
On Teaching Malware Analysis on Latest Windows
Lan Luo∗, Cliff Zou∗, Sashank Narain† and Xinwen Fu†∗

∗Dept. of Computer Science, University of Central Florida, Orlando, FL, USA
Email: lukachan@knights.ucf.edu, czou@cs.ucf.edu

†Dept. of Computer Science, University of Massachusetts Lowell, Lowell, MA, USA
Email: {sashank narain, xinwen fu}@uml.edu

Abstract—Microsoft Windows operating systems are the most
popular desktop operating systems. 83% of malware attacks
target Windows. Windows 10 has a market share of 78.45% out
of all Windows versions on market. However, we find security
related courses are often taught on Linux or run on older
Windows versions. In this paper, we present our practice of
teaching malware analysis on the latest Windows (10). We are
among the first using the latest Windows (10) for teaching
malware analysis. We design the labs and assignments on the
pre-configured Windows 10 VM supplemented by the Kali VM. A
virtual Cyber Range is created for students to access the two VMs
over a cloud. We present our curriculum and learning assessment
scheme. Our practice has been validated through surveys on both
face-to-face and online classes.

Index Terms—malware analysis, Windows, VM, XCP-ng

I. INTRODUCTION

Malware is a major cyber attack and has been actively
developed to exploit and infect victim computers. It is re-
ported that there were 1266.70 millions malware programs by
September 2021 [1] and more than 114 million (114,312,703)
new malware applications were developed in 2019 [2]. Recent
malware attacks were the ransomware attacks against Colonial
Pipeline [3], computer manufacturer Acer and NBA. Major
malware programs include trojans, ransomware, backdoors,
worms, viruses, and crypto miners.

The use of the Microsoft Windows operating systems
(OSes) and malware attacks against Windows are pervasive.
According to StatCounter [4], Windows has a market share of
30.20% out of all operating systems including desktop OSes
and mobile OSes as shown in Fig. 1. If only the desktop OS is
considered, Windows has a market share of 80.38% as shown
in Fig. 2. According to PCMag [5], 83% of malware attacks
in the first quarter of 2020 targeted Windows computers. It
can be observed that teaching malware analysis on Windows
is critical given the large market share of Microsoft Windows
and trend of malware attacks against Windows.

We performed multiple surveys on student preference of
Windows version for learning malware analysis. Every time
all students prefer latest Windows. Fig. 3 shows the result of
the survey of 8 students in an online malware analysis class in
August 2021. All Students do prefer the latest Windows 10,
which is also the dominant Windows version with a market
share over 78% according to StatCounter [6] as shown in
Fig. 4. The student response is also consistent with Kaylene
Williams and Caroline Williams’s findings on various ingre-
dients that can improve student motivation [7]. They find that

Fig. 1. Major Operating System
Market Share in July 2021 Fig. 2. Desktop Operating Sys-

tem Market Share in July 2021

the content shall be timely, accurate, useful, and relevant to
students in their life. Such a realistic environment motivates
students to learn.

Fig. 3. Windows version prefer-
ence by students

Fig. 4. Desktop Windows Ver-
sion Market Share in July 2021

However, we find security related courses are often taught
on Linux or run on older Windows versions. For example,
the widely used SEED hands-on labs for security education
are based on Ubuntu. Some malware analysis courses at other
institutes run on Windows [8], [9]. Many of those courses are
based the book titled “Practical Malware Analysis: The Hands-
On Guide to Dissecting Malicious Software” by Michael
Sikorski and Andrew Honig published on Feb 1, 2012 [10].
All exercises and contents of this book are based on Windows
XP while some courses run on Windows 7.

In this paper, we present our best practice of running the
malware analysis course on Windows 10. We also plan to
migrate our malware analysis course to latest Windows when
there is a new version in the future. The major contributions
of this paper can be summarized as follows:



• We are among the first using the latest Windows (10)
teaching malware analysis. Our curriculum covers how
the attacker can hack into victim computers through
software vulnerabilities, how the attacker deploys
malware and malware behaviors, and static and dynamic
analysis of malware.

