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ABSTRACT

The great advance of communication technology comes with a rapid increase of disinformation in

many kinds and shapes; manipulated images are one of the primary examples of disinformation

that can affect many users. Such activity can severely impact public behavior, attitude, and be-

lief or sway the viewers’ perception in any malicious or benign direction. Additionally, adversarial

attacks targeting deep learning models pose a severe risk to computer vision applications. This dis-

sertation explores ways of detecting and resisting manipulated or adversarial attack images. The

first contribution evaluates perceptual hashing (pHash) algorithms for detecting image manipula-

tion on social media platforms like Facebook and Twitter. The study demonstrates the differences

in image processing between the two platforms and proposes a new approach to find the optimal

detection threshold for each algorithm. The next contribution develops a new pHash authentica-

tion to detect fake imagery on social media networks, using a self-supervised learning framework

and contrastive loss. In addition, a fake image sample generator is developed to cover three ma-

jor image manipulating operations (copy-move, splicing, removal). The proposed authentication

technique outperforms the state-of-the-art pHash methods. The third contribution addresses the

challenges of adversarial attacks to deep learning models. A new adversarial-aware deep learning

system is proposed using a classical machine learning model as the secondary verification system

to complement the primary deep learning model in image classification. The proposed approach

outperforms current state-of-the-art adversarial defense systems. Finally, the fourth contribution

fuses big data from Extra-Military resources to support military decision-making. The study pro-

poses a workflow, reviews data availability, security, privacy, and integrity challenges, and suggests

solutions. A demonstration of the proposed image authentication is introduced to prevent wrong

decisions and increase integrity. Overall, the dissertation provides practical solutions for detect-

ing manipulated and adversarial attack images and integrates our proposed solutions in supporting

military decision-making workflow.
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CHAPTER 1: INTRODUCTION

1.1 Background

Social media platforms—Facebook, Twitter, etc.—speed up the spread of information throughout

the well-connected cyber world. However, at the same time, these platforms help to forge mis-

information that can quickly reach a massive number of people. Propagation of fake information

and news can lead to deception and emotional distress and influence public opinions and actions.

An investigation into the truth of news on Twitter from 2006 to 2017 showed that falsehood dif-

fuses faster and more profoundly than truth [103]. The risk of misinformation increases during

significant events. A study on fake images on Twitter during Hurricane Sandy (2012) [34] showed

that around 90 percent of retweets were from tweets of fake images. These fake images not only

mislead users, but also can contain malicious URLs.

In addition, a study [106] shows that fake images on social networks increase user engagement,

regardless of the depth of manipulation. Fig. 1.1 shows a real-world example of fake image spread-

ing over the media. The altered photograph, investigated by Snopes.com [28], shows a billboard

to hire ‘crypto bros’ advertised by McDonald’s. This faked image spread along with the crush of

some cryptocurrencies, leaving a cruel emotion to those investors who lost their money or affected

the crypto market by losing more revenue. Another manipulated image spread over the Internet

shows George W. Bush at a book reading at school in Houston in 2002 holding the book upside

down with a false caption [63]. The impact of manipulated images is countless on different time-

line events where the damage differs based on the targets.

Most social media platform users are unaware of the risk of re-sharing information from unknown

sources. Therefore, it is impossible to prevent the spread of disinformation without an automation

technique, and a solution that reduces misinformation on the Internet is urgently needed. Recently,

many platforms activated fake detection features to reduce or eliminate false information. For

example, during the 2020 presidential election in the United States and COVID-19, social plat-
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Figure 1.1: Originals images (a and c) and their altered copies (b and d) that spread over the
network.

Source: McDonald’s billboard images: https://www.snopes.com/fact-check/
crypto-mcdonalds-billboard/ President Bush images: https://www.snopes.
com/fact-check/bush-upside-book/

forms [62, 83] labeled misinformation posts. However, there are still many technical challenges to

research and conquer to win the war against disinformation spreading, especially for images.

An example of the challenges is that social media platforms automatically alter images upon shar-

ing for many reasons, i.e., images are re-scaled and compressed to save room on the servers, and

each platform shares its preferences of image sizes [68]. This means that when sharing an im-

age, the social network will resize it to fit its preferred dimension. For instance, an image of

3000x2000 pixels will be downscaled by Facebook to 1875x1250, Instagram to 1080x720, and

Twitter to 680x453. This scaling diversity is one of the image attacks distinguished systems suffer

2
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from while authenticating the images.

Another challenge associated with image authentication systems, especially in the deep learning

approach of machine learning, is the risk of adversarial attacks. Adversarial attacks involve image

manipulation designed to deceive computer vision tasks, making the image appear correct to hu-

man perception [33]. These attacks can lead to harmful failures in sensitive computer vision-based

applications, such as image authentication or autonomous vehicles misinterpreting a STOP sign as

a SPEED LIMIT 65 sign. The demand for AI applications is increasing, which may increase the

risk of these attacks if the technology is not secured before it is marketed. Therefore, researchers

have been developing algorithms and systems to prevent adversarial attacks. Intelligent defense

and security systems are essential to reduce or prevent the risks of adversarial attacks.

Deep neural network (DNN) theory, also called deep learning, accelerates the development of

computer vision applications to advance the work presented in [2,4,50,79,102]. Unlike other ML

approaches, DNNs can quickly learn complex patterns and representations from large and high-

dimensional datasets. Therefore, according to a Stone study [92], DNN technology is expected

to be used in an expanding range of real-world applications within the next decade. Examples

of these applications include autonomous vehicles, security surveillance cameras, and health care.

However, this technology faces serious security challenges due to two factors. One is the high

dimensionality and complexity of the input data to DNN models, which means that it is difficult to

catch all potential attacks, as adversarial attackers can insert small but sufficient perturbations to

mislead the system. Second is the non-linearity in the decision boundaries of DNNs, resulting in

unexpected and complex behaviors that are difficult to predict.

Nevertheless, the reliability of information gain more attraction in designing automated decision

support making. The advent of big data has revolutionized how organizations handle, store, and

analyze large volumes of data. It is, coupled with the development of more efficient hardware, has

given way to the era of AI. Despite the limitations, these concepts have practical application in the

military domain. For example, the United States military uses Joint All-Domain Command and
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Control (JADC2) to integrate multiple data sources and sensors from various domains such as land,

sea, air, space, and cyberspace to facilitate faster and more informed decision making. Another ex-

ample is the Common Operational Picture (COP) concept proposed by the U.S. Department of

Defense. This concept aims to provide shared situational awareness across all levels of an orga-

nization, from tactical to strategic, to enable more informed decision making based on a common

understanding of the real-time operational environment. Additionally, the NATO community has

discussed and tested the Data Lake concept through the NATO Core Data Framework (NCDF) as

a solution for sharing reliable information at the right time/form among coalition partners across

domains.

AI can process large amounts of data quickly and identify difficult or impossible patterns for hu-

mans to detect. As a result, the military can use AI to improve its experience in the field, optimize

operations, automate tasks, make data-driven decisions, correlate data from different sources, and

support countermeasures in case of threats and disasters. Command and Control (C2) can collect

and combine information from different data sources to describe and understand the urban scenario

and make accurate and context-aware decisions using the concept of data fusion. Due to the ongo-

ing growth of big data and smart cities, many modern cities have a wide distribution of sensors that

can collect beneficial data for urban military operations. Furthermore, people share information

via social media platforms, such as Twitter, Facebook, Instagram, and YouTube, providing data in

the form of text, images, or videos. This information can also improve the operational picture but

poses challenges, such as data integrity, as there is no guarantee that the information provided is

valid or not intentionally manipulated.

1.2 Motivation

Many researchers have studied image similarity measuring systems over the past years and intro-

duced them for different purposes, such as image near-duplicates [48], search engines [109], image

retrieval [86], image classifications [13, 27, 40, 80], and image authentication [55, 77, 99, 105, 113,
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116, 117]. These systems are based on Perceptual Hashing (pHash) for image hash generation.

pHash is tolerant to slight changes that do not affect the image content, such as compression, scal-

ing, blurring, and rotation, where it gives a string representation as the traditional cryptographic

hashing method provides for authentication. It generates a fingerprint of an image by analyzing

and extracting features of the image that can be invariant under various attacks. These features,

then, are taken to finalize the hash value. This value is compared with the tested image hash value

to decide whether the tested image is similar, tampered with, or different. In contrast, traditional

cryptography is sensitive to single-bit changes that is unreliable for image domain authentication

on the Internet.

The development of previous works of image authentication relied on different benchmarks, such

as CASIA [118], USC-SIPI [101], and PS-Battles [39]. The majority of the datasets used in these

previous papers were manually crafted or applied significant alterations in the images, making the

developed models unverifiable by real-world applications nor effective for small content-alteration.

Therefore, the need of reevaluating these approaches on real-world applications is important.

In order to contribute to developing a robust authentication system, we conducted a review of the

literature on pHash. We found that few works have been introduced for image authentication using

Machine Learning (ML), such as [77], which shows that Convolutional Neural Network (CNN) is

effective in developing a pHash system with high accuracy. However, at the evaluation step in [77],

they used the same JPEG compression with quality factors of {1, 5, 10, 30, 50, 70, 90, 95} at its

training stage as content-preserving image operation. In real-world applications, the quality factor

could be any number between 1:100, which might create an evaluation bias in their proposal.

In addition, the success of related work on image classification [37, 89] inspired us to investigate

different CNN approaches for image authentication. Regardless of different CNN architecture

designs, such as layer length, channels, and kernel size, the output of each CNN model provides

the best image feature representation for classification. We found that these vector representations

can be projected and exploited for image hashing with a smaller hash length to keep more space in
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the memory. In short, the projection vectors of the last layer were used and converted into buckets

using random projection of Locality Sensitive Hashing (LSH) [31].

Developing a novel authentication system using ML led to fights against the challenges of adver-

sarial attacks. The new idea was inspired by analyzing communication war in the real world, as

described below. Suppose a war scenario or simulation in which the Blue team uses satellite com-

munication to operate its military. If the other side, the Red team, is somehow capable of modifying

the Blue team’s satellite communication without being detected, then the Blue team is misled and

could lose the war eventually. In defending against such an attack in disruption of its communica-

tion, the Blue team could add a secondary radiotelegraphy system to complement its main satellite

communication because radiotelegraphy, relying on a completely different mechanism, cannot be

disrupted by the Red team’s satellite attack methodology. Although radiotelegraphy using Morse

code has a very limited bandwidth, it can transmit summary data that match the complete data

transmitted via satellite communication. In this system, if the receiver discovers that the informa-

tion between radiotelegraphy and satellite communication does not match, it can tell that a Red

team satellite-based attack is ongoing and will not be fooled by the information.

Our proposed defense system against adversarial attacks uses the same philosophy as the war

scenario described above. The deep learning image classification system is an analogy to satellite

communication and can be compromised by various adversarial attacks. However, we propose

the use of a traditional ML algorithm, such as RF, in analogy to radiotelegraphy as the secondary

verification system. Although it is less accurate than a normal deep-learning image classification

system, it is immune to most known adversarial attacks because it does not rely on a neural network

structure. In this way, we can detect adversarial attacks easily when there is a mismatch between

the outputs of the primary deep learning module and the secondary RF module.

Adapting our developed and secured authentication system to a real-world military application is

an intriguing case. It requires the use of big data to support military decisions and addressing the

challenges that come with it. This text aims to cover aspects often overlooked in the field and pre-
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sented in a way that is easy to comprehend. We investigate the challenges, address techniques, and

introduce a paradigm map to support quick and easy decision-making automation with a minimum

number of mistakes.

1.3 Contributions

Our research contributions are mainly based on four phases. First, we create a new benchmark

based on real-world applications. To do this, we collect images from various social media plat-

forms [5]. Our research has shown weaknesses in image authentication algorithms, which presents

an opportunity for further development. We evaluated six algorithms [78, 96, 97, 100, 104, 114] by

implementing them and passing a set of images through these systems. We also introduced a met-

ric algorithm to measure the robustness of their authentication. The testbed used in this evaluation

consists of real images of the platforms that we generated. Our assessment will contribute to the

development of an effective image authentication platform for images from social media in future

work.

Next, inspired by [55,77] that uses ML for image authentication, we integrated a well-known CNN

network [84] to enhance image hashing generation. We propose a model to detect manipulations

on user-generated content and evaluate it using Facebook and Twitter images collected at the eval-

uation phase as a real-world application. The new system’s results significantly improve compared

to the existing approaches.

Third, based on a large-scale experiment and investigation, we find a ground similarity between

various adversarial attacks on different deep learning models, which motivated us to develop this

research work, as illustrated in Section 5.1. The main contribution of this work is the integration

of the primary deep learning model with an additional traditional ML model that is not based on

the neural network architecture (presented in Section 5.2). Additionally, a new defense metric

for selecting the highest Top k predicted class probabilities of an input sample is introduced in

Section 5.2. The misclassification issue of DNN models is also addressed in the same section, and
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an overall DNN model with improved accuracy is discussed.

Our method surpasses all other state-of-the-art defense methods in detecting multiple adversarial

attacks using the CIFAR-100 dataset [49], shown in Section 5.3. A thorough discussion of our

research is presented in Section 5.4, covering the solutions, the challenges, and the limitations

encountered.

Finally, In term of demonstrating our secure approach of image authentication, we start defining

the concept of Military Data Space (MDS), which encompasses Intra-Military Data (IMD) and

Extra-Military Data (EMD). Then, we showcase the benefits of big data through use cases that

focus on data fusion and image integrity mechanisms to support the military. Finally, we discuss

the challenges and opportunities of using big data, emphasizing three main aspects: data fusion,

security/privacy and integrity, and AI. These aspects must be taken into account to support strategic

military decisions.

1.4 Organization

To this end, this dissertation makes four different contributions in four different thrusts:

Thrust 1. Evaluating Perceptual Hashing Algorithms in Detecting Image Manipulation Over So-

cial Media Platforms: In the first thrust, a real-world dataset is collected from Facebook

and Twitter social media platforms and proposed under the name named (SMPI1) in order to

make a new evaluation of the state-of-the-art existing image authentication methods that use

pHash concept. We demonstrate the results on different metrics, including a new method for

selecting the best optimal detection threshold based on the SMPI dataset.

Thrust 2. Image Authentication Using Self-Supervised Learning To Detect Manipulation Over

Social Network Platforms: In this thrust, we introduce a novel image authentication system

using A self-supervised framework machine learning. First, an alteration technique is de-

1https://github.com/mohammedkw11/SMPI
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signed to better detect copy-move, splicing, and removal operations for the pre-processing

phase. Then, we employ a CNN model to construct and train the dataset to obtain the im-

ages’ characteristics. After that, a Locality Sensitive Hashing (LSH) is integrated with a deep

CNN at the test phase to construct the final hash. Our method is compared with state-of-the-

art methods using SMPI dataset [5], IMD2020 [67], and COVERAGE [110] and showed the

best performance among them all for detecting manipulated images.

Thrust 3. Adversarial Attacks Defense Using Secondary System Detection: In this thrust, we fill

the security threats with the CNN model that we use in the proposed image authentication

system. We study the adversarial attack to provide a defense technique. We first analyze

the differences between the attacks, analyze different CNN models on different attacks, and

then investigate the solution based on the findings inspired by a classical technique used

during the beginning of satellite communications. A new defense metric is introduced to

select the highest class probabilities predicted by Top k of an input sample, depending on

the application security preferences.

Thrust 4. The Use of Perceptual Hashing Algorithms in Real-World Applications: Military Case

Scenario: In thrust, we dive into the use of big data to facilitate decision-making in military

space operations. We propose a comprehensive approach that covers every aspect of the

data life-cycle, starting from data collection, transformation, validation, and security up to

its finalization for immediate use in decision-making. Our approach is integrated with the

proposed image authentication model to reduce misinformation that could potentially influ-

ence the decision-making framework. Our main objective is to highlight the importance of

our authentication ideas by demonstrating their effectiveness in a real-world example, using

the military domain as a case study.

The dissertation is structured as follows: We start by reviewing the relevant literature and high-

lighting notable related works in chapter 2. In chapter 3, we present an extensive analysis of six

pHash algorithms for image authentication. Chapter 4 covers our proposed pHash model, while
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in Chapter 5, we introduce our idea for detecting adversarial attacks. Lastly, we demonstrate the

real-world application of our image authentication approach in chapter 6.
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CHAPTER 2: LITERATURE REVIEW

In this chapter, we discuss the related literature, starting with work related to image authentication

approaches. Followed by introducing a new model of authentication based on self-supervised

technique. Then, we propose our adversarial defense approach. Finally, we show our scenario of

authentication case for military applications.

