port, such as port 22 (SSH), 443 (HTTPS), 993
(IMAPS), to facilitate the encrypted botnet communication
traffic and also masquerade as normal traffic. Furthermore,
a sophisticated botmaster could even program bot code to
mimic the protocol used on a standard service port. This is
not difficult as it has already been implemented in the open
source program “honeyd” [23].

The individualized service port makes a botnet communi-
cation harder to detect, but it does not mean that a servent
bot cannot be detected based on its botnet traffic. If a local
network’s firewall or its security administrator keeps track



of what services are provided by each local machine, a bot-
infected computer that does not host any standard encryption
service can be easily detected. In addition, if the network
firewall or the security administrator tracks the client pool
profile for each service, even if a local machine does host
some encryption services, the bot on this machine can still be
detected when the client pool significantly deviates from its
normal profile.

5 BOTNET MONITORING BY ITS BOTMASTER

Another major challenge in botnet design is making sure that
a botnet is difficult to monitor by defenders, but at the same
time, easily monitored by its botmaster. With detailed botnet
information, a botmaster could (1). Conduct attacks more
effectively according to the bot population, distribution, on/off
status, IP address types, etc; (2). Keep tighter control over
the botnet when facing various counterattacks from defenders.
In this section, we present a simple but effective way for
botmasters to monitor their botnets whenever they want, and
at the same time, resist being monitored by others.

5.1 Monitoring Via a Dynamically Changeable Sen-
sor

To monitor the proposed hybrid P2P botnet, a botmaster issues
a special command, called areport command, to the botnet
thereby instructing every bot to send its information to a
specified machine that is compromised and controlled by the
botmaster. This data collection machine is called asensor.

The IP address (or domain name) of the centralized sensor
host is specified in the report command. Every round of
report command issued by a botmaster could potentially utilize
a different sensor host. This would prevent defenders from
knowing the identity of the sensor host before seeing the actual
report command. After a report command has been sent out by
a botmaster, it is possible that defenders could quickly know
the identity of the sensor host (e.g., through honeypot joining
the botnet [3], [6]), and then either shut it down or monitor
the sensor host. To deal with this threat, a botmaster may
implement any of the following procedures:
• Use a popular Internet service, such as HTTP or Email,

for report to a sensor. The sensor is chosen such that
it normally provides such a service to avoid exhibiting
abnormal network traffic.

• Use several sensor machines instead of a single sensor.
• Select sensor hosts that are harder to be shut down or

monitored, for example, compromised machines in other
countries with minimum Internet security and Interna-
tional collaboration.

• Manually verify the selected sensor machines are not
honeypots (see further discussion in Section 9).

• Wipe out the hard drive on a sensor host immediately
after retrieving the report data.

• Specify expiration time in report command to prevent any
bot exposing itself after that time.

• Issue another command to the botnet to cancel the previ-
ous report command once the botmaster knows that the
sensor host has been captured by defenders.

If a botmaster simply wants to know the current size of a
botnet, a probabilistic report would be preferred: each bot uses
a small probabilityp specified in a report command to decide
whether to report. Then the botnet has roughlyX/p bots if
X bots report. Such a probabilistic report could minimize the
telltale traffic to the report sensor.

Each bot could use the public keyK+ (hard-coded in the bot
program) to ensure the confidentiality of its report data—only
the botmaster can read the report by using the corresponding
private keyK−. In addition, a botmaster could use several
compromised machines as stepping stones when retrieving
data from sensors. These are standard practices so we will
not explain more.

5.2 Additional Monitoring Information

A botmaster not only wants to know a botnet size and
topology, she may also want to know other information in
order to conduct efficient attacks.

5.2.1 IP address type

Internet computers are identified by their IP addresses. But
the widely-deployed “Dynamic Host Configuration Protocol”
(DHCP) and “Network Address Translation” (NAT) have made
IP-based identification difficult and error-prone. A botmaster
may implement an ID-based identification (such as [24]) to
track bots in a botnet: when compromising a computer, the
bot program on the computer randomly generates its unique
ID. When bots send their report to a sensor host, they report
their IDs as well.

This ID-based identification facilitates the measurement of
NAT encountered by a botnet. Based on a round of report sent
from bots, a botmaster is able to know whether several bots
are behind a single NAT — these bots have different IDs but
send reports from a single source IP address.

This ID-based identification eliminates the measurement
trouble caused by DHCP addresses. A more useful measure-
ment is to know how frequently DHCP-based bots in a botnet
change their IP addresses. For this purpose, each bot with
DHCP address keeps recording when its IP address changes,
and then report this information to its botmaster’s sensor host.

This information is particularly useful for botmasters in
sending email spam. As pointed out by [25], 80% of current
spam is listed in some DNS blacklists (DNSBLs), which are
used “to track IP addresses that originate spam, so that future
emails sent from these IP addresses can be rejected.” [5] This
means that if a botnet sends out spam, many bots in the
botnet will lose their capability to send out spam again. To
counterattack this defense, a botmaster may only use DHCP
bots, which change their IP addresses, for example, at least
once per day, to send out email spam. In this way, defenders
need to blacklist a much larger number of IPs to effectively
block spam, and it becomes much harder for defenders to
determine a good timeout value for blocked IPs.

