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Abstract—Social media nowadays has a direct impact on
people’s daily lives as many edge devices are available at our
disposal and controlled by our fingertips. With such advance-
ment in communication technology comes a rapid increase of
disinformation in many kinds and shapes; faked images are one
of the primary examples of misinformation media that can affect
many users. Such activity can severely impact public behavior,
attitude, and belief or sway the viewers’ perception in any
malicious or benign direction. Mitigating such disinformation
over the Internet is becoming an issue with increasing interest
from many aspects of our society, and effective authentication for
detecting manipulated images has become extremely important.
Perceptual hashing (pHash) is one of the effective techniques for
detecting image manipulations. This paper develops a new and a
robust pHash authentication approach to detect fake imagery on
social media networks, choosing Facebook and Twitter as case
studies. Our proposed pHash utilizes a self-supervised learning
framework and contrastive loss. In addition, we develop a fake
image sample generator in the pre-processing stage to cover
the three most known image attacks (copy-move, splicing, and
removal). The proposed authentication technique outperforms
state-of-the-art pHash methods based on the SMPI dataset and
other similar datasets that target one or more image attacks
types.

Index Terms—Perceptual hashing, Computer security, Social
media, Fake news, Digital forensics

I. INTRODUCTION

Nowadays, the spread of disinformation over the Internet is
an increasingly important and impactful social and technical
issue to be studied and analyzed. Social media platforms
that connect all nations over the world into one place with
the support of sharing all media content types (text, video,
image, and sound) aggravate the false information spread.
Study [1] shows that fake images on social media increase
user engagement, irrespective of the depth of the manipulation.
Fake news and information could cause harm to others if
not detected early. Figure 1 shows a real-world example of
fake image spreading over the media. The altered photograph,
investigated by Snopes.com [2], shows a billboard to hire
‘crypto bros’ advertised by McDonald’s. This faked image

Fig. 1. Originals images (a and c) and their altered copies (b and d) that
spread over the network.

spread along with the crush of some cryptocurrencies leaving
a cruel emotion to those investors who lost their money.
Another manipulated image spread over the Internet shows
George W. Bush at a book reading at school in Houston in
2002 holding the book upside down with a false caption [3].
Recently, many platforms activated fake detection features on
their platforms to reduce or eliminate false information, e.g.,
COVID-19 misleading information [4]. But there are still many
technical challenges to research and conquer in order to win
the war against disinformation spreading.

Perceptual Hashing (pHash) is an alternative technique to
replace cryptographic hashing for media authentication in
many platforms, such as social media, where the multimedia
content could be legitimately transformed by the platforms [5].
In such case, a single bit modification would invalidate the au-
thentication function by traditional crypto-hashing techniques.
Intensive work on pHash has been introduced in different
applications such as image near-duplicates [6], search engines
[7], image retrieval [8], and image authentication [9]–[15]. The
research on these applications studies the images’ similarities



to detect content-preserving manipulations that do not change
an image’s content.

The development of previous works relied on different
benchmarks, such as CASIA [16], USC-SIPI [17], and PS-
Battles [18]. The majority of the datasets used in these previ-
ous papers were manually crafted or applied significant alter-
ations in the images, making the developed models unverifi-
able by real-world applications nor effective for small content-
alteration. To demonstrate this issue, authors of [19] developed
a new benchmark that targets real-world applications. It shows
a weakness on image authentication algorithms on real-world
application using Facebook and Twitter platforms images.

In addition, we conducted a literature review on pHash
and found that few works have been introduced for image
authentication using machine learning, such as [11], which
shows that Convolutional Neural Network (CNN) is effective
in developing a pHash system with high accuracy. However,
at the evaluation step in [11], they used the same JPEG
compression with quality factors of {1, 5, 10, 30, 50, 70, 90,
95} at its training stage as content-preserving image operation.
In real-world applications, the quality factor could be any
number between 1:100, which might create an evaluation bias
in their proposal.

The success of related work on image classification [20],
[21] inspired us to conduct investigation of different CNN
approaches for image authentication. Regardless of different
CNN architecture design, such as layer length, channels, and
kernel size, the output of each CNN model provides a best
image feature representation for classification. We found these
vector representations can be projected and exploited for image
hashing with a smaller hash length to keep more space in the
memory. In short, the projection vectors of the last layer were
used and converted into buckets using random projection of
Locality Sensitive Hashing (LSH) [22].