2.1 Evaluating Image authentication Methods

Many academic researchers [97], [114] work on image authentication using a perceptual hashing

approach and reached a high value of robustness in preventing one or more image attacks. In

the survey paper [26], Du et al. classified the images attacks into two branches. First, content-

preserving manipulations that do not change an image’s content, such as compression, brightness

reduction, and scaling. Second, content-changing manipulations that change an image’s content

i.e., removing image objects (persons, objects, etc.), moving image elements, changing their posi-

tions, adding new objects, etc.

Under content-preserving manipulations path, this paper [26] classified the techniques of image

hashing based on five approaches proposed in the publications: (1) Invariant feature transform

methods that extract image features from transform domains and then make use of the coefficients

to create the hash; (2) Local feature points such as corners, edges, salient regions, etc.; (3) Dimen-

sion reduction method where robust features are extracted from embedding the low-level features

of the high dimensional space into a lower dimension, (4) Statistical feature-based approach where

calculation of image statistics, such as histogram and mean, are the feature from the image; and

(5) Learning-based method that applies machine learning for image feature extracting and authen-

tication.

Based on reviewing perceptual hash algorithms and their papers, any perceptual hash algorithm

can be represented by three stages in image authentication as illustrated in Fig. 2.1, which will be
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Figure 2.1: Stages of perceptual hash image authentication.

explained in detail below.

Preparing the images: (pre-processing) stage. All six approaches pass images through different

enhancement lines to normalize the images in the best representation and for robust features. The

common enhancement is resizing the image into fixed and small sizes to speed up the operation.

Usually, it is resized into square M ×M , i.e., 128 × 128 or 224 × 224 pixels using the bilinear

interpolation method. Another enhancement is converting the color space domain from one form

to another, such as from RGB to CIELAB (L ∗ a ∗ b∗) [100], and L∗ is only used for feature

extraction because it matches the human perception of lightness and is more stable. The grey-scale

conversion is desirable for most developments due to its simplicity when dealing with 1D instead

of 3D channels in RGB. Filters sometimes are applied, such as Gaussian and bilateral filters [114]

to remove regular noises.

Feature extraction and encoding. Choosing among the best state-of-art perceptual hash algo-

rithm modules [78, 96, 97, 100, 104, 114], we focus on reviewing and re-implementing these six

modules that cover state-of-art algorithms DCT, Wavelet, RPIVD, QFT, SimCLR. Each algorithm

is adaptive in an image hashing scheme design to generate the hash value that will be used at the

next stage. Their authors select the size of the hash in each algorithm as optimal representation,

and respectfully short definitions are provided below.

1) DCT: Discrete Cosine Transform (DCT) [97] is one of the popular algorithms that was well

implemented for image compression and hashing in the last two decades and used by [75, 76, 98].

This method is invariant feature transform-based, i.e., it can represent the image in uniqueness with
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small data. Basically, DCT operates on a function at a finite number of discrete data points. These

data were evaluated in terms of the sum of cosine functions with different frequencies to convert

it from the spatial domain to the frequency domain. The hash size is eight vectors of byte-sized

integers or 64 bits.

2) Wavelet: the introduction of the DCT led to the development of wavelet coding DWT [78],

which also takes a large volume of research. The wavelet is also a frequency-based technique

but uses temporal details to overcome the drawbacks of DCT. The hash size is eight vectors of

byte-sized integers or 64 bits.

3) Visual Model-Based: In this paper [104], Wang proposed a perceptual image hash method for

content authentication. They combine a statistical feature-based approach with visual perception

using Watson’s visual model theory. Watson’s visual model is used in order to preserve sensi-

tive features that are important for humans perceiving image content processing. On the other

hand, key-point-based features and image-block-based features are used to generate the interme-

diate hash by extracting key-point-based features using the input image to SIFT algorithm. To

achieve this, the proposed method comprises two main stages: 1) Hash Generation Algorithm

and 2) Tampering Detection and Tampering Localization. The module is against different image

attacks, including geometric attacks. The hash size is 50 vectors of floating or 1600 bits.

4) RPIVD: Tang [100] designed a robust image hashing using Ring Partition and Invariant Vector

Distance (RPIVD) that is considered a statistical feature-based approach. Their module is pro-

cessed in three stages: (1) preparing the image by bilinear interpolation resizing into M ×M , low

pass filtering, and converting the color space to CIE L ∗ a ∗ b∗ in order to take L∗, (2) partition-

ing the image into equal rings which they choose 512 rings, (3) applying four statistical measures

(mean, variance, skewness, and kurtosis) to each ring. This paper provides robust image hashing

against several attacks but most strongly against rotation. The hash size selected for this evaluation

is the optimal representation from [16], which is 40 vectors with 11 bits representation of each

vector or 440 bits in total.
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5) QFT: Yan in the work [114] introduced another perceptual hashing approach that used Quater-

nion Fourier Transform (QFT) to construct feature hash, and QFMT to construct geometric hash.

QFT is considered an invariant feature transform-based method that extracts image features from

color and structural information to form a quaternion image to produce the hash. QFT can defend

against common image attacks and performs well at detecting and locating various types of attacks.

The hash size is 40 vectors of floating or 1280 bits.

6) SimCLR: Chen et al. [96] proposed a self-supervised learning framework using contrastive learn-

ing to learn better visual representation. The model consists of three main components. The model

uses data augmentation as a critical part for the model to map similar images to proper embedding

representation. To improve the learned representation, they introduced fully connected non-linear

layers between the representation and contrastive loss. Moreover, large batches and more train-

ing steps are essential parts. Moreover, SimCLR uses contrastive loss in which the model tries

to maximize positive examples, which are two images augmented from the same image and share

similar contents. At the same time, contrastive loss minimizes negative examples, which are the

reset of the images in the batch to prevent the model from mapping all the images to a constant

value. Therefore, SimCLR naturally fits as a prominent model in image authentication tasks.

Similarity metric. After the generation of perceptual hashing, images can be authenticated based

on the different values. There are multiple metrics for perceptual hashing comparison; however,

most of the approaches as mentioned earlier follow one of two metrics for measuring: Hamming

distance [78, 97] and Euclidean distance [100, 104, 114]. We integrated a Locality Sensitivity

Hashing (LSH) [69] and Hamming distance in [96] to work on Neural Hash framework as in [45].

Further details will be provided in the IV section. The threshold T is set by each algorithm to

distinguish whether the distance value is less or equal to the threshold value in order to decide

whether the images are similar, tampered with, or different. Smaller T is better and more secure,

especially for image authentication and collision probability reduction. Therefore, the best system

algorithms can authenticate the received image with a small T and give the tampered images a high
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distance value.

This work.. We explore a hypothesis of whether perceptual hashing algorithms can effectively

authenticate images on popular social media platforms, despite the normal image processing con-

ducted by these social media platforms on user-uploaded images. We create a dataset and evaluate

state-of-art perceptual hashing algorithms over two popular social media platforms: Facebook and

Twitter. We choose these two platforms for study because other platforms put tight restrictions

on automatic image uploading/downloading, which prevents us from conducting large-scale image

testing and experiments. For example, Instagram needs to upload and download the individual

image manually, while Facebook, on the other hand, allows us to share a group of 100 images at

one time. Twitter API allows developers to post 100 images per hour automatically.

2.2 Proposed Image Authentication Approach Using Machine Learning

Many image authentication works are shallow approaches that use traditional engineered algo-

rithms. However, in recent years awareness of machine learning approaches increased with the

success of deep learning models such as AlexNet in ImageNet classification challenge and promis-

ing results in other computer vision problems. Therefore, it is reasonable to say that most image

authentication algorithms are built on top of shallow or machine learning paradigms. The following

is an overview of most recognized works on images pHash under these two approaches.

Shallow approach. The followers of this model such as Discrete Cosine Transform (DCT) [25]

provides an excellent work in representing images from different scales with small digits (e.g.,

64 bits) to express the number of discrete data points. These data were evaluated in terms of

the sum of cosine functions with different frequencies to convert it from the spatial domain to

the frequency domain. Ring Partition and Invariant Vector Distance (RPIVD) is another shallow

model introduced by [99]. They divided the image into rings and applied four statistical measures

(mean, variance, skewness, and kurtosis) to each ring to extract the features. Both models are

effective on image authentication based on CASIA [118], USC-SIPI [101] datasets but limited at
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SMPI dataset [5].

The authors in [105] provide a perceptual image hashing method by combining a statistical feature-

based approach with visual perception using Watson’s visual model theory. The statistical feature-

based generated by extracting key-point-based features using the input image to scale-invariant

feature transform (SIFT) algorithm. The visual perception is received using Watson’s visual model

to preserve sensitive features that are important for humans perceiving image content processing.

The accuracy of this model overcame the [25, 99] on the same benchmark ground.

Machine Learning Approach. Learned algorithms on the other side are trending these years on

image classification, retrieval, and authentication since this approach extracts better feature vectors.

Reference [55] proposes a data-driven image fingerprinting algorithm based on a neural network

approach with two training stages: pre-trained and fine-tuning. The first stage uses a Denoising

Autoencoder (DAE) to restore a distorted image to its original state. There are 72 distorted images

for each original image, including nine different operations, such as JPEG compression and Gaus-

sian noise. Each function has different strength parameters that generated the 72 copies. The main

goal of this network is to reduce the discrepancies between original and distorted images. The fine-

tuning approach further reduces the overlap between the probability density curves of fingerprint

distances calculated from perceptually identical and irrelevant image pairings. This method is akin

to restricting fingerprints into a region similar to the original image for distorted images.

The authors of [77] introduce an image pHash scheme based on the CNN framework for feature

extraction and a fully connected layer at the end of the network for final image hash sequence

constructing. The CNN model contains five convolutional and five pooling layers, generating 256

feature vectors, and is reduced by the fully connected layer into 50 vectors. The proposed work

added four constraints. The first two constraints are added at the feature map after processing

convolutional layers, the ReLU layer, and max pooling by calculating the Mean Squared Error

(MSE) of identical images with perceptually identical (distorted copies) and identical images with

distinct pairs. The other two constraints went before final hash construction. All four constraints
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were added onto the total cost function with weight allocation. The 3,000 samples of the dataset

for training are collected from COCO [57], where each image generates 64 distorted copies, and

the distinct copies are paired with random images for a total of 405,000 images.

This Work. we introduced a robust authentication system targeting image authentication on social

media networks. We built an alteration generator that simulates the three real-world image alter-

ation attacks (copy-move, splicing, and removal). Also, a new data augmentation technique was

included during the training process to generate distorted copies of the original.

2.3 Adversarial Attacks and Defenses

we briefly review state-of-the-art existing works on adversarial attacks and defenses. We also study

the competitive detector methods that we compare our work with. These models are DkNN [70],

LID [59], Mahalanibis [54], and NNIF [19].

2.3.1 Adversarial Attacks

In the past few years, many adversarial attacks have been proposed; the most common attack pro-

posed by [33] is called the fast gradient sign method (FGSM). This attack adds a small perturbation

to the target image in the direction of the gradient of the loss function with respect to the human-

perception content in order to misclassify the trained targeted model. It is a white-box attack where

the attacker fully knows the deep learning model, including its architecture, parameters, and train-

ing data. Later, a more efficient attack known as Deepfool [64] finds the smallest perturbation

necessary to cause a DNN to misclassify an input image, which increases the attack success rate

compared to FGSM.

The potential of deceiving DNN models increased significantly over the past few years of adver-

sarial attack development. Today, imperceptible perturbations can be added to input images with

the flexibility of adjusting the attack goal to either a white box or a black box, such as the one pro-
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posed in [15] and named after its founders, Carlini and Wagner (CW) attack. This attack uses an

optimization algorithm in order to find the smallest perturbation that minimizes a loss function that

balances the size of the perturbation with the misclassification success rate. Moreover, the attack

has the ability to incorporate constraints on the perturbation, such as by limiting the magnitude of

the perturbation or restricting the pixel values of the perturbed image. The power of this attack

raises the challenge of defense solutions against multiple attacks at once.

The white-box approach becomes more desirable for adversaries, as it was introduced by [60] and

is known as the complete white-box adversary. Researchers found that the projected gradient de-

scent (PGD) can lift any constraints on the amount of time and effort the attacker can put into

finding the best attack. The iterative feature of the PGD attack makes it more effective than other

attacks, such as FGSM, in finding imperceptible adversarial examples. The variety and effective-

ness of adversarial attacks open a wide range of areas for researchers to develop different attacks,

such as in [16, 71], and to find defense mechanisms on the other side.

2.3.2 Adversarial Defenses

The authors of [1] categorized the adversarial defense mechanisms in computer vision into three

approaches. The first approach targets the deep learning model by making modifications to the

model itself in order to make it more resistant to adversarial attacks. This approach was initially

employed by researchers Szegedy and Goodfellow [33, 95] in 2013 and 2014, respectively. Years

later, Madry [60] delved deeper into this approach by studying the robustness of neural networks

against adversarial attacks from a theoretical standpoint, using robust optimization techniques. De-

spite its limitations, as discussed in [60], adversarial training has garnered considerable attention

from the research community. In [107], a new defense algorithm called Misclassification Aware

adveRsarial Training (MART) was proposed. It distinguishes between misclassified and correctly

classified examples during the training process. In another study [85], researchers suggested using

dropout scheduling to enhance the efficiency of adversarial training when employing single-step
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methods. The authors of [66] proposed a self-supervised adversarial training method, while the

authors of [18] analyzed adversarial training for self-supervision by incorporating it into pretrain-

ing.

The second approach is a defense that targets the inputs to the model by cleaning inputs to make

them benign for the target model. Ref. [46] proposed ComDefend, which consists of a compres-

sion convolutional neural network (ComCNN) and a reconstruction convolutional neural network

(RecCNN). The ComCNN model compresses the input image to maintain the original image struc-

ture information and purify any added perturbation. The RecCNN model, on the other hand, re-

constructs the output of ComCNN to a high quality. This approach achieved high accuracy in

defending against multiple adversarial attacks. GAN architecture is another technique of input

transformation introduced by [87]. Their method, Defense-GAN, learns the distribution of clean

images. In other words, it generates an output image close to the input image without containing

the potential adversarial perturbation.

The third approach is a defense involving the addition of external modules (mainly detectors) to the

target model. Among adversarial defense/detection techniques, [70] inserted a K-nearest neighbors

model (k-NN) at every layer of the pretrained DNN model to estimate better prediction, confidence,

and credibility for a given test sample. Afterward, a calibration dataset was used to compute the

non-conformity of every test sample for a specific label (j). This involved counting the number

of nearest neighbors along the DNN layer that differed from the chosen label (j). The researchers

discovered that in cases in which an adversarial attack was launched on a test sample, the true label

exhibited less similarity with the k-NN labels derived from the DNN activations across the layers.

The research in [59] characterized the properties of regions named adversarial subspaces by focus-

ing on the dimensional properties using the local intrinsic dimensionality (LID). The LID method

evaluates the space-filling capability of the area around a reference by analyzing the distance be-

tween the sample and its neighboring points. A classifier was trained using a dataset comprising

three types of examples: adversarial as a positive class and normal and noisy (non-adversarial) as
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a negative class. The features of each sample associated with each category were then constructed

using the LID score calculated at every DNN layer. Finally, a logistic regression (LR) model was

fitted on the LID features for the adversarial detection task.

Researchers in [54] developed generative classifiers that could detect adversarial examples by uti-

lizing DNN activations from every layer of the training set. They used a confidence score that

relied on Mahalanobis distance. First, they found the mean and covariance of activations for each

class and layer. Then, they measured the Mahalanobis distance between a test sample and its near-

est class-conditional Gaussian using Gaussian distributions. These distances served as features

to train a logistic regression classifier. The authors found that, compared to using the Euclidean

distance employed in [59], the Mahalanobis distance was significantly more effective in detecting

adversarial examples and resulted in improved detection results.

In a study by Cohen et al. [19], the authors utilized an influence function to create an external

adversarial detector. This function calculates how much of each training sample affects the val-

idation data, resulting in sample influence scores. Using these scores, they identified the most

supportive training instances for the validation samples. To compute a ranking of the supportive

training samples, a k-NN model is also fitted on the model activations. According to their claims,

supportive samples are highly correlated with the nearest neighbors of clean test samples, whereas

weak correlations were found for adversarial inputs.

This Work. We introduce a simple adversarial attacks defense model based on a classical ML

model. This new model shows a robust performance comparing to existed state-of-art models.

Challenges are found in this approach which we tackle by developing an adaptive technique in

select a threshold of security level based on applications desires.