Because a botmaster knows how many bots satisfy this
requirement based on botnet report, the botmaster can strike a
good tradeoff between sending out enough spam and avoiding
being blocked by DNSBLs.



The ID-based identification has another benefit: if a botmas-
ter wants to let a selected set of bots to send out an attack, the
botmaster may issue a command to the botnet with a list of
these attack bots’ IDs — a bot will launch attack if it finds its
ID in this list. In this way, if the list is captured by defenders,
it will not reveal the identities of these attack bots since only
the botmaster knows the mapping between IP addresses and
IDs.

5.2.2 Diurnal dynamics
As pointed out in [4], the online population of every botnet has
a clear “diurnal” dynamics due to many users shutting down
their computers at night. In one time zone, the peak online
population of a botnet could be as much as four times of the
bottom level online population. The significance of diurnal
dynamics is further verified by [26], which showed that only
about 20% of computers are always online.

To maximize a botnet attack power, a botmaster may want
to know the diurnal dynamics of her botnet. For example, a
botmaster can launch a denial-of-service attack at the right
time when the botnet online population reaches its peak level,
or spread a new malware at the optimal release time to increase
its propagation speed as introduced in [4].

The diurnal dynamics of each bot is not hard to obtain since
a bot is in fact a spyware. For example, at the beginning of
each hour, a running bot program appends the current time to
a data file, which is then reported to its botmaster. Based on
such report data, a botmaster can derive the accurate diurnal
dynamics of each bot.

6 BOTNET CONSTRUCTION

Unlike a traditional C&C-based botnet, the proposed hybrid
P2P botnet does not have a pre-fixed communication architec-
ture. Its network connectivity is solely determined by the peer
list in each bot. We will introduce the peer list construction
procedure in this section.

Botnets utilize many different infection mechanisms, such
as vulnerability exploitation, email viruses, traditional file-
based viruses, network share, etc. The botnet construction
procedure introduced in this paper is applicable to all infection
mechanisms.

6.1 Basic construction procedure

A natural way to build peer lists is to construct them as a
botnet propagates. To make sure that a constructed botnet is
connected, the initial set of bots should contain some servent
bots whose IP addresses are in the peer list in every initial
bot. Suppose the size of peer list in each bot is configured to
be M . As a bot program propagates, the peer list in each bot
is constructed according to the following procedure:
• New infection: Bot A passes its peer list to a vulnerable

host B when compromising it. if A is a servent bot, B
adds A into its peer list (by randomly replacing one entry
if its peer list is full). If A knows that B is a servent bot
(A may not be aware of B’s identity, for example, when
B is compromised by an email virus sent from A), A adds
B into its peer list in the same way.

• Reinfection: If reinfection is possible and bot A reinfects
bot B, bot B will then replaceR (R ≤ M−1) randomly-
selected bots in its peer list withR bots from the peer list
provided by A. Again, bot A and B will add each other
into their respective peer lists if the other one is a servent
bot as explained in the above “new infection” procedure.

When reinfection happens frequently, the reinfection pro-
cedure can effectively interconnect different infection paths
together, making a botnet evenly connected. In addition, this
procedure makes it hard for defenders to infer the infection
time order (“traceback”) among bots based on captured peer
lists.

In the reinfection procedure, a bot does not provide its peer
list to those who reinfect it. This is important, because, if not,
defenders couldrecursively infect (and monitor) all servent
bots in a botnet based on a captured bot in their honeypot
in the following way: Defenders use a firewall redirecting the
outgoing infection attempts from captured bot A to reinfect
the servent bots in A’s peer list; then subsequently get the
peer lists from these servent bots and reinfect servent bots in
these peer lists in turn.

In order to study a constructed botnet topology and its ro-
bustness via simulations, we first need to determine simulation
settings. First, Bhagwan et al. [24] studied P2P file sharing
systems and observed that around 50% of computers change
their IP addresses within four to five days. So we expect the
fraction of bots with dynamic addresses is around the similar
range. In addition, some other bots are behind firewalls or
NAT boxes so that they cannot accept Internet connections.
We cannot find a good source specifying this statistics, so in
this paper we assume that 25% of bots are servent bots.

Second, as pointed out in [27], [28], botnets in recent years
have dropped their sizes to an average of 20,000, even though
the potential vulnerable population is much larger. Thus we
assume a botnet has a potential vulnerable population of
500,000, but stops growing after it reaches the size of 20,000.
In addition, we assume that the peer list has a size ofM = 20
and that there are 21 initial servent hosts to start the spread
of the botnet. In this way, the peer list on every bot is always
full.

