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Abstract—Internet of Things (IoT) devices have been increas-
ingly integrated into our daily life. However, such smart devices
suffer a broad attack surface. Particularly, attacks targeting the
device software at runtime are challenging to defend against if
IoT devices use resource-constrained microcontrollers (MCUs).
TrustZone-M, a TrustZone extension for MCUs, is an emerging
security technique fortifying MCU based IoT devices. This paper
presents the first security analysis of potential software security
issues in TrustZone-M enabled MCUs. We explore the stack-
based buffer overflow (BOF) attack for code injection, return-
oriented programming (ROP) attack, heap-based BOF attack,
format string attack, and attacks against Non-secure Callable
(NSC) functions in the context of TrustZone-M. We validate these
attacks using the Microchip SAM L11 MCU, which uses the
ARM Cortex-M23 processor with the TrustZone-M technology.
Strategies to mitigate these software attacks are also discussed.

Index Terms—Internet of Things, microcontroller, TrustZone,
software security

I. INTRODUCTION

The Internet of Things (IoT) industry is booming, but has
attracted cyber attacks [1], [2]. IoT involves a broad range
of application domains such as home appliances, medical
instruments, industry automation, and smart buildings. It is
reported that more than 20 billion IoT devices have been
distributed worldwide and this number will reach 41 billion by
2027 [3]. In this paper, we focus on IoT devices using low-cost
and resource-constrained microcontrollers (MCUs), which can
communicate with the outside world through venues such as
WiFi, Bluetooth, NB-IoT and LoRa. The attack surface of such
IoT devices includes data, networking, hardware, software
and firmware/operating systems [4]–[7]. We are particularly
interested in runtime software security of MCUs. Even if
software integrity can be verified at boot time via mechanisms
like secure boot, protecting software of embedded devices
at runtime is challenging due to the heterogeneity and con-
strained computational resources of MCUs.

TrustZone-M, the TrustZone extension for ARMv8-M archi-
tecture, is an emerging solution to the runtime software secu-
rity of IoT devices [8]–[10]. Specifically, it provides resource-
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constrained MCUs a lightweight hardware-based solution to
a trusted execution environment (TEE) for security-related
software, i.e., Secure World (SW), which is isolated from the
rich execution environment, i.e., Non-secure World (NSW).
The NSW software cannot access the SW resources directly.
TrustZone-M provides a Non-secure Callable (NSC) memory
region in the SW so that functions can be defined in the
NSC region as the gateway from the NSW to the SW. To the
best of our knowledge, TrustZone-M has not been adopted in
commercial IoT products.

In this paper, we present the first security analysis of
potential software security issues in TrustZone-M enabled IoT
devices. We find that software vulnerabilities may exist in all
regions of TrustZone-M, including the NSW, NSC and SWX
(which is defined as the SW excluding the NSC). TrustZone-
M is subject to stack-based code injection, code reuse attack,
heap-based buffer overflow attack, format string attack, and
NSC specific attacks. The first four attacks can occur in the
NSW, NSC and SWX. By exploiting NSC vulnerabilities, an
attacker is able to breach the security of the SW from the NSW.

A number of works have been done concerning the security
issues in TrustZone. Cerdeira et al. [11] present systematiza-
tion of knowledge (SoK) on the Cortex-A TrustZone security
while our work focuses on the Cortex-M TrustZone. Iannillo
et al. [12] propose a framework for the security analysis of
TrustZone-M. However, their work does not identify concrete
vulnerabilities/attacks against TrustZone-M. Jung et al. [10]
design a secure platform based on the Platform Security Archi-
tecture (PSA) with a brief discussion of possible attacks. Our
work demonstrates five types of realistic attacks, breaching the
security of TrustZone-M.

This paper makes the following major contributions:
1) We are the first to perform a comprehensive security

analysis of the runtime software security in TrustZone-
M enabled IoT devices, and present potential software
attacks against TrustZone-M. The SAM L11 MCU from
Microchip uses the ARM Cortex-M23 processor with the
TrustZone technology [13] and is used as an example
in this paper to demonstrate the principles, while our
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methodologies can be extended to other similar products.
We validate these attacks on SAM L11 and find that even
the official code examples of SAM L11 contain security
vulnerabilities.

2) We are the first to demonstrate how code injection
attack, code reuse attack, heap-based buffer overflow
attack, format string attack, and attacks against NSC
functions compromise TrustZone-M, although some of
these attacks are common on other platforms such as
Linux, Windows and macOS.