Inspired by [10], [11] that use machine learning for image
authentication, we integrated a well known CNN network [23]
to enhance image hashing generation. We propose a model to
detect manipulations on User-generated content, and evaluate
it using Facebook and Twitter as case studies.

Our contributions to this study are as follows:

• An alteration technique is designed for better detecting
copy-move, splicing, and removal operations for the pre-
processing phase.

• Self-supervised framework using a ResNet-18 [21] model
is constructed and trained to obtain the image features.

• Locality Sensitive Hashing (LSH) is integrated with a
deep CNN at the test phase to construct the final hash.

• Our method is compared with state-of-the-art methods us-
ing SMPI dataset [19], IMD2020 [24] and COVERAGE
[25] and showed best performance among them all for
detecting manipulated images.

The remainder of this paper is organized as follows: We
review related work in Section II. Our proposed approach
is described in Section III-B. We evaluate our technique and
discuss our results in Section IV and Section V, respectively.

Finally, we draw our conclusion and discuss future works in
Section VI.

II. RELATED WORK

Many image authentication works are shallow approaches
that use traditional engineered algorithms. However, in recent
years awareness of machine learning approaches increased
with the success of deep learning models such as AlexNet
in ImageNet classification challenge and promising results in
other computer vision problems. Therefore, it is reasonable to
say that most image authentication algorithms are built on top
of shallow or machine learning paradigms. The following is an
overview of most recognized works on images pHash under
these two approaches.
Shallow approach– The followers of this model such as
Discrete Cosine Transform (DCT) [26] provides an excellent
work in representing images from different scales with small
digits (e.g., 64 bits) to express the number of discrete data
points. These data were evaluated in terms of the sum of
cosine functions with different frequencies to convert it from
the spatial domain to the frequency domain. Ring Partition and
Invariant Vector Distance (RPIVD) is another shallow model
introduced by [9]. They divided the image into rings and
applied four statistical measures (mean, variance, skewness,
and kurtosis) to each ring to extract the features. Both models
are effective on image authentication based on CASIA [16],
USC-SIPI [17] datasets but limited at SMPI dataset [19].

The authors in [12] provide a perceptual image hashing
method by combining a statistical feature-based approach
with visual perception using Watson’s visual model theory.
The statistical feature-based generated by extracting key-point-
based features using the input image to scale-invariant feature
transform (SIFT) algorithm. The visual perception is received
using Watson’s visual model to preserve sensitive features that
are important for humans perceiving image content processing.
The accuracy of this model overcame the [9], [26] on the same
benchmark ground.
Machine Learning Approach– Learned algorithms on the
other side are trending these years on image classification,
retrieval, and authentication since this approach extracts better
feature vectors. Reference [10] proposes a data-driven image
fingerprinting algorithm based on a neural network approach
with two training stages: pre-trained and fine-tuning. The
first stage uses a Denoising Autoencoder (DAE) to restore
a distorted image to its original state. There are 72 dis-
torted images for each original image, including nine different
operations, such as JPEG compression and Gaussian noise.
Each function has different strength parameters that generated
the 72 copies. The main goal of this network is to reduce
the discrepancies between original and distorted images. The
fine-tuning approach further reduces the overlap between the
probability density curves of fingerprint distances calculated
from perceptually identical and irrelevant image pairings. This
method is akin to restricting fingerprints into a region similar
to the original image for distorted images.



Fig. 2. Sample image posted on Twitter platform that has pHash on the Image
description feature.

The authors of [11] introduce an image pHash scheme based
on the CNN framework for feature extraction and a fully
connected layer at the end of the network for final image
hash sequence constructing. The CNN model contains five
convolutional and five pooling layers, generating 256 feature
vectors, and is reduced by the fully connected layer into 50
vectors. The proposed work added four constraints. The first
two constraints are added at the feature map after processing
convolutional layers, the ReLU layer, and max pooling by
calculating the Mean Squared Error (MSE) of identical images
with perceptually identical (distorted copies) and identical
images with distinct pairs. The other two constraints went
before final hash construction. All four constraints were added
onto the total cost function with weight allocation. The 3,000
samples of the dataset for training are collected from COCO
[27], where each image generates 64 distorted copies, and the
distinct copies are paired with random images for a total of
405,000 images.