2.4 Case Scenario of Image Authentication in Military Space Application

Big Data is widely applied today, supporting various applications in different fields. In military

scenarios, we noticed a lack of discussion regarding using big data, including collecting, process-

20



ing, fusion, analysis, and securing to create qualitative information to design accurate and robust

systems that support strategic decisions. Here we explore the use of the big military data space

from both intra Intra-Military Data (IMD) and extra-data Extra-Military Data (EMD) perspec-

tives. Also, we address the challenges of securing these data. The idea is to identify the context of

big data and its security in the military and the recent proposed solutions that benefit from it.

Intra-Military Data. Some challenges of big data in the military field are presented in the lit-

erature, such as operational security, hardening against vulnerabilities, and data reliability [21,

51, 112], and also discussed in the NATO community (IST-160, and IST-173). Incorporating au-

tonomous isolation with little connection to the outside world EMD can limit the free flow of big

data, demanding creative ways to utilize big data while maintaining the autonomy and protection of

the deployed systems. In this direction, Common Operational Picture (COP) and Joint All-Domain

Command and Control (JADC2) have guided researchers and industries toward using and fusing

data from different military entities supporting strategic decisions.

Kun et al. [51] present a detailed technical plan to construct a big data platform for scientific

research in military enterprises. The platform can establish multi-level data channels across de-

partments and promote multi-level data management and control. It can also collect, organize,

process, analyze, and secure enterprise data resources, convert data into knowledge, and offer ser-

vices such as decision support, product innovation, quality control, process optimization, service

support, and risk management and control.

Xu et al. [112] discuss the importance of data science to achieve information superiority in contem-

porary warfare. A systematic literature review focuses on the opportunities or risks of data science

in military decision-making at different levels of war (i.e., strategic, operational, and tactical). The

study found a relatively large focus on data science risks in social science literature, which could

influence political and military policymakers. However, these risks are hardly addressed in formal

scientific literature. Moreover, this study points out the lack of attention to the operational and

strategic levels compared to the tactical level, creating a research gap. The absence of studies, in
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our view, comes from the lack of connection between IMD and EMD that may support operational

and strategic decisions.

Extra-Military Data. The concept of heterogeneous data fusion contributes to the creation of big

data and is widely applied in various research areas to develop solutions that improve the quality

of data. Data fusion is a technique to combine multiple records describing the same object or

situation into a consistent and clean representation. The main goal of this technique is to produce

complete, concise and consistent data by removing uncertain or conflicting data values from a set

of given information. In general, data fusion is challenging due to the data semantic heterogeneity

and the different spatio-temporal aspects [81].

In a military context, heterogeneous data fusion can be used to increase the available data and there-

fore supports the design of military information systems. Those systems can lead to information

superiority and information awareness, important aspects, especially in a complex urban warfare

situation or counter-terrorism. Military information systems require a robust design regarding ac-

curacy, reliability and credibility, because they handle human lives, exploit heterogeneous data

sources and involve limited resources [12]. Data fusion supports the design of those systems by

reducing possible information overload, improving the accuracy and exploiting partial or uncer-

tain knowledge. Multi-sensor data fusion for military applications is the subject of recent literature

on network communications and information systems. These investigations discuss methods and

frameworks to achieve the fusion of data acquired from multiple sensors to support military appli-

cations. Multi-Sensor Data Fusion (MSDF) can be used to improve the accuracy of target tracking

in a tactical scenario, supporting military operations by improving the assessment of the situation

and possible threads [58].

Moreover, Location based Social Media (LBSM) can be included within data fusion procedures,

as discussed by Rettore et al. [82, 88], providing two services that can improve the description

of traffic conditions and detect road incidents. They introduced a framework capable of fusing

heterogeneous data to output a more descriptive and enriched transportation data, but instead solely

22



relying on traffic- and vehicular data, they fused information from navigation systems and social

media (Twitter). Besides this spatiotemporal grouping of data, improving the description of traffic

conditions (T-MAPS), they furthermore used learning-based approaches for their incident detection

system (T-Incident). Although these systems contribute to a civilian use case, the concept of LBSM

may be used within the civilian field, to enlarge the amount of data in certain situations, leading to

information superiority.

Image Authentication. Securing gathered information is a challenge in every system. In EMD

and IMD scenario, the important of protecting the information increased since the goal of the

module is decision-based making system. It received high sensitive data in real-time to might

create a real-time decision. In our investigation in this work, we focus on one security concept,

image authentication, and highlights the challenges and the opportunities of security in general.

The goal of image authentication is to verify an image’s authenticity and ensure that it has not been

manipulated. Recently, tools for fabricating images have increased the challenge for trusting and

verifying images, starting with Photoshop and ending today with the image generation by artificial

intelligence tools such as the platform provided by OpenAI. Last decade, multiple technologies

were introduced to validate images using watermarking, digital signature, or pHash [3]. In wa-

termarking, an image will have an add-on piece of digital information visible or hidden to protect

digital media content, providing a way to track and verify the ownership and authenticity of digital

images. There are some limitations in using this technology, such as reducing the quality of the

images by embedding a photo inside a photo. Also, watermarking might be reduced or removed

by advanced tools or image processing like compression and resizing.

The digital signature-based method is another authentication preservation technique where each

image has a secure, bit-sensitive, and unaltered hash of string generated using one of the popular

hash mechanisms such as MD5 or Sha-2. This approach works under a Public Key Infrastructure

(PKI) and a secure digital key which requires each party to exchange their keys before sending or

receiving the object. The limitation in using this high-security mechanism is that images forwarded
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over the internet through different media platforms often go through multiple normal image pro-

cessing procedures (such as compression or resizing) that alter bit-wise data but do not change the

image content, making such a strict data verification method invalid.

On the other hand, pHash is an alternative approach that can be flexible to most normal image

operations, such as compression and blurring, while at the same time be sensitive to image content-

changing, such as copy-move, splicing, or removal. It generates a fixed length of string for the

image and can be used in social media platforms as demonstrated in paper [3].

This Work. We study the type of gathered information from military space based on the availabil-

ity. After that, we design a data fusion framework of collecting the data, preparing, processing,

protecting, and delivering. We study the security challenges and opportunities, and integrating our

image authentication in data fusion system to demonstrate the complete framework.
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CHAPTER 3: EVALUATING PERCEPTUAL HASHING ALGORITHMS

IN DETECTING IMAGE MANIPULATION OVER SOCIAL MEDIA

PLATFORMS

In this chapter, we evaluate the effectiveness of state-of-the-art image authentication algorithms

and address their weaknesses in the following steps. Firstly, we introduce a new dataset that

contains real and manipulated images from a real-world environment. We collect this dataset from

two of the most famous social media platforms. Then, we present our evaluation methodology and

provide the outcomes of the algorithms based on their original settings. Next, we apply our new

assessment method and present the results obtained from it. Finally, we conclude with a discussion

statement.1

3.1 Methodologies

Social network platforms, Facebook and Twitter, apply image processing and enhancements such

as scaling, compression, brightness reduction, and contrast. Each platform has different image

effects upon posting for storage preference and transmission. To analyze the image processing op-

eration by each platform, we upload an image on the platform, and then download the image again.

From these steps, we found that each downloaded image has different sizing, scale, smoothness,

and quality for different social media platforms.

The scheme of the evaluation approach that we follow is shown in Fig. 3.1, and six perceptual

hash approaches are evaluated for the performance comparison. To prepare for evaluation, the first

step is to generate the dataset SMPI. Creating the SMPI dataset consists of four stages. First, we

randomly select 6497 images from Holopix50k [42] dataset that was originally collected from users

of the Holopix mobile social platform due to the large and variant scales of the images. Secondly,

1The contents of this Chapter are based on our publication to IEEE CSR 2022 [5]
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Figure 3.1: Methodology used by our proposed authentication platform for social media images.

each image is first shared on Facebook and Twitter and then downloaded. Third, the downloaded

image is manipulated randomly by one of these attacks: copy-move, splicing, or removal. Finally,

the manipulated image is shared again to each social media platform and then downloaded again.

After this four-stage operation, we have three copies of each image: the original image (from the

first step), the shared image of the original (after the second step), and the altered/shared image

(after the fourth step). In total, we collect over 19K images, where each category consisting of

6497 samples.

The three image manipulation attacks mentioned above are further explained in the following.

Splicing is designed to cut a random part of a different image and paste it randomly onto the target

image. Copy-move copies a part of an image randomly and pasts it on a different location randomly

of the same image. Finally, removal selects a part of the image randomly and applies a 5x5 kernel

simple blurring filter 50 times on the same location. The dimension of all three types of alterations

is randomly chosen where the length and width have to be larger than 4x4 pixels and smaller than

the size of the entire image that receives the alteration. Figure 4 represents samples of the three

categories of images in our dataset and of the three different image alterations.
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Splicing
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Figure 3.2: Sample of images in the dataset for evaluation: (a) original images; (b) images posted
and then downloaded as is; (c) images tampered, posted, and then downloaded.

Source: Group (a) are original samples from Holopix50k Dataset.

Our assumption for the authentication system is that we have an authentication platform for social

media images. The first publisher can post and generate the original perceptual hash of the im-

age before posting it to social platforms. The platform’s users could check the validation of the

image by checking the image with the authentication platform by posting the image there. The
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outputs for the checking will represent a message of authentic or tampered. Dissimilar images for

this evaluation are ignored because all the authentication algorithms are simply successful in the

detection.

The second step of the approach is preparing the algorithms to generate the perceptual hash for

images. We choose the six modules based on state-of-art approaches [25, 25, 78, 96, 100, 114],

the most recognized algorithms for the last decade and the technique that the algorithms follow

among five approaches that [26] classified. The majority of approaches are reverse-engineered

[25, 96, 100, 114] and [25, 78] are provided as open sources [14, 115]. The decision-making is

chosen based on the thresholds set by the authors of [25,25,78,100,114] which are 0.25, 0.004, 5.0,

200, and 0.8, respectively, except SimCLR model that has never been used in image authentication

tasks. Therefore, we selected T = 0.04 based on the best result we obtained, as it is described in

part B of the IV section.

Afterward, the evaluation of the proposed methods was measured by four metrics approaches false-

negative rate (FNR) and false-positive rate (FPR), gap difference diff , accuracy, and average time

processing.

1) FNR-FPR: Equation 3.1 and Equation 3.2 represent the false-negative rate (FNR) and false

positive rate (FPR) from [120] respectfully. FN is calculated by dividing FN over the summation

of FN and true positive (TP). In contrast, FP is calculated by dividing FP over the summation of

FP and true negative (TN). The lower rate of either FN or FP indicates the better robustness of the

authentication capability of a perceptual hash algorithm.

FNR = FN/(FN + TP ) (3.1)

FPR = FP/(FP + TN) (3.2)

2) diff : the division of average altered images hashing over average similar images hashing as
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shown by Equation 3.3:

diff = avg(phalter)/avg(phsimilar) (3.3)

The perceptual hash distance, phsimilar in Equation 3.3 refers to the Hamming distance or Eu-

clidean distance value between the original image (Fig. 3.2a) and social media downloaded and

unaltered image (Fig. 3.2b). The smaller value of phsimilar is better, which means the perceptual

hash algorithm can detect that the downloaded image from the social media platform is unaltered

from the original image beside the image processing that social media platforms add upon posting

such as compression and resizing. On the other hand, the perceptual hash distance, phalter refers

to the Hamming distance or Euclidean distance value between the original image (Fig. 3.2a) and

social media downloaded and altered image (Fig. 3.2c). The larger value of phalter is better, which

means the perceptual hash algorithm can detect an altered image used in the social media platform.

The avg in the equation refers to the average of all images’ values in similar and alteration tests.

Furthermore, the diff value calculated in Equation 3.3 reflects how well the perceptual hash al-

gorithm can detect image alteration when an image is used on a social media platform. A good

perceptual hash algorithm should have a larger diff value for better decision-making in detecting

image alteration in social media platforms. On the other hand, a smaller diff value will make

it harder to choose the detection threshold, hence, increasing the false-negative and false-positive

rates.

3) Accuracy: Equation 3.4 calculates the accuracy of each algorithm based on the values of TP,

TN, FN, and FP.

accuracy =
TP + TN

TP + TN + FN + FP
(3.4)

4) average processing time: the average time that each run of generating perceptual hashing takes.

This metric is affected by the processor resource and the environment we use during evaluation.
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The processor is a 2.7 GHz Dual-Core Intel Core i5, the memory is 8 GB 1867 MHz DDR3, and

the operating system is macOS Monterey.

3.2 Experimental Results

This section uses our proposed evaluation scheme in the previous section to evaluate those seven

perceptual hash algorithms. We implemented and tested the scheme using Python (3.8.5) and some

open source libraries such as OpenCV [14] to build [25] and [78]. In addition, we implemented

a Neural Hash scheme which consists of a neural network that extracts image features and maps

them into a vector with a fixed length. Then, the vector is fed to LSH, which maps each vector to

a specific bucket where similar images have similar vectors mapped to the same bucket. The last

step is to convert these matrix-vector buckets to binary hash using hamming distance. We used a

SimCLR pre-trained on Imagenet [23] as in [96] to map the images into a vector of 128 length.

Then this vector is mapped to 1024 bits. All our implementation for SimCLR-LSH used Pytorch

framework [72]. For the remaining algorithms, we re-implemented them as they are described in

these publications [25, 100, 114].

Evaluation based on algorithms’ original decision thresholds set by their authors. Following

the scheme in Fig. 3.1, we generated 155,928 tests equally distributed by the six modules. These

tests are calculated by using the original images from the SMPI dataset. Each image calculated

twice: one to calculate the phsimilar (Fig. 3.2a Vs Fig. 3.2b) and the second for phalter (Fig. 3.2a

Vs Fig. 3.2c) which creates 12994 tests for each platform and in total of 25988 tests for the two

platforms. Afterward, these outputs are summarized and shown at Table 3.1. The table’s minimum

score (min) means the lowest perceptual hashes value among the 6497 tests at each approach and

platform. The average (avg) indicates the average of 6497 tests under each algorithm and platform,

and finally, the maximum (max) refers to the highest perceptual hash among the 6497 evaluations

at each algorithm and platform.

Table 3.1 shows the summary of the perceptual hashing distance of these six algorithm modules in
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Table 3.1: pHash similarity score between the original images (Fig. 3.2a), the posted images
(Fig. 3.2b), and altered images (Fig. 3.2c) on social media platforms.

Facebook Twitter
Algorithm T min avg max min avg max

a&b a&c a&b a&c a&b a&c a&b a&c a&b a&c a&b a&c
DCT [25] 0.25 0.0 0.0 0.04 0.28 0.5 1 0.0 0.0 0.0 0.27 0.0 1
Wavelet [78] 0.004 0.0 0.0 0.0004 0.02 0.03 0.5 0.0 0.0 0.0 0.025 0.0 0.68
Vsul M-B [25] 5 0.83 1.08 6.14 7.52 13.40 13.85 0 1.0 0 6.99 0.0 14.48
RPIVD [100] 200 1 1 5.46 117.63 85.0 989.0 0.0 1.0 0.0 118.08 0.0 1094.0
QFT [114] 0.8 0.0007 0.002 0.008 0.20 0.16 2.89 0.0 0.002 0.0 0.211 0.0 2.84
SimCLR+LSH [96] 0.04 0.001 0.009 0.035 0.11 0.16 0.47 0.0 0.005 0.0 0.098 0.0 0.55

terms of the evaluation of phsimilar of images group (a&b) in Fig. 3.2. In addition, the perceptual

hashing difference values for the altered images using groups (a&c) in Fig. 3.2 are represented

too. The threshold T is directly brought from the original papers presenting those perceptual hash

algorithms [25, 25, 78, 100, 114] except [96] that we generated. For a perceptual hash algorithm, if

the perceptual hash value exceeds the threshold, an FNR is generated since the image is supposed to

be authentic, but the algorithm detects otherwise. Whereas an FPR is generated when the image is

supposed to be unauthentic, but the algorithm decides otherwise. Table 3.2 represents the outcomes

of FNR and FPR for Facebook and Twitter platforms.

Looking at the average scores on Facebook evaluation at Table 3.1, it shows that all the results of

tampered a&c are higher than similar a&b tests, which indicates that these algorithms recognize

alteration. The selected T by the authors remains in between on all algorithms except Visual

Model-Based (Vsul M-B) [25] that the average on a&b and a&c exceeded the T. Twitter, on the

other hand, shows identical results on measuring (a&b) on all evaluations. These results show

that the Twitter platform applies manipulation upon sharing in small factors value if the image

meets the recommended dimension [68], which our selected dataset follows. For example, we

upload an image to the Twitter platform with a size of 233KB and a dimension of 1280×720.