Because scanning and vulnerability exploit is the dominant
infection mechanism used by current botnets, in this paper
we simulate the construction of a botnet by assuming that the
bot code finds and compromises vulnerable computers in the
similar way as what a scanning worm does. Fig. 3(a) shows
the degree distribution for servent bots (client bots always have
a degreeM , equal to the size of peer list) after the botnet
has accumulated 20,000 members. Because the botnet stops
growing when it reaches the size of 20,000, the reinfection
events rarely happen (only around 600). For this reason,
connections to servent bots are extremely unbalanced: more
than 80% (4000) of servent bots have degrees less than 30,
while each of the 21 initial servent bots have a degree between
14,000 and 17,500 (the last tiny bar at the bottom right corner
of the figure close to X-axis value of 10 represents these 21
servent bots). This is not an ideal botnet. The constructed
hybrid P2P botnet is approximately degraded to a C&C botnet
where the initial set of servent bots behave as C&C servers.
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Fig. 3. Servent bot degree distribution (construct botnet via “new infection” and “reinfection” procedure only)

Vogt et al. [21] constructed a super-botnet only with the
algorithms that are similar to the “new infection” and “re-
infection” procedure presented above. Although authors in
[21] showed that their constructed super-botnet is robust,
they have an implicit assumption that the super-botnet will
have abundant reinfections during its construction period. We
believe this assumption is incorrect in a real world scenario—
botmasters would want their botnets generating as few as
possible reinfections to avoid wasting infection power and
being detected by defenders.

To illustrate this argument, we have simulated another
botnet scenario where the potential vulnerable population is
20,000 instead of 500,000 used in the previous simulation. The
botnet stops propagation after all vulnerable hosts have been
infected. Fig. 3(b) shows the degree distribution for servent
bots in this scenario. When the botnet stops infection process,
overall around 210,000 reinfection events happened. This time,
because there are plenty of reinfections, the constructed botnet
has a well-balanced connectivity—the degree distribution of
all servent bots roughly follows normal distribution, and 80%
of servent bots have degrees between 30 and 150.

These simulation experiments show that if a botnet does
not have a lot of reinfections, or cannot have reinfection (for
example, when the bot program blocks the vulnerable service
on an infected host), the aforementioned basic construction
procedure is not effective. A botmaster must come up with an
additional botnet construction procedure, which is introduced
in the following.

6.2 Advanced construction procedure

One intuitive way to improve the network connectivity would
be letting bots keep exchanging and updating their peer lists
frequently. However, such a design makes it very easy for
defenders to obtain the identities of all servent bots, if one or
several bots are captured by defenders.

As introduced in Section 5, a botmaster could monitor
her botnet easily whenever she wants by issuing a report
command. With the detailed botnet information, a botmaster

could easily update the peer list in each bot to have a strong
and balanced connectivity. The added new procedure is:
• Peer-list updating: After a botnet spreads out for a

while, a botmaster issues a report command to obtain
the information of all currently available servent bots.
These servent bots are calledpeer-list updating servent
bots. Then, the botmaster issues another command, called
updatecommand, enabling all bots to obtain an updated
peer list from a specified sensor host. The sensor host
randomly choosesM servent bots to compose an updated
peer list, then sends it back to each requested bot.

A botmaster could run this procedure once or a few times
during or after botnet propagation stage. After each run of
this procedure, all current bots will have uniform and balanced
connections to peer-list updating servent bots.

From a botmaster’s point of view, when and how often
should this peer-list updating procedure be run? First, this
procedure should be executed once shortly after the release
of a botnet to prevent defenders from removing all initial
servent bots—before the first peer-list updating procedure, the
P2P botnet is as vulnerable as current C&C-based botnets.
Second, as a botnet spreads out, each round of this updating
procedure makes the constructed botnet have a stronger and
more balanced connectivity, but at the same time, it incurs
an increasing risk of exposing the botnet to defenders. It is
therefore up to a botmaster to strike a comfortable balance. In
addition, a botmaster could run this procedure to conveniently
update the topology of a botnet, or reconnect a broken botnet.

Fig. 4 shows the degree distribution for servent bots (client
bots always have a degree ofM ) when a botnet uses all
three construction methods. We assume the peer-list updating
procedure is executed just once when 1,000 (25% of) servent
bots have been infected. This figure shows that in terms
of network topology, the servent bots in the botnet can be
classified into two groups: the first 1000 servent bots used in
peer-list updating have large and balanced connection degrees
ranging from 300 to 500 (they are represented by the several
bars around the X-axis value of 6). They form the robust
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Fig. 4. Servent bot degree distribution (constructed via
infection and peer-list updating)

backbone, connecting the hybrid P2P botnet tightly together.
On the other hand, the remaining 4000 servent bots infected
after the peer-list updating procedure have connection degrees
only around 20 to 30.

6.3 Botnet command initiation

Comparing Fig. 2 with Fig. 1, we can see that the proposed
P2P botnet does not show how its botmaster contacts the
botnet to issue commands. Will the flexible service ports on
servent bots prevent its botmaster from contacting them? We
can answer this question now after introducing the botnet
construction procedure.

As used in the simulation experiment, a botnet propagates
based on a set of initial servent bots. The botmaster sets their
service ports beforehand and thus knows their service ports.
After the botnet is released, the botmaster could inject com-
mands through these initial servent bots. After the botmaster
issues a report command and gets the first report with the
information of service ports of all current servent bots, the
botmaster can inject commands through an arbitrarily chosen
set of servent bots.