III. METHODOLOGY

In this section, we first discuss the assumptions to authen-
ticate images over the social media platforms used in our
research. Then, we explain the details of our proposed new
system.

A. Application Scenario and Assumptions

To ensure security, the following assumptions are proposed.
It is assumed that users must create accounts using their valid
information to use our system. Naturally, Twitter accounts
holders are verified by Twitter, Inc. The generated pHash of
an image from our system can be added to the image through
the description feature on Twitter’s platform in hexadecimal
representation (e.g., see Figure 2). End-users can download
said image, copy its pHash from the description, and use our
system for authentication. Moreover, users can re-publish the
image with its pHash on their account. Adversaries here are
forced to provide their credential information to our system
in order to generate a new pHash. This assumption applies on
other social media platforms, e.g., Facebook.

B. Proposed System

As shown in Figure 3 and Algorithm 1, the system design
consists of four stages: pre-processing, feature extractor, con-

trastive loss, and pHash generator, respectively. We describe
each stage below:

1) pre-processing: Before each image passes to the training
phase, it goes through data augmentation, resizing, applying
random color jitters, and random compression. Data augmen-
tation improves performance when applied to deep learning
models, as is shown in SimCLR [28]. SimCLR is a self-
supervised learning model that uses data augmentation to
generate two augmented images of each image in the batch
and minimize the difference during the training task. Our
model uses SimCLR architecture with crucial modification.
We introduce a new step to the augmentation process to
suit our target task. Instead of creating only two augmented
images as it has been done in the original SimCLR, we, also,
create a content-changing sample from the original image x
called an altered image x̃alt. The alteration is added to the
image randomly selected from one of three image modification
techniques copy-move, splicing, and removal. The copy-move
(cp − mv) alteration is an operation of randomly copying a
spot of an image with size of m×m×3, where m ∈ {16:208}
and randomly pasting it on a different location of the same
image. The splicing (sp) is the same process as copy-move
in randomization, but the spot is pasted on a different image.
Finally, the removal (rm) alteration is where we follow the
same technique of selecting a spot with a random size and
a random location, but we apply kernel simple blurring filter
50 times on the same spot without moving it to a different
location.

As in Figure 3, the augmentation process in this ap-
proach applied to original and altered images to cover mul-
tiple distorted versions. From these augmentations and al-
terations, each image is converted into two pairs after fixed
resizing to 224×224×3: original x with random augmented
x̃ and altered xalt with random augmented altered x̃alt.
The augmented refers to the version of the original image
with content-preserving manipulation. On the other hand,
altered represents the content-changing manipulation. Finally,
augmented altered is the copy of the altered image with
content-preserving manipulation. The next stage in the training
knows that each pair is authentic on its own and unauthentic
in comparison to the other pair.

2) feature extractor: Each image is passed to a convolution
neural network (ConvNet) as shown in Figure 3. ConvNet
produces feature maps that capture image features. Next, these
feature maps are flattened and mapped to a n-dimensional (n-
dim) feature vector through a fully connected layer (FCL), (z,
z̃, zalt, and z̃alt), where n-dim is a hyperparameter represent-
ing the number of nodes in the last layer chosen ahead of the
training. The ConvNet used is ResNet-18 which consists of
convolution layers, poling, ReLu, and skip connection.

3) Contrastive loss: At the training stage, the n-dim vector
is passed to the loss. We use contrastive loss as used in
[28] to maximize the agreement between the positive samples
and minimize the agreement between the negative samples
by minimizing the normalized temperature-scaled cross en-
tropy loss (NT-Xent). We assign the temperature τ to 0.1



Fig. 3. Proposed approach for image authentication.

as suggested by [28]. SimCLR uses the augmented pair as
positive samples. Negative samples are collected by pairing
an image with another in the same batch that is not its
augmented twin. However, our proposed approach takes the
original image and its augmentation as a positive example, as
well as the altered version with its augmentation. The negative
sampling is the same as the original approach in SimCLR.
Consequently, the original image will be paired with its altered
version as a negative example to force the model to distinguish
between images that shares high level features with content
modification.