• Our practice has been validated through both face-to-face
and online classes on malware analysis. We create and
pre-configure two virtual machines, one Windows 10
VM and one Kali Linux VM with pre-installed tools. The
two VMs can be deployed over desktop computers and
can also be accessible online through our virtual Cyber
Range, powered by XCP-ng [11] and Xen Orchestra
[12]. Our survey results show the classes achieve the
objectives of the malware analysis course.

The rest of this paper is organized as follows. We introduce
our curriculum in Section II and present the survey of the
course in Section III. The paper is concluded in Section IV.

II. CURRICULUM

In this section, we first present the two VMs used in our
malware analysis course. The lab setup is introduced next. We
then present our modules on malware analysis and learning
assessment scheme at last.

A. Pre-configured Windows 10 and Kali Linux VMs

For malware analysis, a virtual machine (VM) environment
is necessary. When a VM is messed up with malware deployed
by students, we can roll back to a previous good snapshot. Vir-
tualization software also allows flexible networking of multiple
VMs so that we can interconnect all the VMs or isolate partic-
ular VMs. VMs can create a safe sandbox for students to play
with malware and restart with a clean system conveniently.

For our malware analysis course, we use the Windows 10
VM with pre-installed tools supplemented by the Kali Linux
VM. The official Kali VM is pre-installed with a variety of
tools including Metasploit. We add BooFuzz [13] onto the
Kali VM for network protocol fuzzing. For the Windows VM,
we install tools in Table I. We actually performed a survey in
a 2021 summer class on malware analysis to see if students
want to install tools themselves. Fig. 5 shows the survey result
of 8 students. Please note other survey results in this section
came from the same group of students. Students do prefer
VMs with pre-installed tools, which allow them to focus on
learning the knowledge of malware analysis, not distracted
by tool installation. Tool installation sometimes can get very
complicated because of obsolete links, versions and dependent
modules, and may frustrate students very much.

We configure networking and security features of Kali Linux
and Windows 10 VMs so that there is minimum configuration
by students. The two VMs are created with the Oracle VM
VirtualBox and use the NAT Network mode so that the two
VMs can communicate with each other and access the Internet.
We did not find students abuse the Internet although we could
have removed Internet access. We disable all Windows 10
exploit protection settings, turn all Windows Defender Firewall

Fig. 5. Student preference of virtual machines with pre-installed tools

setting off and turn all the Virus & threat protection settings
off. The real-time protection of Virus & threat protection
settings has to be turned off before running malware samples
every time since this setting turns back on after a while
automatically.

B. Lab setup
We have used the two VMs in two lab environments. First,

the two VMs can be installed on student personal computers
or lab computers. The advantage of this setup is the students
have full control of the VMs and may experiment on different
network configurations. One issue we had with this practice is
downloading the two VMs is a big challenge given the large
size of the VMs. The .ova (Open Virtual Appliance) file of Kali
VM is over 6.0GB and the .ova file of Windows 10 VM is over
25GB. Second, we create a virtual Cyber Range (i.e., a cloud)
and allocate the two VMs to students in need. We performed
a survey of student preference of the lab environment. Fig.
6 shows each lab environment is preferred by half of the
students.

Fig. 6. Student preference of Lab Environment

Due to COVID-19, we created the virtual Cyber Range as
follows. All Dell desktops and server in our physical Cyber
Range are loaded with XCP-ng hypervisor [11], and managed
by Xen Orchestra [12]. VMs can be created on both desktops
and server. To access their cloud VMs in the virtual Cyber
Range, students need to first connect to the Cyber Range VPN.
This process requires each student to request an OpenVPN
profile from the administrator.