After downloading the image back, we receive a new size, 230KB at the same dimension. Another

trial was done that exceeded the recommended dimension on an image with a size 262KB and

a dimension of 1850×1233. We received a new alteration with 82KB in size and 680×453 in
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dimension. Hence, it is probable Twitter applies compression and re-scaling with different factors

based on the image size and dimension.

Fig. 3.3 represents the percentage values of different image hashes a&c from Table 3.1 to similar

image hashes a&b using Equation 3.3. If the gap percentage is high, it represents the algorithm’s

robustness in detection alteration. Otherwise, it is vulnerable for the algorithms to minimize the

comparison score for similar tests and maximize the score for the altered tests. From the chart,

the gap is suitable enough on the four algorithms: DCT , Wavelet , QFT, and SimCLR, regarding

the Facebook metric with values of 7, 50, 25, and 3.14, respectively. The Visual Based algorithm

kept the different gap on Facebook at the NT with a value of 6.23, which increases the model’s

sensitivity to distinguish between similarity and alteration. The other model, RPIVD went too low,

even below the suggested T by the author. However, at the same time, NT shows a high gap, 25,

and the highest accuracy amongst others. In contrast, on Twitter, as the similarity scores shows

zeros at Table 3.1, the gap difference is significant where we solve the division by zero by adding

a small fraction that a close to zero.

Finding optimal decision thresholds for social media platforms. The six perceptual hash algo-

rithms under study were well designed by their authors with carefully-set decision thresholds in

detecting image manipulation based on specific datasets [101, 119]. However, their authors deter-

mined the decision thresholds based on general modification/manipulation operation on images. In

the specific social media platform scenario under study in this work, we want a perceptual hash al-

gorithm to detect any deliberate image manipulation while at the same time not treating the image

resizing/compression operation by the social media platform as image manipulation. Therefore,

for each perceptual hash algorithm, there should exist a better decision threshold for the social

media platform environment. In this section, we present the method for finding the optimal deci-

sion threshold and then verify that the performance will be better in comparison to those original

decision thresholds as it appears at Table 3.3.

We recalculate the threshold for each algorithm based on the perceptual hashes outputs through the
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Figure 3.3: Perceptual hash gaps (diff defined in Equation 3.1) between similar images and tam-
pered images.

conducted tests on Table 3.1. Based on [114], the optimal threshold can be determined using the

probability of true authentication (PTA), which essentially calculates the probability distribution

of phsimilar and phalter results using TP and TN decisions of both social media platforms as it

appears in Equation 3.5 and Equation 3.6. Based on the threshold value, which begins with zero,

the probability of true authentication for similar images, i.e., PTAsimilar, is represented by the blue

line at Fig. 3.4 should be zero since all the images recognized as tampered; therefore, tampered

images probability, i.e., PTAtampered, shown by the orange dashed line should be one.

PTAsimilar =
no. of TP results

no. of similar image tests
(3.5)

PTAtampered =
no. of TN results

no. of tampered image tests
(3.6)
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Figure 3.4: The new threshold (NT) calculation for each approach.

With each increase in the threshold value, the rate of true authentication for both states will change

until they intersect at a certain point, as shown in Fig. 3.4, e.g., RPIVD with a red dot and value

of 8. This point is selected to represent the new threshold (NT ) where it balances the performance

of FPR and FNR and gives the best accuracy. Table 3.2 shows the comparison of FNR and

FPR rates for original thresholds (OT ) and NT for all six algorithms. The outcomes of NT show
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Table 3.2: FNR AND FPR comparison on scale of original thresholds (OT ) and new thresholds
(NT ) for facebook and twitter.

Facebook Twitter
Algorithm Original Thresholds OT New Thresholds NT Original Thresholds OT New Thresholds OT

OT FNR FPR NT FNR FPR OT FNR FPR NT FNR FPR
DCT [25] 0.25 0.009 0.32 0.12 0.29 0.27 0.25 0.0 0.33 0.12 0.0 0.225
Wavelet [78] 0.004 0.013 0.63 0.004 0.013 0.63 0.004 0.0 0.64 0.004 0.0 0.64
Vsul M-B [25] 5 0.75 0.05 6.46 0.66 0.17 5 0.0 0.19 6.46 0.0 0.37
RPIVD [100] 200 0.0 0.79 8 0.099 0.098 200 0.0 0.79 8 0.0 0.15
QFT [114] 0.8 0.0 0.92 0.013 0.16 0.14 0.8 0.0 0.9 0.013 0.0 0.19
SimCLR+LSH [96] NA NA NA 0.04 0.16 0.17 NA NA NA 0.04 0.0 0.26

Table 3.3: Facebook and Twitter accuracy comparison between original thresholds (OT ) and new
thresholds (NT ).

Facebook Twitter
Algorithm OT Accuracy NT Accuracy OT Accuracy NT Accuracy
DCT [25] 0.25 75.33% 0.12 71.34 0.25 75.24% 0.12 85.47%
Wavelet [78] 0.004 67.50% 0.004 67.50 0.004 67.65% 0.004 67.65%
Vsul M-B [25] 5 59.42% 6.46 58.42 5 87.71% 6.46 81.21%
RPIVD [100] 200 60.33% 8 90.12 200 60.40% 8 92.06%
QFT [114] 0.8 53.50% 0.013 84.21 0.8 53.67% 0.013 90.48%
SimCLR+LSH [96] NA NA 0.04 82.87 NA NA 0.04 86.70%

significant enhancements on Facebook and Twitter platforms with minor changes at Wavelet and

Vsul M-B algorithms. Accuracy comparisons at Table 3.3 represents remarkable changes too.

We conducted an experiment on SimCLR for Facebook images that shows a promising approach.

We used a Pretrained SimCLR as feature extraction. Then, We replaced both LSH and hamming

distance with a Normalized Euclidean Distance as shown in Equation 3.7. Also, we fed the output

of the learned representation, which is the output of the final convolution layer to the Normalized

Euclidean Distance instead of the output of the fully connected layer as suggested in [96]. The

accuracy of the model increased to 90%. However, the output of SimCLR representation is a

4069 length vector where each element of the vector is represented by 32-Floating Point bits. This

experiment suggests that SimCLR results have the potential to be improved.
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d(u, v) =
1

2

σ2(u− v)

σ2(u) + σ2(v) + ϵ
(3.7)

The distance denoted by d measures the normalized euclidean distance between two images vectors

u and v. The first term in the numerator calculates the difference between the two image vectors

and their variance afterward. The denominator term refers to the summation between the two

vectors’ variance and ϵ, which is a small number added for numerical stability. The result of the

quotient, then, is multiplied by 1/2.

The average performance analyses are shown at Table 3.4. It is clear that increasing operation

for feature extraction also increases overhead. [25] and [78] were the lightest overall on feature

processing whereas [96] time consumption is the highest by a significant time. Therefore, the

algorithms of images systems should consider different types of environments instead of using

highly advanced resources in the developments pipeline.

Table 3.4: Average performance analyses.

Algorithm Processing Time (s)
DCT [25] 0.023
Wavelet [78] 0.065
Vsul M-B [25] 1.76
RPIVD [100] 0.18
QFT [114] 0.087
SimCLR-LSH [96] 11.76

3.3 Discussion

Image feature preservation plays the primary role in designing a robust authentication system. The

six approaches follow different ways of vector preservation and apply one or more operations for

that objective, such as RPIVD applying four statistical measures (mean, variance, skewness, and

kurtosis). These operations could generate a unique perceptual hash. However, it could increase

performance overhead.
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Selecting the optimal threshold for making a decision is challenging. The authors of those six

evaluated algorithms determine the threshold based on their targeting image alteration methods

and the dataset used in training or evaluation. For instance, most of these algorithms target many

types of image attacks. However, at the same time, they focus on one alteration, such as [78]

for image compression and [100] for image rotation. A study of image authentication with minor

alteration could be an area of interest with high security, considering lowering the collision rate

and minimizing the threshold T . A theory of cryptographic hashing in uniqueness and identical

could be targeted in perceptual hashing developments.

The hash value size is a significant parameter in finding a solid and efficient perceptual hash algo-

rithm. Increasing the hash size can improve the accuracy of the decision, but at the same time, the

computational cost of the hash and the storage requirement will also increase. The future work on

this aspect is to find the suitable trade-off between accuracy and efficiency in image authentication

for different applications.

We also intend to investigate more about the machine learning approach. The initial results show

that SimCLR with LSH is a promising approach to image authentication. However, there is a place

for improvement. We can design a custom contrastive learning that serves the image authentication

task to enhance the results. Further, we can conduct more tests on SimCLR model with Normalized

Euclidean Distance to validate and improve the accuracy and model performance. Also, we can

look into other neural network architectures that may work in the image authentication domain.
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CHAPTER 4: IMAGE AUTHENTICATION USING SELF-SUPERVISED

LEARNING TO DETECT MANIPULATION OVER SOCIAL NETWORK

PLATFORMS

Building on the previous chapter, our goal in this chapter is to focus on improving the authentica-

tion process. We start by explaining our approach and how it addresses the potential attacks. Next,

we demonstrate our findings based on the data collected in our previous work, SMPI. Finally, a

discussion statements is introduced.1

4.1 Methodology

In this section, we first discuss the assumptions to authenticate images over the social media plat-

forms used in our research. Then, we explain the details of our proposed new system.

Application Scenario and Assumptions. To ensure security, the following assumptions are pro-

posed. It is assumed that users must create accounts using their valid information to use our system.

Naturally, Twitter accounts holders are verified by Twitter, Inc. The generated pHash of an image

from our system can be added to the image through the description feature on Twitter’s platform

in hexadecimal representation (e.g., see Fig. 4.1). End-users can download said image, copy its

pHash from the description, and use our system for authentication. Moreover, users can re-publish

the image with its pHash on their account. Adversaries here are forced to provide their credential

information to our system in order to generate a new pHash. This assumption applies on other

social media platforms, e.g., Facebook.

Proposed System. As shown in 4.2 and Algorithm 1, the system design consists of four stages:

pre-processing, feature extractor, contrastive loss, and pHash generator, respectively. We describe

each stage below:

1The contents of this Chapter are based on our publication to IEEE MILCOM 2022 [2]
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Image description
pHash:
Ox8bf390a2f112ff07d6143e00e76013a53e
70460997104d54e95d352755dca6e3f261
7d1ca8aa2db1de4e21e79038b8d55eb0c81
74c270bc71b4bc75d6f4ec1f856d41d734b71
a4f92f240d90f2c1e0c09f445f945d27bed7
d16a643fab25dd1cd135a2ebaeOffc5c27cec
56324dddc7859c37deb1e709ac5860c1508
4329fe67

Figure 4.1: Sample image posted on Twitter platform that has pHash on the Image description
feature.

Source: CASIA dataset.

1) pre-processing: Before each image passes to the training phase, it goes through data augmen-

tation, resizing, applying random color jitters, and random compression. Data augmentation im-

proves performance when applied to deep learning models, as is shown in SimCLR [17]. SimCLR

is a self-supervised learning model that uses data augmentation to generate two augmented images

of each image in the batch and minimize the difference during the training task. Our model uses

SimCLR architecture with crucial modification. We introduce a new step to the augmentation pro-

cess to suit our target task. Instead of creating only two augmented images as it has been done

in the original SimCLR, we, also, create a content-changing sample from the original image x

called an altered image x̃alt. The alteration is added to the image randomly selected from one of

three image modification techniques copy-move, splicing, and removal. The copy-move (cp−mv)

alteration is an operation of randomly copying a spot of an image with size of m×m×3, where m

∈ {16:208} and randomly pasting it on a different location of the same image. The splicing (sp)

is the same process as copy-move in randomization, but the spot is pasted on a different image.

Finally, the removal (rm) alteration is where we follow the same technique of selecting a spot with

a random size and a random location, but we apply kernel simple blurring filter 50 times on the
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Figure 4.2: Proposed approach for image authentication.

same spot without moving it to a different location.

As in Fig. 4.2, the augmentation process in this approach applied to original and altered images

to cover multiple distorted versions. From these augmentations and alterations, each image is

converted into two pairs after fixed resizing to 224×224×3: original x with random augmented

x̃ and altered xalt with random augmented altered x̃alt. The augmented refers to the version of

the original image with content-preserving manipulation. On the other hand, altered represents the

content-changing manipulation. Finally, augmented altered is the copy of the altered image with

content-preserving manipulation. The next stage in the training knows that each pair is authentic
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on its own and unauthentic in comparison to the other pair.

2) feature extractor: Each image is passed to a convolution neural network (ConvNet) as shown

in Fig. 4.2. ConvNet produces feature maps that capture image features. Next, these feature maps

are flattened and mapped to a n-dimensional (n-dim) feature vector through a fully connected layer

(FCL), (z, z̃, zalt, and z̃alt), where n-dim is a hyperparameter representing the number of nodes

in the last layer chosen ahead of the training. The ConvNet used is ResNet-18 which consists of

convolution layers, poling, ReLu, and skip connection.

3) Contrastive loss: At the training stage, the n-dim vector is passed to the loss. We use contrastive

loss as used in [17] to maximize the agreement between the positive samples and minimize the

agreement between the negative samples by minimizing the normalized temperature-scaled cross

entropy loss (NT-Xent). We assign the temperature τ to 0.1 as suggested by [17]. SimCLR uses

the augmented pair as positive samples. Negative samples are collected by pairing an image with

another in the same batch that is not its augmented twin. However, our proposed approach takes

the original image and its augmentation as a positive example, as well as the altered version with

its augmentation. The negative sampling is the same as the original approach in SimCLR. Conse-

quently, the original image will be paired with its altered version as a negative example to force

the model to distinguish between images that shares high level features with content modification.

4) pHash generator: At the evaluation step, LSH is used in the hash generation to convert the

long length of extracted features into small binary bits representations by mapping close feature

vectors to buckets with similar hash values [32, 94]. Random projection is one type of LSH we

used because it provides an independent secret key during random hyperplane generation that can

be adaptive for security purposes. In practice, the feature vectors from FCL are flouting points with

a length of 512 multiplied by a random hyperplane matrix of the size of 1024x512. This matrix

multiplication is finally converted to a bit vector by applying a Heaviside step function to each

element. The final generated hash length is 1024 bits.
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Algorithm 1 Training Stage for the Proposed Model.
Training Stage:
input: batch size N × 2, constant τ

network: ResNet-18 (f) + FCL (g)

for randomly sample x ∈ {X} do
draw one attack a ∈ {cp−mv, spl, rm}
xalt = a(x)

draw two augmentation functions d ∼ aug, d̃ ∼ aug

x̃ = d(x)

x̃alt = d̃(xalt)

# Forward Pass:

z = g(f(x))

z̃ = g(f(x̃))

zalt = g(f(xalt))

z̃alt = g(f(x̃alt))

end for
Calculate contrastive Loss L

update the network parameters to minimize L

return network f(.) and g(.)

Evalution Stage:
input: x, x̃, constant random matrix r (1024× 512), and Threshold θ

output: ’Similar’ if d ≤ θ else ’Altered’

e = g(f(x)) #feature vectors for img1

ẽ = g(f(x̃)) #feature vectors for img2

p1 = (e · rT ≥ 0) #binary hash for img1

p2 = (ẽ · rT ≥ 0) # binary hash for img2

d = HammingDistance(p1, p2)

4.2 Experimental Results

This section explores the experiment setup, the training configuration, and the main results based

on F1-score metric.

Experimental Setup. To evaluate the robustness and effectiveness of the proposed scheme, we

run a large number of experiments. Our implementation and training were done using NVIDIA
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Table 4.1: The structure of training and validation sets.

Stage Dataset no.
Flickr [41] 8,000

Holopix50k [43] 41,000
Training set Tiny ImageNet [52] 100,000

PS-Battles [39] 10,000
ImageCLEF [65] 21,000

SMPI [5] 19,458
Validation set IMD2020 [67] 200

COVERAGE [110] 200

GeForce RTX 3090 GPU. All other prior models were re-implemented and tested using the Colab

platform based on best effort resources. We use PyTorch-lightning2 open-source python library for

our proposed system. Moreover, we re-implemented or used provided sources of other schemes

and integrated a final hash generation using LSH for deep learning approaches.