4) pHash generator: At the evaluation step, LSH is used in
the hash generation to convert the long length of extracted
features into small binary bits representations by mapping
close feature vectors to buckets with similar hash values [29],
[30]. Random projection is one type of LSH we used because it
provides an independent secret key during random hyperplane
generation that can be adaptive for security purposes. In
practice, the feature vectors from FCL are flouting points with
a length of 512 multiplied by a random hyperplane matrix
of the size of 1024x512. This matrix multiplication is finally
converted to a bit vector by applying a Heaviside step function
to each element. The final generated hash length is 1024 bits.

IV. EXPERIMENTAL RESULTS AND COMPARISONS

This section explores the experiment setup, the training
configuration, and the main results based on F1-score metric.

A. Experimental Setup

To evaluate the robustness and effectiveness of the proposed
scheme, we run a large number of experiments. Our implemen-
tation and training were done using NVIDIA GeForce RTX
3090 GPU. All other prior models were re-implemented and
tested using the Colab platform based on best effort resources.
We use PyTorch-lightning1 open-source python library for
our proposed system. Moreover, we re-implemented or used
provided sources of other schemes and integrated a final hash
generation using LSH for deep learning approaches.

1https://www.pytorchlightning.ai/

Algorithm 1 Training Stage for the Proposed Model.
input: batch size N × 2, constant τ
network: ResNet-18 (f) + FCL (g)
for randomly sample x ∈ {X} do

draw one attack a ∈ {cp−mv, spl, rm}
xalt = a(x)
draw two augmentation functions d ∼ aug, d̃ ∼ aug
x̃ = d(x)
x̃alt = d̃(xalt)
# Forward Pass:
z = g(f(x))
z̃ = g(f(x̃))
zalt = g(f(xalt))
z̃alt = g(f(x̃alt))

end for
Calculate contrastive Loss L
update the network parameters to minimize L
return network f(.) and g(.)

B. Training Configuration

The configuration of the training goes through multiple
processes. First, we collected 180,000 images from different
resources, as shown in Table I. This diversity prevents bias
to any image classes. Next, four modified samples were
derived from each original image sample after resizing into
224×224×3 and paired into two groups. The first pair contains
the original image and its augmented copy, and the second
contains the altered and its augmented altered sample. Thus,
the total number of training examples was increased to reach
720,000 images. We trained our model with contrastive loss
to increase the agreement of similar images and decrease the
agreement of dissimilar images. We used SMPI [19] as a
benchmark for evaluating images that were collected from
Facebook and Twitter platforms. In addition, we tested our
model on the datasets IMD2020 [24] and COVERAGE [25]
to compare it with other state-of-the-art models.



TABLE I
THE STRUCTURE OF TRAINING AND VALIDATION SETS.

Stage Dataset no.
Flickr [31] 8,000

Holopix50k [32] 41,000
Training set Tiny ImageNet [33] 100,000

PS-Battles [18] 10,000
ImageCLEF [34] 21,000

SMPI [19] 19,458
Validation set IMD2020 [24] 200

COVERAGE [25] 200

C. Main Results

The similarity metric we used for our approach is Hamming
Distance measurement, as used by [26], [28], [30]. The algo-
rithm presented in [12] is the only one that used Euclidean
distance. The pHash distance d between two images draws
the line of the threshold θ that will be the indicator in our
image authentication system. For similar images, the distance
d should satisfy 0 ≤ d ≤ θ. For altered or dissimilar images d
should be above the threshold θ, , i.e., θ < d. Table II shows
the best selected θ based on the best F1-score assessments.

Table II compares five schemes based on the SMPI dataset.
The bold F1-scores in each column are the best-reported score,
which shows the significant improvement using our proposed
approach on both social media platforms. Overall, four models
[12], [26], [28], [30] have close F1-score at Twitter with
0.87, 0.84, 0.88, and 0.88 respectively. Our proposed scheme
reached the highest score by 0.99. In contrast, [12], [26], [28],
[30] under-perform with Facebook with 0.70, 0.44, 0.82, and
0.82 respectively and a new high record achievement with the
proposed model by 0.92.