7 BOTNET ROBUSTNESS STUDY

Next, we study the robustness property of a constructed hybrid
P2P botnet. Two factors affect the connectivity of a botnet:
(1). Some bots are removed by defenders; and (2). Some bots
are off-line (for example, due to the diurnal phenomenon [4]).
These two factors, even though completely different, have the
same impact on botnet connectivity when the botnet is used
by its botmaster at a specific time. For this reason, we do not
distinguish them in the following study.

7.1 Botnet robustness based on two metric func-
tions

Since servent bots, especially the servent bots used in peer-
list updating procedure, are the backbone connecting a botnet

together, we study botnet connectivity when a certain fraction
of peer-list updating servent bots are removed (that is to say,
either removed by defenders or off-line).

We present two metric functions to measure robustness.
Let C(p) denote theconnected ratioand D(p) denote the
degree ratioafter removing topp fraction of mostly-connected
bots among those peer-list updating servent bots—this is the
most efficient and aggressive defense that could be done when
defenders have the complete knowledge (topology, bot IP
addresses ...) of the botnet.C(p) andD(p) are defined as:

C(p) =
# of bots in the largest connected graph

# of remaining bots
(3)

D(p) =
Average degree of the largest connected graph

Average degree of the original botnet
(4)

These two metric functions have clear physical meanings.
The metricC(p) shows how well a botnet survives a defense
action by keeping the remaining members connected together.
The metricD(p) shows how densely the remaining botnet is
connected together—it exhibits the ability of the remaining
botnet to survive a further removal.
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Fig. 5. Botnet robustness study

Fig. 5 shows the robustness of the proposed P2P botnet. The
botnet is the one shown in Fig. 4 that has a vulnerable pop-
ulation of 500,000 and runs the peer-list updating procedure
only once when 1,000 servent bots are infected. As shown
in this figure, if all 1000 peer-list updating servent bots are
removed, the botnet will be completely broken. This result
shows the importance of the peer-list updating procedure. The
botnet will largely stay connected (C(p) > 95%) if less than
700 of those 1000 peer-list updating servent bots are removed,
although it has a gradually decreasing connectivity as removal
goes on (as exhibited byD(p)). This experiment shows the
strong resistance of the proposed botnet against defense, even
if defenders know the identities of all bots and the complete
botnet topology.

7.2 Peer-list updating procedure

If a botmaster runs the peer-list updating procedure soon
after releasing a botnet, she will shrink the time window



for defenders to shut down the initial servent bots; however,
the constructed botnet will rely upon fewer peer-list updating
servent bots for its connectivity. Therefore, it is necessary to
study how the number of peer-list updating servent bots affects
the robustness of a botnet. Fig. 6 shows the simulation results
in terms ofC(p) by varying the number of servent bots used
in the peer-list updating procedure from 100 to 2000.
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Fig. 6. Botnet robustness when the peer-list updating
procedure runs once with different number of servent bots

This figure shows that as long as a small fraction of peer-
list updating servant bots remain, botnet robustness does not
change much when the number of peer-list updating servent
bots varies. Of course, if the peer-list updating procedure
contains fewer servent bots, it will likewise be easier for
defenders to remove most of them, and hence, shut down the
botnet.

7.3 Robustness mathematical analysis

We provide a simple analytical study of the botnet robustness.
Assume that each peer list containsM servent bots. It is
hard to provide a formula when removing the topp fraction
of mostly-connected nodes. However, we could provide the
formula ofC(p) whenrandomlyremovingp fraction of peer-
list updating servent bots.

As we discussed before, the servent bots not used in peer-
list updating procedure have very few extra links besides the
M links given by their own peer lists. We simplify the analysis
by assuming that each bot in the botnet connects only to peer-
list updating servent bots. Then, when we consider removing
a fraction of peer-list updating servent bots, more links will
be removed compared to the original botnet network. Because
of this bias, the analytical formula presented below slightly
underestimatesC(p) in the case of random removal.

A bot is disconnected from the others when allM servent
bots in its peer list have been removed. Because of the random
removal, each peer-list updating servent bot has the equal
probability p to be removed. Thus, the probability that a bot
is disconnected ispM . Therefore, any remaining bot has the
same probability1−pM to stay connected, i.e., the mean value
of C(p) is (in case of random removal):

C(p) = 1− pM (5)
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Fig. 7. Comparison of the analytical formula (5) and
simulation results

Fig. 7 shows the analytical result from (5), comparing with
the simulation resultC(p) of the random removal, and the sim-
ulation resultC(p) of the removal of topp fraction of mostly-
connected peer-list updating servent bots. The analytical curve
lies between those two simulated robustness metrics. It shows
that the analytical formula indeed has a small underestimation
bias compared with the random removal. Because removing
top p fraction will remove more links from the botnet network
than a random removal, the simulation resultsC(p) from the
top removal scenario are slightly lower than the derived results
from (5). In summary, this figure shows that, even though the
analytical formula (5) is not very accurate, it provides a good
first-hand estimate of the robustness of a botnet.