3) To defeat these software attacks, we discuss the use of
control flow integrity (CFI) and point out its limitations.
We present guidelines, particularly with respect to forti-
fying the NSC functions, for the overall system security
of TrustZone-M enabled IoT devices.

The rest of this paper is organized as follows. We introduce
the background knowledge on ARM TrustZone-M and
runtime security in IoT devices in Section II. We next present
the five types of practical attacks against runtime software of
TrustZone-M in Section III. The evaluation of the attacks is
presented in Section IV. We discuss defense mechanisms in
Section V and the paper is concluded in Section VI.

II. BACKGROUND

In this section, we introduce the TrustZone-M technology
and runtime software security issues in IoT applications.

A. TrustZone-M

TrustZone for ARM Cortex-A processors (TrustZone-A) is
a security technology that isolates security-critical resources
(e.g., secure memory and related peripherals) from the rich
OS and applications. An ARM system on a chip with the
TrustZone extension is split into two execution environments
referred to as the Secure World (SW) and the Non-secure
World (NSW). Software in the SW has a higher privilege and
can access resources in both the SW and the NSW, while the
Non-secure software is restricted to the Non-secure resources.
The NSW may communicate with the SW using the monitor
mode of TrustZone-A.

Recently, the TrustZone technology has been extended to
the ARMv8-M architecture as TrustZone-M for some Cortex-
M series processors, which are specifically optimized for
resource-constrained MCUs. TrustZone-M has the SW and
NSW, but differs from TrustZone-A in terms of implemen-
tation. One prominent difference is that TrustZone-M in-
troduces a special memory region in the SW named Non-
secure Callable (NSC) region to provide services from the SW
to Non-secure software. Transition between the two worlds
through the NSC region is achieved by NSC function calls
and returns.

B. Runtime Software Security in IoT Devices

IoT devices are usually capable of connecting to remote
servers or controllers and transferring messages to them via
communication venues such as WiFi, Bluetooth, and low-
power wide-area network. MCU based IoT devices are often

Non-secure SRAM

Secure SRAM

Non-secure Flash

NSC Flash

Secure Flash

0x0000 0000

0x0001 0000

0x2000 0000

0x2000 4000

Fig. 1. Memory layout of SAM L11. The memory is divided into the SW
and NSW at the hardware level. Code in the SW (Secure Flash, NSC Flash,
and Secure SRAM) can access the whole chip, while code in the NSW (Non-
secure Flash and Non-secure SRAM) can only directly access resources inside
the NSW.

programmed with languages such as C and C++ because they
are compact, highly efficient and have the ability of direct
memory control [14]. Such languages provide programmers
a flexible platform to interact with the low-level hardware.
On the flip side, they are notoriously error-prone and daunted
by security issues. Attackers may perform runtime software
attacks against vulnerable IoT devices with such features.

Runtime software attacks can hijack the program control
flow by altering the control data (e.g., return address and func-
tion pointer) or change program memory by manipulating non-
control data [4]. Often in such an attack, an adversary corrupts
the vulnerable memory by inputting a carefully crafted mali-
cious payload, which eventually results in abnormal program
behaviors.

III. ATTACKS AGAINST RUNTIME SOFTWARE IN
TRUSTZONE-M

In this section, we first introduce the threat model on how a
TrustZone-M enabled IoT device may be attacked. We then
present five runtime software attacks against TrustZone-M
enabled IoT devices. We use the SAM L11 MCU as the
example while the principle is the same for all TrustZone-M
enabled devices.

A. Threat Model

We consider a victim IoT device using the TrustZone-
M enabled MCU. It is assumed that security-related coding
mistakes exist in the software of the victim device which
is able to receive inputs from the Internet or peripherals.
Though the SW of TrustZone-M provides a TEE that the
NSW software cannot directly access, the TEE can only work
normally under the assumption that Secure software is well
crafted with no security-related coding mistakes. However,
coding mistakes may exist in TrustZone-M’s NSW, the NSC
region, and the SWX region. Memory layout of a TrustZone-M
based MCU, SAM L11, is shown in Figure 1. An adversary
can exploit the coding mistakes and send a malicious input
(i.e. payload) to deploy software attacks. Even if the SW does
not accept inputs from the Internet or peripherals and only
the NSW communicates with the outside world, an attacker
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TABLE I
SOFTWARE ATTACKS IN TRUSTZONE-M

Software Attacks NSW NSC SWX
Code injection � � �
ROP � � �
Heap-based BOF � � �
Format string attack � � �
NSC-specific exploit N/A a � N/A a

a The NSC-specific exploit targets the NSC memory
and is not applicable (N/A) for the NSW and the
SWX.

may compromise the NSW and feed malicious inputs into
vulnerable NSC functions, which can access Secure resources.
Therefore, if a NSC function is vulnerable, the entire SW may
be compromised.