Training Configuration. The configuration of the training goes through multiple processes. First,

we collected 180,000 images from different resources, as shown in Table 4.1. This diversity pre-

vents bias to any image classes. Next, four modified samples were derived from each original

image sample after resizing into 224×224×3 and paired into two groups. The first pair contains

the original image and its augmented copy, and the second contains the altered and its augmented

altered sample. Thus, the total number of training examples was increased to reach 720,000 im-

ages. We trained our model with contrastive loss to increase the agreement of similar images and

decrease the agreement of dissimilar images. We used SMPI [5] as a benchmark for evaluating

images that were collected from Facebook and Twitter platforms. In addition, we tested our model

on the datasets IMD2020 [67] and COVERAGE [110] to compare it with other state-of-the-art

models.

Main Results. The similarity metric we used for our approach is Hamming Distance measurement,

as used by [17, 25, 94]. The algorithm presented in [105] is the only one that used Euclidean

2https://www.pytorchlightning.ai/
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Figure 4.3: Comparison of ROC curves for each authentication model using SMPI dataset.

distance. The pHash distance d between two images draws the line of the threshold θ that will

be the indicator in our image authentication system. For similar images, the distance d should

satisfy 0 ≤ d ≤ θ. For altered or dissimilar images d should be above the threshold θ, , i.e., θ < d.

Table 4.2 shows the best selected θ based on the best F1-score assessments.

Table 4.2 compares five schemes based on the SMPI dataset. The bold F1-scores in each column

are the best-reported score, which shows the significant improvement using our proposed approach

on both social media platforms. Overall, four models [17,25,94,105] have close F1-score at Twitter

with 0.87, 0.84, 0.88, and 0.88 respectively. Our proposed scheme reached the highest score by

0.99. In contrast, [17, 25, 94, 105] under-perform with Facebook with 0.70, 0.44, 0.82, and 0.82

respectively and a new high record achievement with the proposed model by 0.92.

We evaluated the performance of the models using the Receiver Operating Characteristic (ROC)

curve as illustrates at Fig. 4.3. The X-axis is the probability of False-Reject Rate (FRR), the

ordinate is the probability of False-Accept Rate subtracted from one (1 − FAR). An ROC curve

that is closer to the top left corner means a better performance of content authentication. From

ROC curves of the five schemes in Fig. 4.3(a), we can observe that our scheme achieves the best

ROC curve on the Facebook platform compared with the others, whereas model in [105] is the
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Table 4.2: F-score results of each model using SMPI dataset and their threshold NT .

Model NT Facebook Twitter
DCT [25] 0.12 0.70 0.87
VisualModelBased [105] 6.46 0.44 0.84
SimCLR [17] 0.04 0.82 0.88
NuralHash [94] 0.02 0.82 0.88
Proposed 0.02 0.92 0.99

Table 4.3: Area under curve (AUC) performance comparison.

Model IMD2020 [67] COVERAGE [110]
CFA1 [30] 0.586 0.485
J-LSTM [11] 0.487 0.614
ManTra-Net [111] 0.748 0.819
TraFor-Self [36] 0.848 0.884
Proposed 0.98 0.99

worst. Fig. 4.3(b) represents the ROC curve on the Twitter scale shows small gaps in most models,

where our proposed technique overpasses the others.

Moreover, we evaluated the proposed algorithm using other datasets IMD2020 [67] and COV-

ERAGE [110] that are mainly founded for image forgery assessing on the scale of copy-move,

splicing, and removal. We picked real-life manipulated images part from [67] that are collected

from the Internet. Based on the same θ that we picked previously for our model, the Area Under

Curve (AUC) performance comparisons is provided at Table 4.3 with other models [11,30,36,111].

Our model’s results, which are in bold, are ahead of others by a high percentage.

4.3 Discussion

Many magnificent works used deep learning for image classifications and were based on a large-

scale dataset such as [24]. On the other hand, image authentication received less attraction due to

multiple reasons. First, most image datasets are generated with big alterations; therefore, many

developed systems accomplished high accuracy on those datasets. second, small alteration to the
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image is hard for the systems to detect, and the concept of pHash authentic distorted copies of the

original image. Third, distorted copies of the original image have unlimited and unknown factors.

For instance, the compression quality factor during the model design is fixed, i.e., quality factor

∈ {1, 5, 10, 30, 50, 70, 90, 95} and the tested images are compressed with random and unknown

values 1:100. This example is one case where nine other image operations can be implemented on

an image and considered as an authentic copy, not counting that one image might receive multiple

operations.

For instance, Facebook deals with each user differently during exploring the platform because

Facebook needs to allow their users with weak network coverage to use their platform by applying

different compression quality factors based on the network status. For example, we examined

downloading a shared image from the same post by two PCs, we received different sizes of the

same image. This alteration itself makes the task of authentication complex.

In addition, the length of pHash plays a significant part in image authentication. The larger is

better to make the extracted feature vectors more sensitive. In contrast, the larger length would

cause more overhead on the payload of the image in practice. Therefore, we remain our evaluation

on 1024-bits to make it more applicable to various applications.

Finally. we looked into another direction to enhance our proposed model. We increased the number

of altered and augmented version of each image to cover more samples in the batch. Therefore,

the batch consists mostly of one image and its n-altered and n-augmented versions. The results

showed degrading in the performance of the model. We concluded that increasing the samples of

the original image in the same batch harm the model efficiency. Therefore, we limited the model to

have only four samples from the original image. These samples are original, augmented version,

altered and augmented of the altered version.
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CHAPTER 5: ADVERSARIAL-AWARE DEEP LEARNING SYSTEM

BASED ON A SECONDARY CLASSICAL MACHINE LEARNING

VERIFICATION APPROACH

This chapter explores the most common adversarial attacks that target deep learning models, par-

ticularly in the field of computer vision. We deliver our motivation, analyze the adversarial attacks,

define their common ground, and present a new defense technique based on a secondary verifica-

tion approach that is not affected by these attacks. Our defense solution is inspired by the beginning

of satellite communication. We also provide suggestions to increase security strength and give ap-

plication developers the freedom to choose their own security options. Furthermore, we compare

our approach with others and present the results, and finally introduce our discussion.1

5.1 Motivation and Threat Model

Motivation. After multiple assessments of the different adversarial attacks on different DNN

models, we notice that once the attack succeeds on one deep learning model, it succeeds on other

models as well, as shown in Table 5.1, which was obtained by running multiple adversarial attacks

(FGSM, Deepfool, CW, and PGD) on ResNet-34 [38] as a target model using the CIFAR-100

dataset. The generated adversarial samples are then tested on VGG16 [90] and DenseNet [44]

DNN model classifications. We find that the accuracy of the targeted model is similar to that of

untargeted DNN models. Researchers in [108] addressed the same issue, naming it “transferabil-

ity“ of adversarial examples, meaning that the generated samples from adversarial attacks on one

targeted DNN model may work on different untargeted DNN models. Therefore, a model obtained

by a different approach is interesting to study, and we selected a random forest (RF) [56] decision-

tree-based classifier model for our study, considering all the challenges of using this limited model

for image classification.

1The contents of this Chapter are based on our publication to Sensors 2023 [7]
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Table 5.1: Accuracy comparison of different DNN models before and after adversarial attacks on
the CIFAR-100 dataset.

Attacks
Targeted model Un-targeted models

ResNet-34 VGG16 DenseNet
w/o attack 77.47 72.25 78.69

A
cc

ur
ac

y(
%

)

FGSM [33] 34.25 35.09 36.19
Deepfool [64] 25.78 24.79 24.84

CW [15] 25.77 24.49 25.0
PGD [60] 22.58 22.87 22.7

Threat model. Our threat model assumes that the attacker knows there is a detection method

employed but does not know what it is. In this setting, only the DNN model and its parameters are

known to the adversary.

5.2 Methodologies

We introduce our proposed adversarial attack detection method in this section. Our primary im-

age classification system, shown in Figure 5.1, is based on the DNN approach, and we choose

ResNet with 34 layers here for our investigation. The primary model could be any other DNN

model that uses backpropagation because adversarial attacks exploit backpropagation to optimize

the perturbations introduced to the input data on DNN models. The input is an image that could be

a real image with no alteration or an adversarial generated sample from one of four attacks: FGSM,

Deepfool, CW, or PGD. Our output of ResNet-34 is the highest probability index that indicates the

class the image belongs to, which is referred to as Top 1 classification.
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Figure 5.1: Proposed adversarial detection system design, which is composed of a primary DNN
classification decision model and a secondary classical ML model for adversarial attack detection
and verification.

Unlike the primary approach, we use the classical ML model, the random forest (RF) model, as a

secondary model for adversarial attack detection. The model can be vulnerable to adversarial at-

tacks, as seen in [10], with the aim of deceiving the intrusion detection system. Nonetheless, we

opt to use this as a secondary model because it employs a different method and does not rely on

the gradient technique utilized in computer vision adversarial attacks. Therefore, the perturbation

added to the images does not impact the model’s image features or the model classification perfor-

mance.

The RF model is a decision tree module based used in regression and multiclassification prob-

lems [9, 22, 74, 91, 93]. It is an extension of the bagging method, as it utilizes both bagging and

random feature selection to create an uncorrelated forest of decision trees. It also reduces overfit-

ting and increases the diversity of the trees in the forest. The randomness in selecting the features

for each tree determines and eliminates the inserted perturbations information on the adversarial

samples, as illustrated in Figure 5.2, where the accuracies of RF model before and after different

attacks are almost identical. In the same figure, the k-NN model is demonstrated as a classical ML
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model that is not affected by the added perturbations as well.
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Figure 5.2: Classification accuracy over Top k before and after different adversarial attacks using
the CIFAR-100 dataset by two classical ML models: (a) random forest model and (b) the k-NN
model. The accuracies under different adversarial attacks are almost identical; thus, those resulting
curves override each other and make a single purple-colored curve.

Our outputs of RF are the top k indices (Top k) of the predicted class probabilities for the inputs.

We selected Top k and relied on it for our study to match the accuracy of the RF model with the

selected DNN model on the CIFAR-100 dataset, which has 100 classes. Top 1 in the RF represents

the worst accuracy, as illustrated in Figure 5.2, whereas Top 100 represents 100 percent accuracy

because its decision is always correct, where the decision group includes all possible classes. When

the k parameter in Top k equals 22, the accuracy reaches around 77 percent, the same percentage

as the primary DNN method prediction accuracy in the top 1 classification. Moreover, by adjusting

the value of k in the Top k classification, our methodology provides more control to its users and

more choices to select optimal security versus classification accuracy based on the AI application

design, as described in depth in Section 5.2.

Category of Image Dataset. Under adversarial machine learning (AML), we run each adversarial

attack individually on the DNN model, ResNet-34, using the test set in the CIFAR-100 dataset,

which contains 10K images. The attack success ratio of each of the adversarial attacks varies,

as illustrated in Table 5.1. During the categorization process, as represented in Algorithm 2, each
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image (x) is first checked by the DNN model for the correct label. The mispredicted result from

DNN(x) adds x directly to the SETmis set. In contrast, the correct prediction of x passes to the

AML(x) algorithm for a trial (e.g., FGSM), and the successfully applied attack output is added to

the SETadv set. The unsuccessful attack moves x to the SETcrc set. In summary, we categorize

the outputs into three sets as follows:

• SETcrc: The set of images that the DNN can correctly identify;

• SETmis: The set of images that the DNN misidentifies (misclassification);

• SETadv: The set of images produced by AML that can successfully and deliberately make

the DNN misidentify as another object the attacker wants.

The percentage of misclassified images (SETmis) is maintained at 22.54 across various attacks.

However, the percentages for the other categories vary depending on the strength of each attack

and its parameters. Generally, the adversarial generated samples (SETadv) or the attack success

ratio receive the highest percentage among other sets in all four adversarial attacks.

Detection Algorithm. The adversarial image detection model, denoted as Adv − aware(x), is

addressed in Algorithm 3. We first pass a test image (x) to the primary DNN model, which is

DNN(x) with Top 1, and to the secondary model, which is the RF model with Top k donated, as

denoted by RF(x, k). Then, we have two outputs: a single-class prediction from the primary DNN

model (y) and k class predictions from the secondary model (Top k) as a list of k classes. We

check whether y predicted classes exist in the Top k prediction list. If y exists in the Top k, then it

returns a boolean “false” value for forged status with the DNN(x) label (y). Otherwise, it returns

“true” without a label or none, which detects a possible adversarial sample.

For instance, as shown in Figure 5.1, we use a STOP road sign as an input sample to our model.

It passes to the primary model and the secondary model concurrently. In an adversarial attack

scenario where the STOP sign image is a manipulated image, the predicted class from the pri-

mary model is SPEED LIMIT 70, whereas the second model provides a Top 3 list of predictions,
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Algorithm 2 Categorize Image Dataset.
[SETcrc, SETmis, SETadv] = Category (Image dataset, DNN classification results)
Input: {x, right label} ∈ CIFAR-100(test set), DNN model DNN(x), adv attack AML(x)

Output: The three categories of image dataset according to DNN model classification and AML

results.

Initialize SETcrc, SETmis, SETadv to be all empty

for image x ∈ CIFAR-100 do
if DNN(x) is mispredict then

SETmis← x

else
if DNN(x) is correct and AML(x) fail then

SETcrc← x

else
SETadv← x

end if
end if

end for
return [SETcrc, SETmis, SETadv]

for example, STOP, Roundabout, and No entry. Our model detects the input image as a forged

“true”, since the predicted class from the primary model does not exist in the list of the secondary

model. In the case of clean detection, the predictions have to be found in both model predictions.

During our evaluation, we excluded misclassification samples in this section, which are tackled in

Section 5.2.

Defense System Adaptive Design. This section discusses a new technique for selecting the best

value of k in the Top k used in the secondary model based on the underlying application-specific

requirements in terms of accuracy and security. Some applications require zero tolerance for attack

success. On the other hand, a low success ratio of adversarial attacks in some other applications

does not cause severe damage. Moreover, including the misclassification samples in this adaptive

design improves the overall detection accuracy of adversarial attacks. The details are explained in

the following subsections.
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Algorithm 3 Adversarial-Aware Deep Learning System.
[forged, label] = Adv-aware (x)
Input: image x.

Output: Whether the image is forged by adversarial attack or a clean image; classification label

if x is a clean image.

y← DNN(x) # DNN model classification label for the image x

Top k← RF(x, k) # The top k group of labels generated by the RF classification model

if y ∈ Top k then
forged = false; label = y

else
forged = true; label = None

end if
return [forged, label]

Outputs of Our Proposed Adversarial-Aware Image Recognition System. Our image recogni-

tion system has two possible outputs: (1) the image under inspection is authentic, and its identified

label is provided, or (2) the image under inspection is forged by AML and tagged as forged. There-

fore, given that there are three possible sets of images in terms of DNN identification (introduced

in Section 5.2), here are the six possible decision scenarios for our proposed system:

• Decision A (Deca): An image in SETcrc that is authentic and correctly identified;

• Decision B (Decb): An image in SETmis that is correctly identified as forged;

• Decision C (Decc): An image in SETadv that is correctly identified as forged;

• Decision D (Decd): An image in SETcrc that is misidentified as forged;

• Decision E (Dece): An image in SETmis that is misidentified as authentic and misclassified;

• Decision F (Decf ): An image in SETadv that is misidentified as authentic.

From a user’s perspective, Deca, Decb, and Decc are all ‘good’ and rightful decisions, whereas

Decd, Dece, and Decf are wrongful decisions that could cause a negative impact/cost to the user.
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Adjustable Parameter in Our Proposed System. In our proposed adversarial-aware image

recognition system, one critical parameter that can be adjusted/controlled by the end user is the

value of k in the Top k classification by the secondary model. It can be used to make a delicate

tradeoff between increasing the defense accuracy of adversarial attack images and increasing the

correct recognition of normal images. The secondary verification of the ML module determines

if an image under inspection belongs to one of the Top k classes among all possible classification

classes. Its classification setting (Top k) can be, for example, Top 1, Top 10, Top 20, etc. When

k increases, the classification decision by the DNN module has a higher probability of being in-

cluded in the Top k classes of the secondary verification system, which increases the possibility of

good Deca and the possibility of bad decisions (Dece and Decf ) as well.

In this work, we present a solution to the above dilemma by translating and quantifying the problem

into the optimization of a carefully defined objective cost function. We explain it in detail below.

Using Objective Cost Function to Achieve Optimal Defense. Generally speaking, in most com-

puter vision applications, a successful AML attack causes much more damage to the user than a

misclassified event. In most cases, misclassifying an object/content in an image leads to a clearly

identifiable wrongful conclusion, such that the user can easily know that it is a wrong identifi-

cation, for example, misidentifying a road STOP sign as a red balloon in autonomous vehicle

driving indicates that this is wrong image identification. However, a successful AML attack could

make the user misidentify the STOP sign as a SPEED LIMIT sign, which could result in a serious

car accident.