This figure also shows that the proposed botnet does not
need a large peer list to achieve a strong robustness.

For comparison, we can come up with a simple robustness
model of today’s C&C-based botnets. Suppose a C&C-based
botnet hasR C&C servers. When defenders have the complete
knowledge of such a botnet, they will always remove theseR
bots first. Thus the botnet robustness metricC(p) is:

C(p) =
{

1, < R bots are removed
0, ≥ R bots are removed

(6)

the botnet will be shut down if allR C&C server bots are
removed, which makes it much less robust than the proposed
P2P botnet.

The robustness study presented here is a static study and
analysis, considering the robustness of a botnet at any specific
moment. In this case, we do not need to consider the botnet
infection rate and its spreading speed. If we want to study
the dynamics of a botnet when bots are removed gradually, or
when bots are removed as the botnet spreads, we will need to
consider these two important parameters.



8 DEFENSE AGAINST THE PROPOSED
HYBRID P2P BOTNET

In this section, we discuss how defenders might defend against
such an advanced botnet. In addition, we provide simulation
studies and mathematical analysis of the performance of botnet
monitoring.

8.1 Annihilation

First, the proposed hybrid P2P botnet relies on “servent bots”
in constructing its communication network. If the botnet is
unable to acquire a large number of servent bots, the botnet
will be degraded to a traditional C&C botnet (the relationship
of these two botnets is discussed in Section 3.3), which is
much easier to shut down. For this reason, defenders should
focus their defense effort on computers with static global
IP addresses, preventing them from being compromised, or
removing compromised ones quickly.

Second, as shown in Section 6, before a botmaster issues
an update command for the first time, a botnet is in its
most vulnerable state since it is mainly connected through the
small set of initial servent bots. Therefore, defenders should
develop quick detection and response systems, enabling them
to quickly shut down the initial set of servent bots in a newly
created botnet before its botmaster issues the first update
command.

The third defense method relies on honeypot techniques.
If a botnet cannot detect honeypots, defenders could try to
poisonits communication channel. Defenders let their infected
honeypots join the botnet and claim to have static global IP
addresses (these honeypots are configured to accept connec-
tions from other bots), they will be treated as servent bots. As
a result, they will occupy many positions in peer lists of many
bots, greatly decreasing the number of valid communication
channels in the hybrid P2P botnet. In addition, defenders
would know the detailed botnet communication structure and
its members through those spying honeypots. With the detailed
knowledge of the botnet, defenders could effectively shut
it down by cutting off its remaining fragile communication
channels.

Another controversial defense approach falls in the category
of so-called “good worm” defense [29], [30], or the “cyber-
immune system” [31]. Defenders program a “good-purpose”
code to exploit the same vulnerability used in a botnet. The
code will compromise vulnerable machines in the Internet and
patch them. When a machine is already infected by a botnet,
the good-purpose code obtains the bot’s peer list, cleans the
bot code, and then reversely compromises and cleans bots in
the peer list. If a cleaned host is contacted by any other bots,
the good-purpose code could fire back and clean those bots as
well. However, this active defense is in fact another form of
Internet attack; it would probably cause more harm than good.
Thus it may not be a practical defense in the real world.

As discussed in Section 7, the strong robustness of the
proposed botnet relies heavily on the peer-list updating pro-
cedure. Servent bots used in the peer-list updating procedure
form the backbone of the communication network of a botnet.
Therefore, the best strategy to disrupt the communication

channel of a botnet, if the botnet cannot detect honeypots, is
to poison the peer-list updating procedure with the following
steps. First, once a honeypot is infected by a bot program,
defenders quickly let the bot program infect many other
honeypots (for example, by redirecting the bot’s outgoing
infection traffic to other honeypots). Then, when receiving a
report command from the botmaster, all honeypot bots report
as servent bots so that they will be used in the peer-list
updating procedure. Defenders would achieve better poisoning
defense if they have distributed honeypots and a large number
of IP addresses.

When defenders conduct the above poisoning defense, a
fraction of servent bots can be treated as being removed from
the botnet. The botnet robustness studies presented in Section
7 show the effectiveness of such a defense.

8.2 Botnet monitoring based on honeypot tech-
niques

Honeypot is an effective way to trap and spy on malware
and malicious activities. Because compromised machines in
a botnet need to cooperate and work together, it is particular
effective to use honeypot techniques in botnet spying [6], [32],
if a botnet cannot detect and get rid off honeypot bots. The
third annihilation method introduced above relies on honeypot
techniques. In this section, we will introduce botnet monitoring
and detection approaches based on honeypot techniques.