B. Runtime Software Attacks

Table I lists software attacks we have identified against the
NSW, NSC and SWX of TrustZone-M. It can be observed that
traditional software attacks found in other platforms such as
computers and smart phones can be conducted in all regions
of TrustZone-M, including code injection, return-oriented pro-
gramming (ROP), heap-based buffer overflow (BOF), and
format string attacks, if requisite software flaws present. We
also discover potential exploits specifically targeting the NSC.
Here, all attacks against the NSC refer to those deployed
from the NSW. We present the details and challenges of these
attacks in the context of TrustZone-M below.

1) Stack-based Buffer Overflow Attack for Code Injection:
The stack-based BOF is a canonical memory corruption attack
that occurs on the stack when a larger input is written to a
local buffer without checking the buffer’s boundary. Listing 1
presents an example, in which buf[256] will overflow if the
input array is longer than 256 bytes. As a result, the extra
data will overwrite the adjoining stack contents including the
return address, at which the control flow will continue after the
subroutine return. Adversaries may perform stack-based BOF
attack for malicious code injection. The control flow can be
redirected to the malicious code sent along with the payload
by overflowing the local buffer and overwriting the original
return address with the entry address of the malicious code.

1 void BOF_func(char *input){
2 char buf[256];
3 strcpy(buf, input);}

Listing 1. Example of a function with BOF vulnerability

To specifically implement a stack-based BOF attack against
the ARMv8-M architecture, we first investigate its stack struc-
ture. A stack frame for a function in ARMv8-M consists of
local variables, variable registers (R4–R7), and return address,
as illustrated in Figure 2. By exploiting functions with BOF
vulnerabilities, an adversary is able to copy a crafted payload
to the buffer, overwrite the return address, and inject malicious
code onto the stack. While constructing the malicious payload,
the adversary needs to know the entry of the malicious code
on the stack. A common solution is to utilize the JMP SP
instruction presenting in the device’s firmware [15]. Even if

Fig. 2. Stack-based buffer overflow attack for code injection

there is no such instruction in the firmware, an adversary may
enumerate possible entry addresses of malicious code to find
the correct one. A wrong address in the payload leads to
program crash and restart (if automatic restart is enabled), and
the malicious code would not be executed until the correct
entry address is hit. This entry scanning process can be
more efficient by inserting a sequence of NOP (no-operation)
instructions, called a NOP sled, before the injected malicious
code in the payload, since any hit of a NOP instruction will
lead to the execution of malicious code eventually.

A challenge of implementing BOF with respect to ARMv8-
M comes from the null bytes (0x00) in the payload, which also
function as the C string terminator. If the exploitable function
treats the payload as a string (e.g., strcpy() and strcat()) and
some null bytes exist in the crafted payload, the function will
cease to copy the payload right after hitting a null byte and the
attack will fail. We discuss two scenarios of null bytes below.

First, null bytes can exist in the malicious code and NOP
sled since null bytes are naturally contained in many ARM
instructions. To eliminate these null bytes, one can replace the
problematic instructions by alternative instructions with the
same functionalities but without null bytes. For an instance, a
NOP instruction (0xBF00) can be replaced by the instruction
MOV R2, R2 (0x121C).

The second scenario refers to the null bytes in the entry ad-
dress of the malicious code. In SAM L11, the malicious code
has to be injected onto the stack, which is on the SRAM with
a fixed range of address from 0x20000000 to 0x20004000,
within which the higher halfword of any addresses is 0x2000,
containing a null byte all the time. Taking Payload1 in Figure
2 as an instance, since the NOP sled and malicious code
are positioned after the entry address, the copy process of
Payload1 will terminate when the null byte in the entry address
is hit. Copying either the NOP sled or the malicious code to
the stack would fail in this case. A potential solution is to
construct the payload like Payload 2 in Figure 2, where the
entry of malicious code is placed at the bottom. Because the
little-endian ordering in ARMv8-M, the 0x2000 is located at
the last two bytes of Payload 2 and shall be the only two
bytes missing when copied to the stack. The original return
address already contains 0x2000 in its upper halfword if the



caller function is executed from the SRAM, in which case the
BOF will still be applicable.