For this reason, when we decide how to adjust detection and defense settings for our proposed

system, we should not use the classification accuracy, AUC score, or attack success rate directly

as the metric. Instead, we define an overall cost objective function, that is, the weighted summa-

tion of all image classification results, to find the optimal defense parameters that minimize this

objective function.

For the six decision outputs of our proposed system (Deca to Decf ), each decision for one image
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has its own cost (due to misidentification) or gain (due to correct identification), which can be

treated as a positive or a negative cost. Let us define Ca, Cb, and Cc as the gains for each of those

three good decisions (Deca, Decb, and Decc) and Cd, Ce, and Cf as the cost values for each of

those three wrongful decisions (Decd, Dece, and Decf ).

The objective cost function (Objf(k)) for choosing the optimal defense parameter (Top k) in the

secondary RF classification module is illustrated in Algorithm 4 and shown in Equation (5.1).

We find the optimal value of k by selecting the minimum output (mink) from the equation when

changing k from 1 to 100. Parameters Na to Nf refer to the number of times when decisions Deca

to Decf happen, respectively.

Objf(k) = mink(Cd ·Nd + Ce ·Ne + Cf ·Nf − Ca ·Na − Cb ·Nb − Cc ·Nc) (5.1)

To calculate Na, Nb, . . ., and Nf , a loop is conducted over the entire test set of the CIFAR-100

dataset. In Algorithm 4, each image (x) from the dataset is previously divided into three sets by

Algorithm 2 (SETcrc, SETmis, and SETadv). Each if statement checks whether x image belongs

to one of the sets and whether the outcomes of each model prediction (DNN and RF) are matched.

For example, suppose x is a human object and DNN identifies it correctly, and the prediction also

exists in the Top 3 RF outcomes. In that case, the decision state is set to Deca and Na counter

increments by one.

This optimization is conducted after the training stage, when we know the ground truth of all

images, as shown in Section 5.3, and can calculate the values of Na to Nf for each Top k parameter

for all test images. Since the number of possible values of k is limited (in our model, it has 100

possible values ranging from 1 to 100), there is no technical challenge in solving the optimization

problem.

Examples of Adjusting Weights on different applications. In this section, we use several appli-

cation scenarios to show why they need different cost weights in our adaptive design and the above
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Algorithm 4 Adaptive Design Algorithm.

[k] = Adaptive(DNN classification results, RF classification results)
Input: CIFAR-100(test set), DNN, RF
Output: optimal parameter k for the secondary RF model
for k ∈ {1, 100} do

Set all the counters Na, Nb, . . . , Nf to 0
for image x ∈ CIFAR-100 do

if x ∈ SETcrc & DNN(x) ∈ RF (x, k) then
Na ++

else
Nd ++

end if
if x ∈ SETmis & DNN(x) /∈ RF (x, k) then

Nb ++
else

Ne ++
end if
if x ∈ SETadv & DNN(x) /∈ RF (x, k) then

Nc ++
else

Nf ++
end if

end for
Objective function f(k) = (Cd ·Nd + Ce ·Ne + Cf ·Nf − Ca ·Na − Cb ·Nb − Cc ·Nc)

end for
Among all f(k), k ∈ {1, 100} find the minimum f(k∗)
Return the optimal index k∗

optimization Equation (5.1). In different image classification applications, users can define the

concrete values for the other cost factors according to their expert opinion and application scenar-

ios. Four applications are introduced in the following, and the next section presents the outcomes

of this adaptive method.

• Self driving: We can define Ca = 0.3, Cb = 0.1, and Cc = 0.5. The value of Cc is higher

than Ca because in self driving, it is more important for us to detect an adversarial attack

than to correctly identify a normal roadside sign image. Similarly, we can define Cd = 0.1,

Ce = 0.3, and Cf = 0.8. We define Cf as having a significantly higher value than others

because Decf means autonomous driving is compromised under a deliberate adversarial
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attack. For example, we could treat a STOP sign image as a right-turn-only sign, which

could result in serious accident consequences. The value of Ce is higher than Cb in detecting

misclassified images by the model due to the risk value we assume.

• Healthcare: Although deep-learning-based healthcare systems could achieve high accuracy

in disease diagnosis, few such systems have been deployed in highly automated disease

screening settings due to a lack of trust. Therefore, the human-based double-check process is

usually used, and hence, the deep learning healthcare system can be tolerated in the security.

Example values of the weights are Ca = 0.7, Cb = 0.4, Cc = 0.1, Cd = 0.4, Ce = 0.1, and Cf

= 0.3. Ca is the highest cost weight because the physician will most likely discover failure

in other decisions during manual double checking.

• Face recognition in checking work attendance: Misrecognition or adversarial impact is

low because the potential of utilizing these challenges by the employees is rare. Therefore,

we can obtain higher positive gain values with Ca = 0.7, Cb = 0.4, and Cc = 0.2. In contrast,

we can value the negative decisions as Cd = 0.4, Ce = 0.2, and Cf = 0.2.

• Detecting improper digital content: Mispredicting nudity images to protect children is an-

other example where the costs of an AML attack are medium—not as risky as in autonomous

driving, nor as tolerable as in face recognition. Hence, we can choose Ca = 0.7, Cb = 0.1, Cc

= 0.2, Cd = 0.3, Ce = 0.1, and Cf = 0.1.

The Cost of Misclassified Clean Images. As of today, there are no image classification models

that can provide a 100 percent accurate result. Table 5.1 shows the accuracy rates of various

DNN models without any attacks. ResNet-34 achieves an accuracy rate of 77.47 percent, while

VGG16 has a lower accuracy rate of 72.25 percent. On the other hand, DenseNet boasts a higher

accuracy rate of 78.69 percent. The percentage of misclassified images is enormous. Therefore,

the business models of AI applications should consider these failure cases to assess their risks in

case of using any DNN model with a high percentage of misclassification. On the other hand, our
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approach can detect a significant fraction of these detection failures and categorize them as forged

by adversarial attacks.

As described in the previous section, Decb can identify the misclassification of tested samples

and be counted as positive to DNN model accuracy. On the other hand, Dece, where our approach

wrongly identifies it as forged, is counted as negative to the overall accuracy. Application designers

can define the costs of these decisions, balancing security and safety with passing tolerance using

Algorithm 4. The accuracy of the overall system can be significantly affected, as demonstrated in

the following section.

Evaluation Metric. The evaluation technique for our proposed method is similar to those pre-

sented in previous works on detection methods [19, 54, 59]. We use the area under the ROC curve

(AUC) score in our assessments between clean (Deca) and adversarial images (Decc), as addressed

in Section 5.3. Accuracy (acc.) is another metric used to evaluate our proposed model based on

image classification application parameters introduced in Sections 5.2 and 5.3.

5.3 Experimental Results

In this section, we showcase the evaluation and outcomes of our study. First, the settings for the

experiments and the utilized environment are explained. Then, the configurations for the adversar-

ial attacks we deploy to target the various deep learning models are outlined. Lastly, we present

and compare the main results according to each proposed approach in Sections 5.2 and 5.2.

Experimental Setup. To evaluate the robustness and effectiveness of the proposed scheme, we

run our training, evaluation, and attacks using an NVIDIA GeForce RTX 3090 GPU. We use the

Sklearn [73] open-source Python library for the classical ML random forest model. On the other

hand, we use PyTorch-lightning [29] for DNN models. Finally, we use Torchattacks [47] to run

the adversarial attacks.

Adversarial Attack Configuration. The attacker knows that the targeted image classification sys-
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tem uses ResNet-34 to train the image classification model. He/she also knows the data being used

for that training, i.e., the CIFAR-100 training set. The attacker uses a test set of the same dataset

and state-of-art adversarial attack algorithms: FGSM [33], Deepfool [64], CW [15], and PGD [60].

The parameters of each type of AML are listed in Table 5.2 and defined in the next section.

Table 5.2: Experiment settings.

Targeted
Dataset

Adversarial
Parameters

Attack Success
Model Attacks Ratio (%)

ResNet-34 CIFAR-100

FGSM [33] ϵ = 0.007 65.75
Deepfool [64] s = 50, overshoot = 0.02 99.92

CW [15] c = 1.0, κ = 0, s = 50, lr = 0.01 98.64
PGD [60] ϵ = 0.03, α = 0.004, s = 40 98.83

In the FGSM trial, we set the ϵ parameter, which is a hyperparameter determining the size of

the perturbations introduced to the input data, to 0.007. The value of ϵ is a tradeoff between the

adversarial attack strength and the perturbation perceptibility. Raising this value could increase the

exploit success rate; however, it might show apparent noise on the targeted image that could be

revealed to human perception. We set the default value to 0.007 because the added perturbations

are not easily perceived by human eyes. The FGSM attack success accuracy based on the selected

ϵ on the CIFAR-100 test set is 65.75%.

To execute the Deepfool attack, we limit the attack iterations to 50 steps before stopping. Dur-

ing each iteration, the attack calculates the direction of the closest decision boundary to the original

input data point in order to determine the minimum perturbation required to deceive the targeted

DNN model. The overshoot parameter is set to 0.02, which multiplies the computed perturbation

vector and adds it to the input image. With these settings, the attack success accuracy reaches

99.92%.

To ensure a successful attack by the CW method, we utilize the CW attack parameters listed in
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Table 5.2: c = 1, κ = 0, steps s = 50, and lr = 0.01. The ’c’ hyperparameter determines the

magnitude of the perturbation, while the margin parameter (κ) determines the confidence gap be-

tween the predicted and target classes. The steps (s) parameter represents the number of iterations

required for the attack to succeed or end. Lastly, the learning rate (lr) controls the optimization

iteration steps. With these adjustments, we achieve an attack success rate of 98.64%.

The PGD attack is adjusted with the following parameters: ϵ = 0.03, alpha α = 0.004, and steps =

40. ϵ; steps were explained in previous attacks, while alpha functions similar to the learning rate

determine the size of each optimization step. This attack has a success rate of 98.83%.

Main Results. Table 5.3 summarizes the AUC scores of four adversarial attack detectors with our

proposed method from Section 5.2 using features from all the DNN penultimate layers. For com-

parison, we compare our proposed method with four other popular adversarial detection methods:

DkNN [70], LID [59], Mahalanibis [54], and NNIF [19].

Table 5.3: AUC score of adversarial detection methods.

Detectors
AUC Score

FGSM [33] Deepfool [64] CW [15] PGD [60]

DkNN [70] 93.65 76.71 93.77 73.78

LID [59] 80.68 52.25 67.84 72.25

Mahalanibis [54] 83.90 62.05 71.60 72.46

NNIF [19] 87.23 84.20 94.58 83.09

Top 1 86.62 97.57 98.21 96.49

Top 22 94.17 74.17 83.50 86.04

Overall, our proposed Top 1 threshold surpasses other methods in most attacks, as indicated in

bold, while the LID method is the least effective in detecting attacks. The best FGSM attack detec-
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tion corresponds to our proposed Top 22 method. Additionally, the NNIF model is the second-best

detector approach to resist all attacks. The AUC scores at FGSM show a roughly 10 percent gap

between the detectors. In contrast, in Deepfool, the gap is much more pronounced, with LID

scoring 52.25 and our proposed Top 1 scoring 97.57.

The AUC score comparisons for different adversarial detector models on various attacks are shown

in Figure 5.3. The x-axis represents the four adversarial attacks, while the y-axis describes the

AUC score, ranging from 0 to 100. Each color on the graph represents one defense method, as rep-

resented in the top-right legend, namely DkNN, LID, Mahalanibis, NNIF, proposed[Top 1], and

proposed[Top 22] represented by gray, navy, light green, light pink, light blue, and light brown,

respectively. In the FGSM attack, DkNN and the proposed[Top 22] method were the most ef-

fective defense mechanisms, while the others showed slight differences, with a score of around

80. The Deepfool bars show significant improvement in detection methods, but some methods

have noticeable weaknesses. For the CW attack detection, DkNN, NNIF, and the proposed[Top 1]

perform well, while the others score an average of 70. Finally, the PGD attack is proven to be

powerful against DkNN, LID, and Mahalanibis, with a semi-matching AUC score of 72, while the

remaining methods show significant improvement, with the proposed[Top 1] method scoring the

highest, with a score of 96.
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Figure 5.3: AUC score comparison for adversarial attack detectors. The x-axis represents the de-
tector methods. The y-axis represents the AUC score of adversarial detectors. Each color demon-
strates one of the detectors, as listed in the top-right legend.

For our proposed system, there is an inherent tradeoff between higher accuracy in detecting adver-

sarial attacks and higher classification accuracy for clean data inputs, as illustrated in Table 5.4.

We assign varying weights to each application depending on the potential risks we might face in

the event of overlooking a successful attack and depending on our preferred accuracy in classi-

fying normal clean inputs. Our adaptive optimization algorithm (Equation (5.1)) determines that

the optimal settings for the RF Top x probability index should be as follows. In all types of at-

tacks, autonomous driving takes the Top 1 due to the potential for severe accidents if adversarial

or misclassified samples are not detected. In health care, FGSM takes Top 5, and the remaining

attacks all take Top 1. A face recognition application selects Top 3 for FGSM and Top 1 for the

rest. Finally, detecting inappropriate content on a system selects Top 14 for the FGSM attack and

Top 1 for the other attacks.

62



Table 5.4: AUC score comparison based on different applications preferences.

Applications
Accuracy based on best Top n selection from formula (1)

FGSM [33] acc. DeepFool [64] acc. CW [15] acc. PGD [60] acc.

Self driving Top 1 81.14 Top 1 89.84 Top 1 89.68 Top 1 90.04

Healthcare Top 5 77.66 Top 1 89.84 Top 1 89.68 Top 1 90.04

Face Recognition Top 3 79.06 Top 1 89.84 Top 1 89.68 Top 1 90.04

Improper content Top 14 70.14 Top 1 89.84 Top 1 89.68 Top 1 90.04

As discussed previously detecting misclassification samples could improve the accuracy of the

ResNet-34 model. To demonstrate this, we conduct an FGSM attack experiment using the same

applications and weights as in Table 5.4. We present the results in Table 5.5. First, we calculate

the accuracy without the misclassification samples using Equation (5.1). Then, we calculate the

accuracy again after including misclassification samples (Cb ·Nb and Ce ·Ne), as displayed in Ta-

ble 5.5. Our approach effectively enhances the AML detection accuracy on the ResNet-34 model,

which was initially predicted with 74.47 percent accuracy.

Table 5.5: AML detection accuracy comparison before and after including misclassification sam-
ples.

Applications w/o misclassification (%) with misclassification (%)

Autonomous driving 62.81 81.14

Healthcare 63.20 77.66

Face Recognition 61.66 79.60

Inappropriate content 60.08 70.14

63



5.4 Discussion

This section links our proposed ideas with the results and provides a more insightful summary

and discussion. We begin by justifying the models and the obtained results. Following this, we

elaborate on our model analysis, utilizing a high-accuracy DNN model. Next, we present the

challenges associated with this research. Lastly, we introduce our future plans for this project.

Justifications. Although the RF is a sufficient model in regression [56] and multiclassification

applications [8], it is not commonly used for image classifications because images have a large

number of pixels, resulting in high-dimensional feature spaces. In addition, image processing

is computationally expensive and time-consuming during training. However, we decided to use

RF as a secondary model for two reasons. Firstly, other models such as support vector machine

(SVM) [20] are not efficient in multiclassifications and are computationally expensive. Secondly,

we want to showcase the usefulness of having two different architectural models to overcome ad-

versarial attacks. Studies such as [19, 70] have used traditional ML algorithms to create AML

detectors. They adapted k-NN in generating their adversarial detectors by adding a k-NN model

between DNN layers during training to extract new features that can be analyzed and used to rec-

ognize clean and noisy samples versus adversarial ones. However, in addition to k-NN’s extreme

complexity and high computational performance, these studies found that different types of attacks

have varying resistances depending on the effectiveness of the attack in generating perturbations

to fool the model.

For example, Table 5.3 shows fluctuations in AUC scores in resisting each attack by every detection

algorithm, such as NNIF for FGSM, Deepfool, CW, and PGD, with scores of 87.23, 84.20, 94.58,

and 83.09, respectively. In contrast, our proposed system with the Top 1 setting is consistently

effective, regardless of FGSM outcomes, as it has a large number of clear samples that are not

affected by the attack at α 0.007; further clarification is provided later in this section. Therefore,

a new technique of attack that relies on backpropagation could harden the defense algorithms, as

illustrated in [19], when a detector trained on an FGSM attack is only tested on unseen attacks
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such as Deepfool. These findings indicate a decrease in performance when testing for unseen

attacks compared to seen attacks. Our proposed system, however, is tested on all adversarial attacks

without attack pattern evaluation nor DNN model changing and presents a generalization across

different attacks.