8.2.1 Botnet monitoring based on spying honeypots
If a botnet cannot effectively detect honeypots, defenders could
let their honeypots join botnets and monitor botnet activities.
Based on honeypot bots, defenders may be able to obtain
the plain text of commands issued by a botmaster. Once the
meaning of the commands is understood, defenders are able
to: (1). Quickly find the sensor machines used by a botmaster
in report commands. If a sensor machine can be captured by
defenders before the collected information on it is erased by its
botmaster, they might be able to obtain detailed information of
the entire botnet; (2). Know the target in an attack command
so that they could implement corresponding countermeasures
quickly right before (or as soon as) the actual attack begins.

Another honeypot-based monitoring opportunity happens
during peer-list updating procedure. First, defenders could
let their honeypot bots claim to be servent bots in peer-list
updating. By doing this, these honeypots will be connected
by many bots in the botnet; and hence, defenders are able to
monitor a large fraction of the botnet. Second, during peer-list
updating, each honeypot bot could get a fresh peer list, which
means the number of bots revealed to each honeypot could be
doubled.

A honeypot could be configured to route all its outgoing
traffic to other honeypots; at the same time, the trapped
malicious code still believes that it has contacted some real
machines. This technique has been used before, such as in
[33], [34]. Based on the similar technique, defenders could
quickly build up a large number of spying honeypot bots by
rerouting the infections sent out from already compromised
honeypots to other vulnerable honeypots. In this way, defend-
ers have many spying bots at hand, enabling them to monitor
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the botnet effectively. Because all of these spying honeypots
run the real bot code, aremote code authentication3 cannot
enable a botnet or its peer-list updating sensor to detect these
spying honeypots.

Upon receiving a botnet report command, a honeypot could
have its special program to send back a large amount of
identities of fake bots. The information should not be sent
from one single IP address. Instead, the honeypot should send
out each fake bot’s ID and host characteristics with different
IP addresses. This approach falls in the category of “Sybil
attack” [36]. It is another way to build up spying honeypot
bots, to decrease the number of actual core servent bots or
the botnet size (if the botmaster stops its botnet growth upon
reaching a predefined size). However, this Sybil defense can be
defeated if a botnet has a mechanism to conduct remote code
authentication, such as using the Oblivious Hashing method
[35].

From the above discussion, we can see that by using remote
code authentication, a botnet could prevent a defense honeypot
from sending information of a large amount of fake bots to its
sensor, but it cannot prevent defenders from generating many
spying honeypot bots by using real infected honeypots.

For the simulated botnet shown in Fig. 4, we conduct
another set of simulations where we assume one of its servent
bots is a defender’s honeypot. We simulate three scenarios:
the honeypot joining the botnet as one of initial servent bots;
joining the botnet as a servent bot halfway before the peer-
list updating procedure (when the botnet accumulates 500
servent bots—the peer-list updating procedure happens when
the botnet accumulates 1000 servent bots); and joining the
botnet right after the peer-list updating procedure. Fig. 8 shows
the simulation results averaged over 100 simulation runs. The
peer-list updating procedure happens around time t=110 (each
bot is assumed to send out 358 scans per unit time to the entire
IPv4 space, similar to what Code Red worm did [37]).

3. Remote code authentication is “the problem of verifying the identity of
a remote program.” [35]

If the honeypot is one of the initial servent bots, Fig. 8(a)
shows that before the peer-list updating procedure, the hon-
eypot could monitor most infected computers since it would
appear in most bots’ peer lists (as explained in Fig. 3). After
the peer-list updating procedure, the honeypot could only
observe a few more bots because it loses its critical role in the
botnet connectivity. Fig. 8(b) shows that if the honeypot joins
in the botnet halfway before the peer-list updating procedure, it
knows on average around 450 bots in the botnet after the botnet
propagation stops; while the honeypot could only know around
30 bots in the botnet if it joins after the peer-list updating
procedure.

It could be very hard for a defender’s honeypot to be one
of initial servent bots, especially botmasters know the risk
and select those initial servent bots very carefully. Therefore,
we only consider the more realistic monitoring case where
honeypots join as servent bots before the botmaster’s peer-list
updating procedure.

8.2.2 Simulation and analysis of botnet monitoring by
multiple honeypots
It would be interesting to know how many honeypots defenders
should set up in order to have an effective monitoring. To
study this, we conduct another set of simulations by varying
the number of honeypots joining a botnet before the peer-list
updating procedure. Fig. 9 shows the number of exposed bots
after the botnet stops growing as it reaches its desired size
of 20,000 (the other simulation settings are the same as the
experiment shown in Fig. 4). The simulation results are derived
by averaging over 100 simulation runs.

We can actually derive an analytical model to estimate the
mean value of exposed bots, denoted byE[Nexposed], when
there aren honeypots joining the botnet before the peer-list
updating procedure. Suppose the peer list size isM , the final
botnet hasI number of bots, and the number of servent bots
used in peer-list updating procedure isK. In our simulations,
M = 20, I = 20, 000 andK = 1, 000.

Before the peer-list updating procedure, because few bots
put any of thosen honeypots in their peer lists (peer lists
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are dominated by initial servent bots), we ignore these small
number of bots in our analysis, and hence, only consider how
many bots have put at least one honeypot in their peer lists
after the peer-list updating procedure.