Payload2 shows an example that the malicious code is
copied to address 0x2000236D. In this case, the NOP sled and
malicious code are copied firstly. The copy operation will not
stop until it reaches the null byte in the entry address if both
NOP sled and malicious code do not contain any null bytes.
For the return address on the stack, the lower halfword will be
overwritten by the last two bytes (0x236D) of the entry address
in the payload and keep its higher halfword unchanged. So
the updated return address would be 0x2000236D, which is
the entry of the malicious code.

2) Return-oriented Programming Attack: BOF based code
injection can be mitigated by security mechanisms like non-
executable memory [16], which prevents code execution from
certain memory region. However, an attacker can bypass such
defense by leveraging code reuse attack (CRA). A represen-
tative CRA is ROP attack. Utilizing BOF to overwrite the
return address, ROP redirects the control flow to a target code
sequence (called a gadget) found in the existing software code.
It is also possible to chain several gadgets for more complex
program control. Each gadget in the chain is a code segment
responsible for certain operations (e.g., arithmetic operations
and load/store data) and must end with the epilogue of a
subroutine for the sake of chaining the gadgets. In ARMv8-
M, the instruction sequence {POP LR, BX LR}, which is the
epilogue of leaf subroutines, pops a word to link register (LR),
and then branches to the address specified by LR. Instruction
POP PC, which is the epilogue of non-leaf subroutines,
directly pops a word to program counter (PC).

Now we explain how to chain the gadgets utilizing the sub-
routine epilogue in each of them. An adversary needs to craft
a “gadget stack” and sends it along with the payload. Each
gadget in the chain except the last one, has a corresponding
gadget frame placed on the gadget stack. A gadget frame
consists of several words of data that will be popped to the
operand registers of the last POP instruction in that gadget.
Data provided by the gadget frame include the address of the
next gadget, which helps to jump to the next gadget after being
popped. An example of a chain of three gadgets in ARMv8-
M is presented in Figure 3. The payload contains the entry
of Gadget 1 and two gadget frames corresponding to Gadget
1 and 2. To ensure the entry of Gadget 2 will be popped to
LR, the gadget frame for Gadget 1 contains two more words
before the entry word since the second to last instruction in
Gadget 1 pops the third word from the stack frame to LR.
Two words before the entry of Gadget 2 are provided such
that they will be popped to R4 and R5 instead. Similarly, the
gadget frame for Gadget 2 provides two words of data which
will be popped to R4 and PC so that execution of Gadget 3
can be routed to start.

3) Heap-based BOF Attack: Heap-based BOF refers to a
form of BOF exploitation in the heap area. As a SAM L11
project is linked with the GNU libc, the heap in SAM L11
is managed by the glibc allocator [17]. The glibc allocator
manages free chunks in a doubly-linked list where each chunk

Entry of Gadget2

(Popped to R5)

Entry of Gadget3

copy

…

POP {R4, R5, LR}

BX LRVariable registers

Return address

buf[256]

Stack Top

(Low address)

(High address)

…

POP {R4, PC} 

…

POP LR

BX LR

(Garbage bytes)

Entry of Gadget 1

(Popped to R4)

(Popped to R4)

Payload

Gadget1

Gadget2

Gadget3

Gadget 

frame for 

Gadget1 

Gadget 

frame for 

Gadget2 

Fig. 3. Return-oriented programming attack

contains the metadata of a forward pointer and a backward
pointer pointing to the free chunks before and after it. A
simple exploitation of heap-based BOF is to overwrite the
function pointers stored on the heap to hijack the program
control flow. An adversary may also overwrite the metadata of
a free chunk via overflowing an adjacent activated data chunk.
By manipulating the pointers in the metadata, an adversary is
able to corrupt arbitrary memory with arbitrary values [18].

4) Format String Attack: A format function such as
printf() usually requires several arguments. The first argument
is a format string which may contain some format specifiers
(e.g., %s, %x). When the format function is executed, those
format specifiers will be replaced by the subsequent arguments
with the specified formats. Therefore, the number of specifiers
in the format string is supposed to match the number of
additional arguments. The format string exploits occur when a
format function receives a format string input that contains
more format specifiers than additional arguments supplied.
By sending a well-crafted format string with specific format
specifiers to a vulnerable format function, an adversary may
eventually cause program crash, memory leakage, and memory
alteration at a specific memory location of the stack, or even
in an arbitrary readable/writable memory location specified by
an address.