Additionally, the results of the FGSM attack in Table 5.4 show reasonable changes with Top k

based on an application’s weight parameters. This change from Top 1 in autonomous driving to

Top 14 in detecting inappropriate content is normal when we increase the cost of Cf . In this sit-

uation, Equation (5.1) significantly increases the security sensor to minimize the success rate of

adversarial attacks. In contrast, the equation reduces the model sensitivity when preventing inap-

propriate content because the risk of successful attacks is not so serious. This equation provides

freedom to the application developer to choose the best and most optimal defense setup.

Unlike the other attacks, Table 5.4 shows that we consistently use Top 1 for every test of Deepfool,

CW, and PGD attacks because of a couple of reasons. First, the variation in the success rate of

these attacks, as shown in Table 5.2, is based on the attack strategy and the strength to fool the

model. For instance, PGD is developed from an FGSM attack, where PGD has a selected number

of iterations to break the model, while FGSM applies one-time manipulation based on the ϵ value.

Additionally, the success ratio is exemplary or unrealistic. In real-world attacks, attackers have

no access to information about the ML models, the data used for training, the integrated security

level, etc. The regular success rate should be much less than that in the examples presented in the

table. An FGSM attack is an example of the successful usage of our proposed adaptive design

theory; otherwise, the system’s adaptivity is useless if the applied systems are extremely exposed

to adversarial attacks.

Model Scalability. Our experimental construction is based on the ResNet-34 model, which has

an accuracy of 77.47 percent. We select this model for our demonstration to match previous ex-

perimental setups and compare our output enhancement. To elaborate and to present our approach

efficiently, we train the ViT-B 16 model on the CIFAR-100 dataset and achieve 92.58 percent ac-
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curacy. Then, we attack the model with an FGSM attack. Our defense shows validity in detecting

adversarial attacks, for which we obtain 78.90 with Top 1 and 89.49 with top 40 based on the AUC

score. Comparing ResNet-34 with ViT-B 16, our approach selects smaller k on ResNet-34 for the

following reasons. First, the accuracy of ViT-B 16 before the attack is higher by 14 percent. Next,

the overall accuracy of random forest is low compared to DNN models, which makes k changes

regarding the primary model accuracy. Finally, the classical model accuracy is careless since the

DNN model is the main model the application relies on for classification, and we adapt the idea

of k to overcome this challenge.

Challenges. Challenges are found throughout this study. Foremost, the RF model is designed

professionally for structural and tabular applications such as stock market price predictions that

use a specific number of vectors; simple image classification; or recognition tasks, such as satellite

imagery object detection. However, the RF model capability can be limited when faced with

large-scale training involving a significant number of classes, such as when using the ImageNet

dataset [24] with its 1000 classes and 1.2 million images. To tackle these challenges, a DNN

model was developed. It excels in extracting features from high-dimensional vector spaces and

large datasets while requiring less time for training. We use this RF model as a prototype for

our analysis, and we highlight that a potential robust defense mechanism exists if we can adopt a

different architecture.
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CHAPTER 6: IMAGE AUTHENTICATION IN EXTRA-MILITARY:

CHALLENGES, OPPORTUNITIES, AND CASE SCENARIO

In this chapter, we discuss the different types of big data used in the military. We provide a

flowchart for fusing data from various sources, including public ones like social media platforms.

The flowchart helps gather, prepare, authenticate, and provide the data for decision-making to

expedite military operations. This study examines the challenges involved in obtaining data from

various sources and its security, including authentication of images using our approach of image

authentication. We also demonstrate the impact of our approach on improving decision accuracy.

Additionally, we discuss other security challenges and suggest solutions to them. 1

6.1 Big Data type in the Military Domain

To fully comprehend the potential of big data in the military context, we first need to identify the

data categories that are directly and indirectly related to the field. Drawing from the ideas pre-

sented in [81], which focuses on transportation data, we have introduced the concept of Multiple

Data Sources (MDS). This concept is then used to describe the military scenario and support de-

cisions based on different data sources. The MDS is classified into two main groups: IMD and

EMD, as illustrated in Figure 6.1. This taxonomy is a basis for discussing how the EMD can

support strategic military decisions, which was only made possible due to the significant data phe-

nomena. Furthermore, we delve into the different aspects that influence the use of EMD, such as

data privacy/security, integrity, data acquisition, fusion, and learning approaches.

1The contents of this Chapter are based on our publication that is submitted to IEEE ComMag 2023
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Figure 6.1: Military Data Space.

6.1.1 Intra-Military Data

The IMD data used by the military comes from two main sources: infrastructure with real/virtual

sensors and operational data, such as intelligence and logistics. The infrastructure of the military

involves the use of various electronic systems to detect and track objects on land, in the air, or in
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the water. These systems include:

1. data collected by sensors such as radar, sonar, cameras, and other electronic systems that can

detect and track objects in the air, on land, or in the water,

2. vehicular sensors that provide the status of the military units and

3. wearable/smart and Internet of Things (IoT) devices support the infantry in the field with

GPS position, maps, health measurements, live cameras (high resolution, infrared), etc

The data collected can be used for a variety of purposes, such as identifying potential threats,

monitoring activity, targeting enemy forces, and keeping track of infantry conditions. The Inte-

grated Master Data (IMD) does not only rely on raw data from sensors but also combines infor-

mation obtained from various sources to create a more dependable and unified operational view

as required by the Joint All-Domain Command and Control (JADC2) and Common Operational

Picture (COP) systems. The intelligence data can also help military forces understand the enemy’s

capabilities and intentions, identify possible dangers, and plan their operations accordingly. Fur-

thermore, the logistics data provides essential information on supplies, equipment, and personnel,

including transportation schedules, inventory levels, and maintenance records. This information is

crucial to ensure that the military forces have the necessary resources to carry out their missions

effectively.

6.1.2 Extra-Military Data

The EMD stands for the subset of data provided by real and virtual sensors, either individually or

fused. This data can describe the environment around the military operation, not just geograph-

ically but in other ways as well. Two primary sources of data can support military operations:

the media (such as social media, news, and government reports) and the infrastructure (such as

transportation systems, weather, and authorities). These sources generate a large amount of highly

variable data, ranging from user-generated content like photos and feelings related to real events
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such as accidents and terrorism, to traffic and weather conditions, as well as people’s and drivers’

behavior.

The rapid urbanization that has occurred in recent years has put a strain on Information and Com-

munications Technology (ICT) to enhance the quality of life for people living in cities. This has

resulted in the emergence of the concept of Smart Cities, which proposes solutions to the problems

that have arisen from urbanization, such as issues with mobility, safety, and health. The increasing

number of sensors and mobile devices in urban areas (known as IoT) has resulted in the creation

of large amounts of data, also known as Big Data. Communication technologies have made it pos-

sible to use this data through the cloud to design intelligent and efficient systems that can cater to

people’s mobility, health, safety, and economic demands.

Based on the potential advantages of smart cities, we propose that the military can leverage the

knowledge and data offered by civilian systems in urban areas across all aspects of their operations,

including the political and ground level. We further suggest potential scenarios where such synergy

could be useful.

Smart cities are equipped with a variety of sensors, including inductive loop traffic detectors, cam-

eras, radars, traffic lights, weather sensors, and authorities reports about emergencies and disas-

ters. These sensors provide information about the state of vehicles, traffic conditions, weather,

and drivers’ behavior. Inductive loops are a type of sensor that can detect when a vehicle passes

a certain point and its speed. They can also be used to classify types of vehicles based on their

unique signatures. Cameras and radars can detect a vehicle’s speed and type. Additionally, cameras

use advanced recognition algorithms powered by AI to detect potential threats such as terrorism,

incidents, and disasters and notify authorities accordingly. The infrastructure can also provide in-

formation about groups of people and has been used in surveillance systems to identify potential

threats at different levels of detail. Therefore, the civilian infrastructure can provide contextual

information and has the potential to support tactical and strategic military domains.

The concept of data fusion has been discussed and explored in the literature. With access to various
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types of data, it aims to enhance data quality and coverage by adding different perceptions and

descriptions of an event through multiple data providers. For instance, in the event of a disaster

in an urban area where civilians are possibly injured, the fusion of data from various sensors

available in a city, such as transportation, weather, cameras, and health systems, can assist military

operations and smart civilian applications. This can be done by providing valuable information

such as identifying non-damaged roads and fast paths for rescue operations, forecasting weather

for the rescue mission, reserving specialized medical treatment nearby, and monitoring the causes

of the event to track possible terrorist actions.

Although infrastructure sharing can provide reliable data, it may not always cover all areas to de-

scribe events accurately. Therefore, media sources such as social media, news outlets, and govern-

ment reports can be used to understand how the locals behave and identify socioeconomic factors

that may contribute to criminal activity or prioritize assistance in a particular region.

Numerous initiatives have been launched in recent years, partly in response to Russia’s war and

the rise of extremist movements against democracy in countries such as the U.S. and Brazil. An

example of such initiative is the non-profit project ACLED (Armed Conflict Location & Event Data

- https://acleddata.com/), which provides real-time, global data on political violence and

protest events. ACLED analyzes and publishes high-quality, disaggregated data on conflict and

protest activity in over 100 countries. Researchers, policymakers, and journalists widely use their

data to track and analyze events.

A notable example of EMD is the DATTALION database (https://dattalion.com). It is

the largest open-source collection of photo and video footage from the war between Russia and

Ukraine. The primary aim of this database is to counter the spread of misinformation by the

Russian government. The photos in this dataset are categorized into three groups: (1) Official,

collected from verified sources such as government officials, city mayors, regional heads, and

government organizations. (2) Trusted, coming from sources that are considered indirectly verified,

like reputable news outlets, reliable Telegram channels, and official pages of journalists. (3) Not-
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Verified, gathered from sources that do not have their own content verification procedures. These

could be Telegram channels, personal pages and groups on social media, Twitter accounts, and

other social network platforms.

The United Nations Development Programme (UNDP) utilizes machine learning algorithms and

big data to identify infrastructure damaged by war in eastern Ukraine. The algorithms are trained

by a semantic damage detector, which uses satellite imagery and ground-based photos to analyze

and identify potential damage to buildings, roads, and bridges in new images. The purpose of this

project is to assist local authorities and humanitarian organizations in prioritizing their rebuilding

efforts and improving the accuracy and speed of their assessments. The project has successfully

identified and mapped damaged infrastructure, and it is expected that this approach can be applied

in other areas affected by conflicts.

EMD encompasses various data categories, including social media data that local users share. This

data can be utilized to obtain information that cannot be captured by other sensors. For instance, it

can be used to locate groups of people, who may be injured or hiding and require rescue. Station-

ary sensors on buildings and surveillance cameras can also be used to track humans and identify

their location. Combining social media data with other sources can help detect enemies and plan

effective maneuvers against them. Hence, all these sensors can provide a more comprehensive

view of the disaster/incident situation, which can aid military operations.

Transportation-related sensor data, such as traffic surveillance cameras in smart cities, can also

support emergency rescue operations and military logistics. By analyzing traffic data, congestion

or blockages due to incidents like accidents or protests can be detected. This leads to better route

planning and traffic management, such as controlling traffic lights and digital signs, during military

operations. Additionally, fusing all the collected information can improve the overall understand-

ing of the event and enhance operational planning and management in urban areas.
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6.2 Use Cases

This section will discuss two use cases that utilize EMD to enhance the available information. We

achieve this through a data fusion framework that combines different data sources and maintains

the integrity of images shared via social media. This approach supports strategic decision-making

based on COP and systems like JADC2.

6.2.1 Data Fusion

Methodology. In order to support military decisions, it is important to fuse big data in a spa-

tiotemporal manner. To achieve this, we have designed the Fusion Multiple Data Sources (FMDS)

framework [121]. This framework fuses various types of data sources and performs functions such

as collecting, preparing, and processing data to generate enriched information. We have imple-

mented FMDS to demonstrate the enrichment of spatiotemporal data using transportation system

data. However, it is not limited to this subject and can be extended to different types of data. The

ultimate goal is to improve data quality, enhance Command and Control (C2) systems, and support

the COP/JADC2. In the following, we will briefly describe the main functionalities of FMDS, as

illustrated in Fig. 6.2. We will also discuss the benefits of fusing big data by presenting numerical

results.

• Data Acquisition FMDS collects data from various sources and stores it in standardized

CSV files using a set of configured parameters such as region and request frequency (Fig.

6.2 (1)).

• Data Preparation The input dataset undergoes a standardization process that converts dif-

ferent feature names and types into a uniform representation, as shown in Fig. 6.2 (2). This

process includes various data mappings that can be configured within the framework setup

to generate uniform data types. For instance, it involves mapping descriptive values into

a numerical representation or reducing data granularity. The map-matching process is also
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Figure 6.2: Workflow of the data fusion framework.

prepared, which involves creating all input files required, including a Shapefile (SHP) from

OpenStreetMap (OSM) based on a defined geo-location. Additionally, the collected informa-

tion is transformed into a usable representation for the map-matching procedure. In certain

cases, the framework utilizes feature extraction methods such as Natural Language Process-

ing (NLP) or image processing to extract the information from a given data type.

• Data Processing In Fig. 6.2 (3), we see the data processing that involves three sub-tasks,

namely, temporal data fusion, spatial data fusion, and data export. To ensure data integrity,

we use various data processing methods, such as validation of incident reports or image

authentication (discussed in Section 6.2.2), to filter out non-trusted or biased information

before the fusion process.

For temporal fusion, we group data within an arbitrary time window, such as 10 minutes,

hourly, or daily, to allow comparison of different data types. For spatial fusion, we use map-
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matching, a process that aligns GPS points under a defined degree of accuracy based on

an underlying road network. This is necessary due to the varying precision of GPS reports

resulting from different data sources. Map-matching provides a balanced accuracy level on

the same road network.

The enriched and updated geo-information is then added to the input dataset. The data fusion

process combines the fused input dataset with the map-matching output, using the primary

key and different grouping methods to optimize the process.

• Data Usage Enriched data can be exported in various formats, providing ample opportuni-

ties for both military and civilian applications. This data helps to enhance the information

available for a given urban area, enabling better decision-making in the context of smart

cities and military operations. The FMDS outputs support spatiotemporal analysis through

the creation of statistics and visualizations such as heat maps, density plots, and bar graphs,

which characterize the available information under various spatial and temporal aspects.

Results. In order to showcase the advantages of data fusion, we will present the results of a

previous evaluation conducted on the FMDS framework. The experiment gathered four types

of civilian transportation data from seven different providers over a period of nine months. The

framework was able to increase the data coverage by 173.

Moreover, the combined data was utilized to conduct a thorough examination of the gathered

information. Such data analysis enables the detection of specific issues and can aid in devising

strategies to enhance transportation networks. We presented a range of statistics and visualizations

to contribute to the analysis of spatiotemporal data.

We presented two data applications using the fused dataset, demonstrating data fusion’s support

of such applications. Our evaluation validated this hypothesis, achieving positive results for both

traffic estimation and incident classification.
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Figure 6.3: Image-Fact-Checker (IFC).

6.2.2 Image Authentication

Methodology. In our previous work [3], we presented an image authentication system that can

be used in real-world applications. This system utilizes the Twitter and Facebook platforms to

ensure the integrity of images. To generate a sensitive Perceptual Hashing (pHash) for detecting

any content manipulation, we used the SMPI images dataset [6], which was collected from these

platforms. Our model employed a Convolutional Neural Network (CNN) and Fully Connected

Layers (FCC) to extract image features, and Locality Sensitive Hashing (LSH) to construct the final

hash. For better accuracy, we also implemented contrastive loss, which maximizes the differences

between original and manipulated images, and minimizes the similarity between each category

and its augmentations. The final output of the model is a fixed-length vector representation for an

image, which has a length of 1024 bits.

Ensuring the integrity of images is crucial to support both urban military operations and civilian
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systems. In the absence of verification, the combination of multiple sources can be vulnerable to

manipulation. In order to supplement our data fusion framework, we have developed the Image-

Fact-Checker (IFC), which can detect any fraudulent images and thereby ensure the reliability of

the data, as depicted in Fig. 6.3. IFC functions as an authentication system that is authorized by

relevant authorities to combat the spread of misinformation.