We also run servers on VMs in the virtual Cyber Range for
following purposes: (i) providing administrative services to the
networked hypervisors, (ii) easing course delivery and lab ex-
periments for faculty and students, (iii) providing a networked



TABLE I
TOOLS ON WINDOWS VM

Static analysis
strings finding strings in binaries
IDA Freeware Free disassembler
IDA Pro Professional disassembler
Resource Hacker resource editor
Dependency Walker finding dependent modules
PEview determining basic Portable Executable (PE) in-

formation
PEiD finding packers, cryptors and compilers for PE

files
Regshot Taking snapshots of the registry for comparison
strings finding strings in binaries
Dynamic analysis
Immunity Debugger Debugger
mona Plugin for Immunity Debugger
FrausDNS A Windows DNS Spoofer for re-directing net-

work traffic developed by us
Process Explorer Discovering process information
Process Monitor Combining legacy tools Filemon and Regmon

with more features
Wireshark Network protocol analyzer
Compilation
MinGW-w64 gcc for 32 and 64 bit Windows, including gdb
nasm Assembler
golink Linker
Visual Studio VC++ and others
Python Python 2.7 and 3
Editor
Notepad++ a handy editor
Misc
7zip Compression and decompression tool
md5deep md5 hash tool
GlobalProtect VPN client
Sysinternals Suite troubleshooting tools including listdlls, WinObj,

streams
vulnserver Vulnerable server extended by us
arwin win32 address resolution program finding the

address of a function in a DLL
WinHelp Opening legacy Windows help files
setdll Part of Microsoft Research detours toolkits
Other PE editing
and viewing tools

FileAlyzer, CFF Explorer, PEstudio, Exeinfo

HxD Hex Editor
shellcode2bin.py Coverting shellcode in hextdecimals to binary
TeamViewer-setup Remote desktop

environment to students for course labs and practicing for
competitions such as Collegiate Cyber Defense Competition.
Note that all software used is open-source and widely used
worldwide. Below are a few critical servers. (i) OpenVPN
Server (OS: Ubuntu). This server runs scripts that generate
OpenVPN certificates, which faculty and students can use to
access the Cyber Range remotely. The certificates are auto
synced with Dropbox in order to ease sharing with faculty
and students. (ii) OpenLDAP Server (OS: Ubuntu). This server
manages user credentials for faculty and students accessing
the Cyber Range. It runs scripts to ease creation / revocation
of credentials for faculty and students whenever required.
(iii) VyOS Firewall (OS: VyOS). This is a software-based
firewall that is used to control access to all VMs hosted in the
Cyber Range that provide administrative capabilities. (iv) DNS
Server (OS: Ubuntu, Software: bind9). This server is setup in

order to provide name resolution for different services hosted
within the Cyber Range (e.g., VPN, LDAP, Gitlab, Samba).
Therefore, faculty and students can access the services without
having to specifically remember the IP addresses for these
services.

C. Malware Analysis Modules

We build the curriculum based on the popular book “Prac-
tical Malware Analysis” [10] while significant amount of new
content is added. This book has two big issues: (i) All the
labs are based on Windows XP and most of them do not work
on Windows 10. We have created labs on Windows 10. (ii)
The book lacks details on many knowledge units and is hard
to understand sometimes although the book explains the high
level concepts well. We provide supplemental materials on the
missing knowledge units.

1) Module 1: Malware Analysis in Virtual Machines: This
module covers why we use virtual machines for malware
analysis and different types of virtual machines. We add sup-
plemental materials on VirtualBox and its networking modes.
For example, we provide details on installing VirtualBox,
VirtualBox Extension Pack and VirtualBox Guest Additions.
For networking, we introduce if VMs in different modes can
access each other and the Internet.

2) Module 2: Basic Static Techniques: This module intro-
duces basic static techniques, including antivirus scanning,
hashing, finding strings, packed and obfuscated malware,
portable executable (PE) file format and linked libraries and
functions. “Static” means that we are not going to run the mal-
ware of interest, just check the static binary of the malware and
see anything suspicious and interesting. Finding all the tools in
Table I is a daunting task since we need tools working on the
latest Windows 10 and need to make sure there is no malware
embedded in the tools on the Internet. We carefully find all
the needed tools and install them in the Windows 10 VM.

3) Module 3: Basic Dynamic Techniques: When we use
dynamic techniques for malware analysis, we run the exe-
cutable of interest and observe what it does. Why do we
need dynamic techniques given that we already have static
techniques? It is because the basic static techniques really only
provide some hints about the executable. When we run an
executable binary, we see the results and may know whether
the executable binary is malicious and what it might do. This
module covers sandboxes, running malware in a .dll file, mon-
itoring with Process Monitor, viewing processes with Process
Explorer, comparing registry snapshots with Regshot, faking
a network, packet sniffing with Wireshark and using INetSim.
The book “Practical Malware Analysis” uses ApateDNS for
faking a network as a DNS spoofer. ApateDNS requires the
obsolete legacy Windows .net framework. We created a similar
Windows DNS spoofer called FausDNS [14] using the latest
Windows .net framework.