In SAM L11, an adversary is able to exploit format string
vulnerabilities for memory crash and reading/writing some
values at a specific stack location by sending a malicious string
input containing more format specifiers than expected. For
example, by sending the string “%x %x %x” to the vulnerable
function illustrated in Listing 2, in which no arguments are
provided to the three specifiers in the input format string,
three bytes of data following the return address on the stack
will be printed in hexadecimal. However, reading or writing
at an arbitrary memory location specified by an address is
unachievable in SAM L11 due to the particular memory
addressing as shown in Figure 1. Such attacks require the
target address to present in the input format string, e.g.,
“\x34\x12\x00\x20 %x %x %x %x %s”. Adversaries who
aim at the memory of SAM L11 will find that any address of
the memory would contain at least one null byte. During the
compilation, the process of parsing the input format string will
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terminate when the null byte in the target address is reached.
The rest of the input format string cannot be parsed correctly,
hence, the attack would fail.

1 void fmt_str(char *input){
2 printf(input);
3 ...

Listing 2. Example of a vulnerable format string function

5) Attacks against NSC Functions: The Non-secure soft-
ware in the NSW may desire to use the Secure services in the
SW. For the sake of such requirement, TrustZone-M provides
the NSC memory region within the SW. Developers are able
to define NSC functions in the NSC as the gateway to the SW.
NSC functions are characterized with two features: (i) They
can be called from the NSW; (ii) They have the privilege of
accessing Secure resources since the NSC is a region within
the SW. With such abilities, Non-secure software can call
specific Secure services by first calling the corresponding NSC
functions. The NSC functions then help to call the target
Secure functions and pass the required arguments assigned
by the Non-secure callers.

As the gateway to the SW, the implementation of the NSC
software should be particularly cautious. According to the
guidance from ARM [19], hardware, toolchain, and software
developers share a common responsibility to implement the
NSC software securely. Though some requirements are offered
in the guidelines, since the hardware and toolchain vary
from vendors to vendors, there is no off-the-shelf solution to
implementing trusted NSC software.

We identify two pitfalls that software developers may meet
while programming the NSC functions. The first pitfall is
caused by the data arguments sent from the NSW. The
toolchain of SAM L11 only helps to generate the Secure
gateway veneer for NSC functions but leaves the function pro-
gramming to the developers. Security-related coding mistakes
may present in the NSC functions as well and can be exploited
by crafting Non-secure data inputs. Software exploits in the
NSC region would lead to a compromised SW. This is because
the NSC region belongs to the SW and a compromised NSC
program under the control of an adversary can access any
resources inside the SW.

1 int NSC_func(int *a, int b, int *c){
2 int *addr = a; int num = b; int *sum = c;
3 for (int i = 0; i < num; i++){
4 *sum += addr[i];}
5 return *sum;}

Listing 3. Example of a vulnerable NSC function

The second pitfall comes from the untrusted pointer inputs.
When Non-secure software passes pointer arguments to the
SW through NSC functions, NSC functions should ensure that
these pointers point to the Non-secure memory. Otherwise,
NSC and Secure functions may assist the Non-secure software
to read or write the Secure memory. The vulnerable NSC
function illustrated in Listing 3 can leak and corrupt the
Secure memory contents at arbitrary Secure addresses if the
first and the third arguments are Secure addresses and the
second argument is set to 1. The violation of the principle that

“Secure resources are not allowed to be accessed by the NSW”
severely harms the fundamental security of the TrustZone-M
implementation.

IV. EVALUATION

In this section, we evaluate the five software attacks de-
scribed in Section III. We are able to successfully perform
these attacks against a TrustZone-M enabled MCU, SAM L11.

A. Experiment Setup

We use a laptop as the attacker to continually send inputs to
a SAM L11 Xplained Pro Evaluation Kit as the victim device.
The laptop is connected with SAM L11 through a USB-to-
UART adapter while an attacker may also inject malicious
strings into an Internet connection of a SAM L11 based IoT
device. In SAM L11, two UARTs are configured accordingly
as a Non-secure peripheral and a Secure peripheral to receive
inputs sent from the laptop to the NSW and SW respectively.
For the first four attacks, we construct specific vulnerable
functions in both Non-secure and Secure applications of SAM
L11 and malicious payloads will be sent through the UARTs
to trigger the attacks. The sizes of the payloads and experiment
results are given in Table II.