For a specific bot, its peer list containsM servent bots.
Since the vast majority of servent bots in peer lists belong to
the group ofK bots used in peer-list updating procedure, we
can assume with little error that all servent bots in any peer
list are picked from thoseK bots.

Thus the probability that the peer list in a specific bot
contains none of thosen honeypots is:

(1− n

K
)(1− n

K − 1
)(1− n

K − 2
) · · · (1− n

K −M
) (7)

WhenK À M , which is the case in our simulations, (7) is
approximately equal to:

(1− n

K
)M (8)

which is the probability that this bot will not be exposed to
honeypots.

Since the botnet has overallI bots, the average number of
exposed bots would be:

E[Nexposed] = I[1− (1− n

K
)M ] (9)

Fig. 9 also shows the analytical result derived from the
above model (9), which matches nicely with the simulation
results. Because the analytical model ignores the few bots
exposed before the peer-list updating procedure, the analyt-
ical estimates are slightly smaller than simulation results as
exhibited in this figure.

8.2.3 Simulation and analysis of botnet monitoring via
darknet space
The honeypot-based defense methods introduced above as-
sume that compromised honeypots can join in a botnet and
continue spying on the botnet activities. Sometimes this re-
quirement may not be satisfied, e.g., when a botnet can
quickly detect its honeypot members and remove them from its
network [20]. For this reason, we introduce another honeypot-
based monitoring technique, which only requires that the

botnet could be fooled by a honeypot initially to pass its
complete code, including its peer list, to the honeypot.

“Darknet space”, or called “black hole”, “network tele-
scope”, is a chunk of IP space that have no real computers. It
is well known that darknet is effective in monitoring Internet
malicious traffic [37], [38], [39]. By implementing “honeyd”
[40], or an advanced honeypot-based darknet monitor (such as
Internet Motion Sensor [41]), defenders may be able to trap a
large number of botnet infection attempts. If the bot program
cannot detect the darknet monitor and its honeypots initially,
and passes its peer list in each infection attempt, defenders
could get many copies of peer lists, obtaining the identities and
important information (IP addresses, encryption key, service
port) of many servent bots in a botnet.
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Fig. 10. Darknet monitoring of servent bots used in peer-
list updating procedure

Because the servent bots used in peer-list updating proce-
dure form the backbone of a botnet, we are interested in the
fraction of these servent bots that are exposed via a darknet
space monitoring. Here we present a simple analytical model
for such a monitoring system.

Suppose the darknet begins capturing infection attempts
after the peer-list updating procedure. Each captured infection
attempt provides one peer list containingM servent bots,
and there areK servent bots used in this peer-list updating
procedure. For a specific servent bot used in peer-list updating
procedure, it has probabilityp1 to be exposed by one captured
peer list wherep1 < M/K. Section 7 tells us that most servent
bots in the peer list are the ones that have been used in peer
list updating procedure. Thus we can estimatep1 as:

p1 ≈ M/K (10)

Therefore, if the darknet space capturesx infection attempts,
the probability that a specific servent bot used in peer-list
updating procedure is exposed (through the captured peer lists)
is equal to:

1− (1− M

K
)x (11)

Based on (10) and (11), we can derive the average number
of servent bots used in peer-list updating procedure, denoted
by E[N ′

exposed], that will be exposed byx captured infection



attempts:

E[N ′
exposed] = K[1− (1− M

K
)x] (12)

Fig. 10 shows the simulation results (averaged over 100
simulation runs) and the analytical model results. The ana-
lytical results match well with the simulation results but are
a bit higher, which is due to the fact that (10) has slightly
overestimated the value ofp1.

Fig. 10 shows that if the darknet can capture 200 copies
of peer lists, defenders would be able to know more than
95% of servent bots used in peer-list updating procedure. Thus
this darknet based monitoring is an effective way to track
the proposed botnet. However, this approach still relies on
honeypot techniques. If a bot infection is composed by several
sequential components (which is the case for most current
botnets [42]), and a bot passes its peer list to a newly infected
host only after the remote host is verified not being a honeypot,
the darknet-based monitoring approach would become invalid.

8.3 Botnet detection and monitoring without honey-
pots

The previous subsection shows that we can propose many
effective botnet monitoring approaches based on honeypot
techniques. However, as honeypot-based defense systems grad-
ually become popular and widely deployed, botmasters will
inevitably develop their botnets to detect honeypots. For
this reason, we propose botnet detection and monitoring ap-
proaches that do not rely on honeypots.

8.3.1 Monitoring traffic to botnet sensor

A possible weakness point of the proposed botnet is its
centralized monitoring sensor. If defenders have set up a good
traffic logging system, it is possible that they could capture the
traffic to a botnet sensor. We call such a monitoring system as
a botnet sensor monitor. Even though defenders may not be
able to capture a botnet sensor before its botmaster destroys
the sensor (after completing botmaster’s monitoring task), they
still could use the captured traffic log to figure out the IP
addresses of bots who contacted the sensor in the past. In this
way, defenders could get a relatively complete picture of a
botnet.