4) Module 4: A Crash Course in X86 Disassembly: This
module covers the x86 assembly language and related topics.
Assembly language is just another computer programming



language. There is a one-to-one mapping from assembly lan-
guage instructions to machine code instructions. An executable
can always be disassembled to assembly language code. For
malware analysis, we often have to deal with assembly code
because we often do not have access to the source code of
the malware. We can use tools to disassemble the machine
code into assembly code, which is much easier to read. We
use Notepad++ as an editor since it is small and easy to use.
nasm and Mingw-w64 (gcc) are used to assemble and link
the assembly code respectively if no Windows APIs are used
and Linux like binary is preferred. nasm and golink are used
if Windows APIs are used in assembly code. Our GitHub
repository [15] offers a big picture of assembly language and
simple working assembly language code examples, which are
missing in the book “Practical Malware Analysis”.

5) Module 5: IDA Pro/Freeware: This module introduces
the disassemblers IDA Pro/Freeware, covering loading an
executable, IDA Pro interface, using graphing options, using
cross-references, analyzing functions and extending IDA with
plug-ins. We have purchased IDA Pro. However, IDA Freeware
is enough for this course, is free, and does not need a license
server. IDA Freeware supports x86/x64 processors, and PE
(used by Windows), ELF (used by Linux) and Mach-O (Mach
object) file formats.

6) Module 6: Debugging: This module introduces the basic
concepts and techniques of debugging. gdb (the GNU Project
debugger) is a very popular debugging tool for Linux. One
reason why we introduce this debugger in this module is
gdb is a command line tool and we may use a command
line script/syntax with it. A GUI debugger such as Immunity
Debugger may not have this functionality.

7) Module 7: Immunity Debugger: This module introduces
Immunity Debugger while the book “Practical Malware Anal-
ysis” uses OllyDbg, the ancestor of Immunity Debugger.
Immunity Debugger has all the functionalities of OllyDbg
and more. It can disassemble the binary, present the assembly
code with its memory address, set breakpoints, allow us to
step through the code and look at the changes of registers,
stack and memory. We often use Immunity Debugger and IDA
Pro/Freeware together. IDA Pro/Freeware can tell where the
user written code is through its F.L.I.R.T. technology so that
we can set a breakpoint at the right place, for example main(),
within Immunity Debugger.

Compared with gdb, the advantage of Immunity Debugger
is the GUI interface so that we do not need to remember so
many commands as gdb has. But gdb has its advantage: it is
a command line tool so that it can work with command shell
scripts. For example, we can save a complicated command
line argument (e.g., a string that contains malicious shell-
code) into an environment variable and feed it to a victim
program/malware. We then can use gdb to debug the program
with the special argument.

8) Module 8: Shellcode Analysis: This module covers load-
ing shellcode for analysis position-independent code, identi-
fying execution location, manual symbol resolution, shellcode
encodings, NOP sleds and finding shellcode. We use this mod-

ule to cover the buffer overflow attack in depth to demonstrate
how attackers can hack into a computer. We provide examples
of buffer overflow attacks in different scenarios, including
feeding the malicious string through the command line ar-
gument and remotely, and placing the payload before and
after the return address of a function in the victim program.
We have extended vulnserver [15] so that vulnserver works
as a vulnerable chat server with a variety of vulnerabilities
including buffer overflow vulnerabilities. In this way, the
application scenario is more realistic since students can use
vulnserver for chatting. Students may attack vulnserver from
the Kali VM remotely and exercise techniques of metasploit.

9) Module 9: Analyzing Malicious Windows Programs:
This module covers many aspects of Windows programming,
including Windows API, registry, networking APIs, following
running malware, kernel vs. user mode, and native API and
introduces how malware can maneuver in Windows once it
gets into the victim computer through tricks such as buffer
overflow attacks. We cover details on how shellcode may use
CreateProcess() to create a shell at a victim computer so that
the attacker can work in a shell of the victim computer.