In order to maintain the authenticity of images, we believe that the first person to publish an image

(such as a social media platform) should play a collaborative role in reducing the spread of false

information. This can be achieved by uploading the image to the system for the first time. The

system will then generate a new version of the image that includes a logo or an icon indicating

that the image has been verified before publication. Users on social media platforms can validate

the image through the IFC system. Additionally, IFC provides a pHash string representation of the

image that can be included in the post’s description or on other Internet websites. The data fusion

system in Figure 6.3 acts as an end user of IFC. It validates crawled images from social media

platforms to determine if IFC can trust them before applying spatiotemporal fusion to produce

enriched data outputs.

Results. Utilizing the IFC system increases the reliability of the data provided. Additionally, we

can ensure the authenticity of each posted image from a single source to detect any manipulation.

In the event of a war, such as the ongoing conflict between Ukraine and Russia, imagine an attack

on a city where civilians reside. Towers and buildings are set ablaze or destroyed, and some

individuals are injured or manage to escape. Some may make an emergency call, while others may

use their phone cameras to capture images of the attack. As we have seen since the war began on

February 24, 2022, numerous images of the conflict have been posted on social media and collected

by DATTALION. However, due to trust issues with the initial publishers, the utilization of these

images is somewhat limited.

Now, if we pass the data collected by DATTALION through IFC and have each image verified

and sent to the relevant rescue organizations, the United Nations, NATO, or other organizations
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Kyiv Damaged school

Kyiv Buildings Damaged

 Date: Oct 10th, 2022
 Data of crawling: Oct 12th, 2022
 Description: Damaged   school 
 premisses after   missile attack
 Location: Kyiv
 Feature extraction: raw data 
 generated by ResNet-18 model
 pHash: 0xbef381956abbd...
 First publisher ID: 4836404923

 Date: Oct 10th, 2022
 Data of crawling: Oct 12th, 2022
 Description: Apartment 
 buildings, transport routes,   cars 
 damaged
 Location: Kyiv
 Feature extraction: raw data 
 generated by ResNet-18 model
 pHash: 0x3abcdff328817...
 First publisher ID: 7827629879

Figure 6.4: Extracted image details with IFC.

Source: Dattalion dataset

affiliated with the war, we can respond to each attack more quickly and reasonably. Furthermore,

the verified images can also be used as valid evidence against the Russian regime.

In Fig. 6.4 (left), you can see two images that were shared on social media by regular users.

These images were collected from a data source called DATTALION, which has many images that

cannot be trusted due to their unknown sources. However, if we put these images through the

IFC mechanism, we can increase the reliability of the dataset. The IFC mechanism adds a pHash

to each image along with its related information like the image description, extracted feature,

location, event date, date of crawling, and first publisher Twitter ID (as shown in Fig. 6.4 on

the right). Afterward, these images are stored in the IFC database and can be used for duplicate

detection, verification, and other applications as needed.
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6.3 Challenges and Opportunities of Big Military Data

This section delves into the possibilities and challenges associated with the application of big data

in the military scenario, specifically EMD and IMD. It discusses crucial aspects like data fusion,

security, privacy, integrity, and the utilization of AI while proposing directions for the development

of the next generation of intelligent military applications.

6.3.1 Data Fusion

The process of merging the different types of data that provide information to the MDS is still

challenging and needs further processing and treatment. In order to make use of the additional in-

formation obtained from various data sources, it needs to be standardized into a consistent format,

which permits spatiotemporal fusion. Standardization involves several data mapping techniques,

changes in granularity, and conversion of features and time formats. When working with images

and text from the media, we also require feature extraction methods such as NLP and image pro-

cessing to extract useful information from these data types.

6.3.2 Data Security, Privacy, and Integrity

Data Security and Privacy. Ensuring security and privacy is a top priority in our system design,

as it involves gathering and storing information in a database. Security measures are put in place

to prevent unauthorized access and modification of data within the system. As end-users need to

establish remote connections to access the data fusion platform, they are exposed to various threats

that can cause disruptions, alterations, or even destruction of the system’s digital services. One

such common threat is a Man-in-the-Middle (MITM) attack, which enables an attacker to hijack

the connection between the user and the server for nefarious purposes such as manipulation or

eavesdropping.

Protecting personal information is important for individuals’ privacy. It includes sensitive data
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like names, addresses, and social security numbers. While gathering data from open sources like

Extra-Military Data can improve system security, it also raises privacy risks for regular users. They

could become vulnerable to attacks, which might reveal or steal their data. According to a report

by IBM Security and Ponemon Institute2, cyberattack costs have risen by 2.6% in 2022 compared

to the previous year. The average cost of a data breach globally is 3.35 million US dollars. This

shows that most organizations have experienced cyberattacks, with 83

Ensuring the security of our digital systems is of utmost importance. We can achieve this by

implementing various techniques such as PKI security infrastructure, data and user information

encryption, and incorporating firewalls and intrusion detection tools. By integrating these security

measures into our system, we can significantly reduce the system’s vulnerabilities and enhance the

safety of both data and users.

Data Integrity. Ensuring data integrity in the Fusion MDS is crucial to prevent manipulated

data from impacting both civilians and military operations and to maintain trust in data providers.

Obtaining data from social media platforms like Twitter and Facebook increases the likelihood of

receiving misinformation. Fake news is intentionally created to persuade people to adopt erroneous

opinions, and propagandists often use it to spread false information and exert political influence.

The war statistics in Ukraine is a prime example of the widespread dissemination of disinformation

from the very beginning of the conflict, leading social media platforms like Twitter to update their

policies and provide reliable data to their users [61]. Twitter reported that within the first month of

the war, it received around 38.6 billion impressions of real-time tweets and identified over 900,000

unique tweets containing links to Russian state-affiliated media. This put Twitter in a difficult

position where it had to restrict some services for the warring parties.

Images on various platforms can be used to convey complex ideas and events quickly. For instance,

a single photo of a threat can immediately communicate the need for emergency rescue operations,

allowing quick action to save lives or change transportation pathways. Moreover, images can add

2https://www.ibm.com/downloads/cas/3R8N1DZJ
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emotional context to a news story, making it more relatable to readers. However, manipulated

images often spread faster and receive more interactions than real ones. A study of Twitter images

during Hurricane Sandy [35] revealed that approximately 90% of retweets were from tweets with

fake photos.

The extensive media coverage of global crises such as the Ukraine war increases the risk of

spreading misinformation. To counter this, public fact-checking websites like snope.com and

norc.org investigate critical news worldwide using human resources. However, in the case of

real-time events during wars, it can take a long time to manually verify sources when unknown

individuals on social media platforms share images. Hence, there is a pressing need and an oppor-

tunity for automated systems to provide image authentication and detect misinformation.

6.3.3 Artificial Intelligence (AI)

The rapid progress of AI applications owes much to big data and computing power availability.

The quality of AI depends on the data fed to Machine Learning (ML) models during training.

Generally, the more data we have, the better we can train the model to avoid overfitting. However,

the limited availability of public data in the military domain poses a challenge to studying past

and future developments. Although we expect that the revolution in autopilot, drones, intelligent

missiles, security surveillance cameras, etc., relies on big data owned by military agencies, the

limited availability of this data can be explained by the need to protect individual’s privacy and

security and prevent misuse by radicalized, violent, or enemy groups.

Apart from the limited availability of big data, there are other challenges to consider for safety

and security in AI, such as the potential failure of AI functionality due to hacking incidents. The

architecture of AI systems, such as DNN used in computer vision applications, must be more

secure, posing a significant challenge. Although this approach pushes computer vision applications

forward, the complexity and sophistication of DNNs make it increasingly challenging to ensure

their security against adversarial attacks. To date, no single method or approach has been proven
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to be completely secure against such attacks.

An adversarial attack is a type of cybersecurity threat that specifically targets AI systems. Attack-

ers use deceptive data to fool ML models, which can misclassify manipulated data that human

eyes cannot recognize. Adversarial attacks are categorized into three main groups based on the

attacker’s knowledge of the targeted AI system: white-box attack, grey-box attack, and black-

box attack. Techniques such as the Fast Gradient Sign Method (FGSM) for computer vision and

semantic attacks for NLP are used to identify adversarial attacks in various AI applications.

Several defense mechanisms have been introduced recently to tackle one or more adversarial at-

tacks. The authors of a recent study categorized adversarial defense mechanisms in computer

vision into three groups: a defense that targets the model by modifying the model itself for robust-

ness against adversarial attacks defense of modifying the input sample for perturbation removal

defense of adding external modules for adversarial sample detection In addition, Federated Learn-

ing (FL) has emerged as a technique for training ML models, where the data cannot be exposed,

ensuring data security and privacy. Although FL cannot be considered a defense technique against

adversarial attacks, it can hide sensitive data and expose only part of the model or parameters,

making it a valuable technique for military applications.

6.3.4 Networking

Although the primary focus of this work is centered on the data perspective and the importance of

utilizing reliable data from various sources to support military operations, it is equally important to

recognize the significance of networking in delivering data and services effectively. Communica-

tion systems that are dependable and efficient are crucial in both military and civilian operations,

particularly in remote and challenging environments. Wireless communication is especially im-

portant in network-centric military operations. These networks incorporate various technologies

such as High Frequency, Very High Frequency, Ultra High Frequency, Satellite Communications,

Wi-Fi, and LTE 4-5G. While some of these technologies excel in long-range coverage, they have
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limited bandwidth, high latency, and are susceptible to disruptions. Conversely, others prioritize

reliability with a shorter range, greater bandwidth, and lower latency.

Information-Centric Networking and Software-defined Networking are crucial network paradigms

that enhance data dissemination and network orchestration [53]. These paradigms emphasize the

importance of data fusion in disseminating data with limited network resources. In the military

network infrastructure, especially in tactical situations, there can be issues such as limited net-

work resources, security concerns, high delays, and low bandwidth when disseminating data. To

overcome these limitations, the military is considering using civilian networks such as 5G as sup-

plementary infrastructure to gather extra-military data and share non-classified information.

The recent conflict between Russia and Ukraine has highlighted how vulnerable communication

networks can be. Russia’s attacks on infrastructure caused internet outages, which can be detrimen-

tal during wartime. SpaceX’s Starlink has come up with a solution to this problem with its satellite

internet constellations. This technology has demonstrated the benefits of using civilian network

infrastructure during times of war. Although it shows promise in enhancing internet reliability

for both data and emergency communication, it still faces challenges in terms of cybersecurity,

coverage, reliability, and cost-effectiveness.
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CHAPTER 7: CONCLUSION

7.1 Summary

The rise of social media has led to a rapid increase in disinformation, including fake images that can

significantly impact public behavior, attitude, and belief. Detecting manipulated images has be-

come crucial for maintaining public trust, and effective authentication is essential. This dissertation

comprehensively evaluates multiple state-of-the-art perceptual hash algorithms for detecting image

manipulation on Facebook and Twitter. Perceptual hashing offers advantages in detecting image

manipulation while tolerating typical image processing or resolution changes on user-uploaded

images. Our studies show differences in image processing between the two platforms and pro-

pose new approaches to finding optimal detection thresholds for each perceptual hash algorithm.

Additionally, a new and robust perceptual hash authentication approach is presented, utilizing a

self-supervised learning framework and contrastive loss, and outperforming state-of-the-art meth-

ods. A fake image sample generator is also developed to cover known image attack types.

Our dissertation presents a new method of identifying adversarial attacks that surpasses existing

models. We incorporate a classical machine learning model alongside the primary DNN model

for image classification. The secondary model is designed differently from the primary model to

counter backpropagation-based adversarial attacks. Our proposed detector does not require any

changes to the DNN model or learning attack types, and we tested it on the CIFAR-100 dataset.

However, we faced challenges during the study, such as the limitations of the RF model for large-

scale training with many classes.

In addition, the dissertation demonstrates the benefits of adapting the image authentication sys-

tem in a real-world environment by reviewing a military application. It introduces a workflow

of decision-making based on fusing data from different resources to accelerate accurate decisions

during a war situation. The study covers the challenges and, at the same time, suggests reasonable

solutions using state-of-the-art methods.
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7.2 Future Work

We anticipate advertising our introduced ideas for public and private organizations to fight mis-

information in the cyber world. By that, we should continue to update the work according to the

technological changes, study different media types, and participate in continuing to suggest more

solutions. The following are open areas to be studied and investigated in depth.

Classical ML applicability & scalability. Scalability in classical machine learning can be chal-

lenging, as previously discussed. To tackle this issue, first, we suggest using the DNN model’s

extracted embedding. After that, the embedding feed to the RF model for training. This strategy

may increase the accuracy of RF and create a more effective detector. By combining the strengths

of both models, we can benefit from DNN’s superior feature extraction and RF’s outstanding ability

to mitigate adversarial attacks.

DCT defense mechanism. Utilizing the DCT approach to extract feature vectors from a CNN

model can be a promising method to prevent adversarial attacks in our future work. DCT has been

used in image processing and feature extraction for over a decade. Its simplicity and positive results

make us optimistic about integrating it as a layer in the entire authentication pipeline. This could

be done before generating the pHash and after receiving the feature value from the SimCLR model,

the embedding. We expect that DCT may remove any added perturbations caused by adversarial

attacks since it compresses inputs to a short representation.

Different threat model. Our proposed system has a high chance of success, even if the attacker

is familiar with the random forest method. This is due to the fact that most adversarial attacks in

computer vision rely on gradient descent, which is a primary function in DNN models. Unlike

DNN, classical machine learning has a different base, such as in RF, and does not utilize the

gradient descent technique. However, we still need to study how attackers can potentially bypass

our defense measures, including testing if an attacker can deceive our detection methods while

being aware of the second approach used to identify adversarial attacks.
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NLP Authentication. The idea of image authentication can be applied to text-based news as well.

A possible implementation is developing a pHash algorithm that can determine if a piece of text-

based news has been altered in terms of its content, tone, mood, and factuality while still allowing

for minor changes in wording. This proposal could help in the fight against fake news, which is a

significant concern globally. The architecture design can also be used in language understanding

and generation using transformer architecture, such as BERT and GPT.

The suggested design involves a pre-processing stage where sentences are categorized as either

positive or negative matches based on their similarity. An encoder is then used to generate the

embeddings, such as BERT, and contrastive loss algorithms are employed for learning. Finally, the

model is represented as a string pHash that can be used to verify the authenticity of the news.

Moreover, it could be generally easier to train a secondary classical ML model for some NLP

tasks compared to image processing because of the size of the image vectors. Images are typically

represented as 3D arrays with 32x32 pixel values for each dimension, each with a probability of

256 values for each pixel. Compressing or resizing the inputs can lead to a loss of quality and

make it harder for the model to learn the details. As a result, good computer vision models usually

have embedding sizes between 1024 and 4048. In contrast, some NLP models, like BERT, use

embeddings of size 768 for learning. This makes traditional classical models a suitable approach

to defend against adversarial attacks.

Hierarchical-Graded Classification. In traditional classification, models treat all classes as unique

and independent of each other. They arbitrarily label N classes with the labels of 1, 2, 3,. . . ., N.

When conducting object classification, the result is either ”1” (match) or ”0” (mismatch). However,

in reality, each class among the predefined N classes has its own physical meaning and certain re-

lationships with all other classes. In any application field, all classes are correlated with each

other. This means that traditional classification does not provide a good representation of such

correlations.

On the other hand, in Hierarchical-graded classification, the output is not binary with only a value
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Cat Lion HawkDog Wolf Pigeon Butterfly Dragonfly

Figure 7.1: Hierarchical-graded classification.

of ”0” or ”1”. Instead, the classification output C will be a real number between ”0” and ”1”. Let

us use an example to illustrate the concept. Suppose an animal identification problem has eight

classes: Cat, Lion, Dog, Wolf, Hawk, Pigeon, Butterfly, and Dragonfly. In traditional classification,

they are randomly ordered and labeled as 1, 2, 3,. . . , 8. In our suggested Hierarchical-graded

classification scheme, the application expert first defines the hierarchical structure to represent

these eight classes’ relationship as in Figure 7.1.

From Figure 7.1, If an object is ”cat,” then the classification value C will be something like, given

the classified class by ML as follows:

• ML output = Cat, C = 1, and prediction matches a perfect match.

• ML output = Lion, C = 0.75, and prediction matches at the second level.

• ML output = Dog/Wolf, C = 0.5, and prediction matches match at the first level.

• ML output = Hawk/Pigeon/Dragonfly/Dragonfly, C = 0, and prediction does not match at

the first level.

In this way, we can better evaluate ML classification performance, especially when misclassifi-

cation occurs due to intention attacks, such as adversarial attacks. This is due to the size of the

perturbations attackers need to change the correct labels to different labels from different branches.
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In addition, This proposed hierarchical-graded classification will be more useful when the appli-

cation has a large number of classes (such as 50 or 100) and when the misclassification rate is

high.
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