We evaluated the performance of the models using the
Receiver Operating Characteristic (ROC) curve as illustrates
at Figure 4. The X-axis is the probability of False-Reject
Rate (FRR), the ordinate is the probability of False-Accept
Rate subtracted from one (1− FAR). An ROC curve that is
closer to the top left corner means a better performance of
content authentication. From ROC curves of the five schemes
in Figure 4(a), we can observe that our scheme achieves the
best ROC curve on the Facebook platform compared with
the others, whereas model in [12] is the worst. Figure 4(b)
represents the ROC curve on the Twitter scale shows small
gaps in most models, where our proposed technique overpasses
the others.

Moreover, we evaluated the proposed algorithm using other
datasets IMD2020 [24] and COVERAGE [25] that are mainly
founded for image forgery assessing on the scale of copy-
move, splicing, and removal. We picked real-life manipulated
images part from [24] that are collected from the Internet.
Based on the same θ that we picked previously for our model,
the Area Under Curve (AUC) performance comparisons is
provided at Table III with other models [35]–[38]. Our model’s
results, which are in bold, are ahead of others by a high
percentage.

TABLE II
F-SCORE RESULTS OF EACH MODEL USING SMPI DATASET

AND THEIR THRESHOLD θ.

Model threshold θ Facebook Twitter
DCT [26] 0.12 0.70 0.87
VisualModelBased [12] 6.46 0.44 0.84
SimCLR [28] 0.04 0.82 0.88
NuralHash [30] 0.02 0.82 0.88
Proposed 0.02 0.92 0.99

TABLE III
AREA UNDER CURVE (AUC) PERFORMANCE COMPARISON.

Model IMD2020 [24] COVERAGE [25]
CFA1 [35] 0.586 0.485
J-LSTM [36] 0.487 0.614
ManTra-Net [37] 0.748 0.819
TraFor-Self [38] 0.848 0.884
Proposed 0.98 0.99

V. DISCUSSION

Many magnificent works used deep learning for image
classifications and were based on a large-scale dataset such
as [39]. On the other hand, image authentication received less
attraction due to multiple reasons. First, most image datasets
are generated with big alterations; therefore, many developed
systems accomplished high accuracy on those datasets. second,
small alteration to the image is hard for the systems to
detect, and the concept of pHash authentic distorted copies
of the original image. Third, distorted copies of the original
image have unlimited and unknown factors. For instance, the
compression quality factor during the model design is fixed,
i.e., quality factor ∈ {1, 5, 10, 30, 50, 70, 90, 95} and
the tested images are compressed with random and unknown
values 1:100. This example is one case where nine other image
operations can be implemented on an image and considered as
an authentic copy, not counting that one image might receive
multiple operations.

For instance, Facebook deals with each user differently
during exploring the platform because Facebook needs to
allow their users with weak network coverage to use their
platform by applying different compression quality factors
based on the network status. For example, we examined
downloading a shared image from the same post by two PCs,
we received different sizes of the same image. This alteration
itself makes the task of authentication complex.

In addition, the length of pHash plays a significant part in
image authentication. The larger is better to make the extracted
feature vectors more sensitive. In contrast, the larger length
would cause more overhead on the payload of the image in
practice. Therefore, we remain our evaluation on 1024-bits to
make it more applicable to various applications.

Finally. we looked into another direction to enhance our
proposed model. We increased the number of altered and
augmented version of each image to cover more samples in the
batch. Therefore, the batch consists mostly of one image and
its n-altered and n-augmented versions. The results showed
degrading in the performance of the model. We concluded that



(a) Facebook. (b) Twitter.

Fig. 4. Comparison of ROC curves for each authentication model using SMPI dataset.

increasing the samples of the original image in the same batch
harm the model efficiency. Therefore, we limited the model to
have only four samples from the original image. These samples
are original, augmented version, altered and augmented of the
altered version.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced a robust authentication system
targeting image authentication on social media networks. We
built an alteration generator that simulates the three real-world
image alteration attacks (copy-move, splicing, and removal).
Also, a new data augmentation technique was included during
the training process to generate distorted copies of the original.
The localization and modification applied on the images were
small scaled as minimum as just 1%. Each image gathered
with its augmentations in a batch as pairs for self-supervised
learning using ResNet-18 network with a contrastive loss. The
proposed system achieves robust authentication on different
datasets SMPI [19], IMD2020 [24] and COVERAGE [25]
with highest F1-score comparing with other works. Further
development can be added on studying the robustness of the
proposed model under various attacks including adversarial
examples.
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