8.3.2 Detecting and monitoring servent bots

In the proposed hybrid P2P botnet, servent bots, especially
those used in the peer-list updating procedure, are the back-
bone of a botnet. Fig. 4 shows that each servent bot used in the
peer-list updating will serve 300 to 500 bots. If a non-server
host is infected and serves as one of these servent bots, the host
is relatively easy to be spotted by defenders due to the huge
increase of traffic in and out of this host. When the number of
servent bots compared to the total botnet population decreases,
each of these servent bots must serve a larger number of bots,
and hence, is easier to be detected by defenders.

A simple statistical analysis can show this relationship.
Denote the number of client bots served by a servent bot
as D. For the proposed botnet,D is a random variable.

Suppose the peer-list updating procedure is conducted after
a botnet finishes its propagation, then all servent bots are
used in the updating procedure; and hence, they have evenly
distributed connection degrees. Following the same notations
as in previous analysis,K is the number of servent bots in a
botnet,I is the botnet size, andM is the peer list size. There
are I − K client bots in the botnet, each of which connects
to M servent bots. Thus there are(I − K) · M connection
links initiated from client bots to servent bots. We can derive
the mean value of the number of client bots served by each
servent bot as:

E[D] =
(I −K) ·M

K
=

I ·M
K

−M (13)

It is not hard to derive the distribution ofD. In the peer-list
updating procedure, each client bot is given a randomly chosen
peer list by the updating sensor. For any specific servent bot,
each client bot has an equal and small probabilityM/K to
connect to the servent bot. Therefore, the random variableD
follows “Binormial distribution” [43] with parameters(I−K)
andM/K, i.e.,

D ∼ B(I −K,M/K) (14)

9 DISCUSSIONS

From the defense discussion in previous section, we see
that honeypot plays a critical role in most defense methods
against the proposed hybrid P2P botnet. Botmasters might de-
sign countermeasures against honeypot defense systems. Such
countermeasures might include detecting honeypots based
on software or hardware fingerprinting [40], [44], [45], or
exploiting the legal and ethical constraints held by honeypot
owners [20]. Most of current botnets do not attempt to avoid
honeypots—perhaps it is simply because attackers have not
felt the threat from honeypot defense yet. As honeypot-based
defense becomes popular and being widely deployed, we
believe botmasters will eventually add honeypot detection
mechanisms in their botnets. The war between honeypot-based
defense and honeypot-aware botnet attack will come soon and
intensify in the near future.

For botnet defense, current research shows that it is not
very hard to monitor Internet botnets [4], [15], [32]. The hard
problem is: how to defend against attacks sent from botnets,
since it is normally very hard to shut down a botnet’s control?
Because of legal and ethical reason, we as security defenders
cannot actively attack or compromise a remote bot machine
or a botnet C&C server, even if we are sure a remote machine
is installed with a bot program. For example, the well-known
“good worm” approach is not practical in the real world. The
current practice of collaborating with the ISPs containing bot-
infected machines is slow and resource-consuming. There are
still significant challenges in botnet defense research in this
aspect.

From the robustness study in Section 7 and the defense
study in Section 8, we can see that the proposed hybrid P2P
botnet makes a future botnet harder to be monitored, but most
importantly, makes a botnet MUCH harder to shut down. By
replacing a few isolated C&C servers with a significantly



larger amount of interleaved servent bots, the proposed botnet
greatly increases its survivability.

The proposed hybrid P2P botnet utilizes centralized sensor
hosts. This does not make it as weak as a centralized version
of botnets. First, sensor hosts are not responsible for botnet
command and control communication—their roles are data
collection and peer list distribution. If a sensor host is detected
and monitored, the botnet could possibly be fully exposed to
defenders. However, the botnet will still have its strong surviv-
ability as discussed in Section 7. In other words, the command
and control channel of the proposed botnet is mostly peer-
to-peer structured and not affected by sensor hosts. Second,
sensor hosts are disposable. When a botmaster suspects that
her senor host is being monitored, she can simply discard it
and pick another compromised machine as the sensor host.

The proposed hybrid P2P botnet represents only a specific
P2P botnet design. In reality, botmasters may come up with
some other types of P2P botnet designs. However, we believe
this research is still meaningful to security community. The
proposed design is practical and can be implemented by
botmasters with little engineering complexities. Botmasters
will come with a similar design sooner or later, and we must
be well prepared for such an attack, or a similar attack, before
it happens.

10 CONCLUSION

To be well prepared for future botnet attacks, we should study
advanced botnet attack techniques that could be developed by
botmasters in the near future. In this paper, we present the
design of an advanced hybrid peer-to-peer botnet. Compared
with current botnets, the proposed one is harder to be moni-
tored, and much harder to be shut down. It provides robust net-
work connectivity, individualized encryption and control traffic
dispersion, limited botnet exposure by each captured bot, and
easy monitoring and recovery by its botmaster. To defend
against such an advanced botnet, we point out that honeypots
may play an important role. We should, therefore, invest more
research into determining how to deploy honeypots efficiently
and avoid their exposure to botnets and botmasters.
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