10) Module 10: Malware Behavior: This module covers
many different types of Windows malware and how they are
programmed and perform. Once the malware gets into the
victim computer, if the attacker is familiar with Windows
APIs, it can be trivial to implement various tricks of malware.
We also cover the cyberattack cycle, metasploit and Armitage,
which is a GUI front-end for the Metasploit Framework.
Kali VM is already installed with metasploit and we add
Armitage on Kali. Metasploit and armitage can be used to
demonstrate the entire cyberattack cycle: (i) Launch scans; (ii)
Choose exploits and check which exploits work; (iii) Perform
post-exploitation; (iv) Setup and use pivots for future and
collaborative attacks.

D. Learning Assessment

We have created the following assignments/labs, projects,
discussion forums and exams to assess how well students
master the contents. Assessments: (i) Assignment 1–Virtual
machines for malware analysis with VirtualBox and Cyber
Range; (ii) Assignment 2–Basic static analysis of a Windows
keystroke logging malware program, which sends keystroke
logs to a Gmail; (iii) Assignment 3–Basic dynamic analysis
of the keystroke logging malware; (iv) Assignment 4–A crash
course in X86 disassembly with nasm, MinGW-W64 (gcc),
golink and provided assembly code examples; (v) Assignment
5–Use of IDA Pro/Freeware disassembling a binary and iden-
tifying hardcoded credentials; (vi) Assignment 6–Debugging
via gdb a program with the buffer overflow vulnerability and
observing the stack change; (vii) Assignment 7–Immunity
Debugger on a buffer overflow attack that overwrites a local
variable on the stack in order to reveal a secret message
embedded in a program even if the password is wrong; (viii)
Assignment 8–Manually generating shellcode that will be fed
into a victim program as a command line argument and
pop up the Windows calculator; (ix) Assignment 9–Analyzing



Fig. 7. Please rate your knowledge level of malware analysis BEFORE you
take this class

a malicious Windows reverse shell malware program; (x)
Assignment 10–Use of metasploit to communicate with a
legitimate program (e.g. putty) embedded with a backdoor
created with msfvenom. The term project is performing a
buffer overflow attack through jmp esp, which is used to jump
to the payload in the malicious string. The return address
is overwritten with the address of jmp esp. We also set
up discussion forums for each module and students need to
answer two questions for each module. We have the midterm
and final exams to assess the overall leaning outcomes from
the students.

III. EVALUATION

In this section, we first present the class setup and then show
the survey result evaluating the effectiveness of the curriculum
presented in Section II on malware analysis learning.

A. Class Setup

In the malware analysis class in Summer 2021, the students
read the textbook (“Practical Malware Analysis”), notes and
slides and optionally chat with the instructor for an hour each
week. The assessments include discussion forum questions
and assignments for each module, one term project and the
midterm and final exams.

We have performed multiple anonymous surveys on sim-
ilar classes over Google Forms. The results are similar. We
accidentally lost data of early surveys and will focus on the
survey conducted in August 2021 in this section. There were
8 students and all of them responded to the survey.

B. Effectiveness of Modules on Malware Analysis Learning

We ask students to rate their knowledge level of malware
analysis before and after they take this class. “1” means no
knowledge and “5” means expert on malware analysis. Figs.
7 and 8 show the results. The average knowledge level on
malware analysis before the class is 1.125 while The average
knowledge level after the class is 3.25. Fig. 9 shows the survey
result of the 8 students for the question “Would you recom-
mend the class to others?”. It can be observed students do like
the course and would recommend the class to other students.

We ran an online GenCyber high school summer camp
using our virtual Cyber Range on weekdays from Jul. 12–23,
2021. our GenCyber curriculum contains the software security
module including the buffer overflow attacks and metasploit.
The students used the Kali VM to attack the vulnserver chat

Fig. 8. Please rate your knowledge level of malware analysis AFTER you
take this class

Fig. 9. Would you recommend
the class to others?

Fig. 10. GenCyber: I learned a
lot about cybersecurity

server. The attack scripts in Python were provided to the
students although they had to change the victim IP, port and
generate the corresponding shellcode through msfvenom. Fig.
10 shows the survey result for the question “I learned a lot
about cybersecurity”. 46 students responded and 95.65% of
them answered “Strongly Agree” or “Agree”.

IV. CONCLUSION

In this paper, we present our practice of teaching malware
analysis on the latest Windows (10). Our curriculum is built
upon the popular “Practical Malware Analysis” book. How-
ever, the book is old. All the labs are built on Windows
XP and there are a lot of missing technical details. We
create corresponding assignments/labs on Windows 10 and
supplement the book with details. We have offered the course
both face-to-face and online with pre-configured Windows 10
VM and Kali VM. Students may access the two VMs in
the cloud over our virtual Cyber Range powered by open
source tools XCP-ng and Xen Orchestra. Our practice has been
validated by surveys on the online and face-to-face courses on
malware analysis.

ACKNOWLEDGEMENTS

This research was supported in part by US National Sci-
ence Foundation (NSF) Awards 1931871 and 1915780, and
NSA GenCyber 21-MA-UMLx-UV-S1. Any opinions, find-
ings, conclusions, and recommendations in this paper are those
of the authors and do not necessarily reflect the views of the
funding agencies.

REFERENCES

[1] av-test, “Malware,” 2020, last accessed September 13 2021. [Online].
Available: https://www.av-test.org/en/statistics/malware/



[2] ——, “Security report 2019/2020,” 2020, last accessed September
13 2021. [Online]. Available: https://www.av-test.org/en/news/facts-
analyses-on-the-threat-scenario-the-av-test-security-report-2019-2020/

[3] “The 10 biggest ransomware attacks of 2021,” JUNE
2021, last accessed September 13 2021. [Online]. Avail-
able: https://illinois.touro.edu/news/the-10-biggest-ransomware-attacks-
of-2021.php

[4] StatCounter, “Operating system market share worldwide,”
2021, last accessed 16 August 2021. [Online]. Available:
https://gs.statcounter.com/os-market-share

[5] J. Cohen, “Windows computers were targets of 83% of all malware
attacks in q1 2020,” August 2020, last accessed 16 August 2021.
[Online]. Available: https://www.pcmag.com/news/windows-computers-
account-for-83-of-all-malware-attacks-in-q1-2020

[6] StatCounter, “Desktop windows version market share
worldwide,” 2021, last accessed 16 August 2021.
[Online]. Available: https://gs.statcounter.com/os-version-market-
share/windows/desktop/worldwide

[7] K. C. Williams and C. C. Williams, “Five key ingredients for improving
student motivation,” Research in Higher Education Journal, pp. 104–
122, 2011.

[8] RPISEC, “Malware analysis - csci 4976,” 2015, last accessed 16
August 2021. [Online]. Available: https://github.com/RPISEC/Malware/

[9] DSU, “Csc 428 - reverse engineering,” last
accessed 16 August 2021. [Online]. Available:
https://catalog.dsu.edu/preview course nopop.php?catoid=27&coid=17244

[10] M. Sikorski and A. Honig, Practical Malware Analysis: The Hands-On
Guide to Dissecting Malicious Software, 1st ed. USA: No Starch Press,
2012.

[11] XCP-ng, “Turnkey open source hypervisor,” 2021, last accessed 18
August 2021. [Online]. Available: https://xcp-ng.org/

[12] xen-orchestra, “Turnkey solution for xenserver and xcp-ng,” 2021, last
accessed 18 August 2021. [Online]. Available: https://xen-orchestra.com/

[13] J. Pereyda, “boofuzz: Network protocol fuzzing for humans,”
2021, last accessed 17 August 2021. [Online]. Available:
https://boofuzz.readthedocs.io/en/stable/

[14] C. MoralesGonzalez, “Frausdns–a windows dns spoofer,”
2021, last accessed 18 August 2021. [Online]. Available:
https://github.com/ChrisM09/FrausDNS

[15] X. Fu, “Malware analysis,” 2021, last accessed 18 August 2021.
[Online]. Available: https://github.com/xinwenfu/Malware-Analysis