B. Experiment Results

In the BOF-based code injection attack, we configure the
stack to be executable, which is commonly configurable in
TrustZone-M enabled MCUs. We assemble the payload with a
constant string, malicious code, the entry of the malicious code
(obtained via random brute-force scanning), and a NOP sled
with 50 NOP instructions. The malicious code is designed to
call a print function and supply the address of a constant string
as the argument of the print function. Our attack succeeds and
the constant string is printed in the adversary’s terminal.

As a proof-of-concept implementation of ROP, we craft a
chain of gadgets with three exploitable gadgets by splitting the
assembly code of a program, which prints the memory content
at a given address, into three code segments. A subroutine
epilogue (i.e., POP PC) is appended at the end of each code
segment. These gadgets are pre-stored at different locations
of the flash in advance. We craft a gadget stack to chain
these gadgets and send it along with the payload to SAM
L11. As a result, the intended constant string is successfully
printed on the adversary’s terminal. A way to evaluate the
feasibility of ROP against a certain program is to count up
the occurrences of potential gadgets in the program. In fact,
this process is equivalent to counting up the number of “POP
PC” and “BX LR” instructions according to the definition of
potential gadgets introduced in Section III. We take a basic
Non-secure application image, which only initializes necessary
peripherals, as an example and search all the subroutine
epilogues in it. The Capstone disassembly engine [20] is used
to dissemble and search in the binary code. The size of the
example image is 4.14KB with 1908 instructions in total. As a
result, 49 “POP PC” and 16 “BX LR” are found in the image
binary, representing 3.41% of the whole image.



TABLE II
SIZES OF PAYLOADS AND EXPERIMENT RESULTS IN DIFFERENT ATTACK SCENARIOS.

Attack Scenarios Sizes of Payloads (byte) Experiment Results
Code injection 256 90.62s is spent on scanning the entry of the malicious code, which is then successfully executed.

ROP 96 Crafted string is printed; 65 potential gadgets are found in a 4.14KB image.
Heap-based BOF 24 The malicious code is successfully executed.

Format string exploits 24 Five sequential bytes are read from the Non-secure and Secure stacks.

NSC-specific attacks 24 & 4 3 of 5 demo projects contain vulnerable NSC functions; Five sequential bytes are read from
the Secure stack; Secure memory content is printed.

To launch the heap-based BOF attack, we first construct two
adjacent data blocks on the heap of SAM L11 and a vulnerable
memcpy() function, which copies the input payload to a buffer
in the first data block without checking its boundary. Our
payload successfully triggers the BOF attack and overwrites a
function pointer in the next data block with the entry of a pre-
injected malicious code. The malicious code is later executed
when that function is called.

As we stated in Section III-B4, an adversary can exploit the
vulnerable format string function in SAM L11 to read out the
stack contents. The payload used is “%08x %08x %08x %08x
%08x” and we eventually read five sequential bytes from the
stack via UARTs.

To verify the feasibility of NSC-specific attacks, we look
into the example software projects provided by the vendor of
SAM L11, five of which contain NSC software implemen-
tations. We statically analyze the source code of these five
NSC implementations and find three to be vulnerable. These
three implementations share two vulnerable NSC functions as
in Listing 4, where two of them contain the first function and
the other contains the second function. The first vulnerable
function is subject to the format string attack when it is called
by the Non-secure software and the argument is a crafted
format string input that can be controlled by an adversary.
In our experiment, we send “%08x %08x %08x %08x %08x”
as the payload and five sequential bytes from the Secure stack
are eventually printed in the adversary’s terminal. The second
function has an information leakage problem. We call this
function in the NSW with an argument which is a Secure
address, as a result, the Secure memory content at the target
location is then printed.

1 void __attribute__((cmse_nonsecure_entry))
nsc_secure_console_puts (char *string){

2 non_secure_puts(string);}
3

4 void __attribute__((cmse_nonsecure_entry)) nsc_puts(
uint8_t * string){

5 printf("%s", string);}
Listing 4. Vulnerable NSC functions in SAM L11 demo code

V. DISCUSSION: DEFENSE TO RUNTIME SOFTWARE
ATTACKS AGAINST TRUSTZONE-M

With the increasing concerns of IoT security, more and
more manufacturers start to make their MCU products support
various security features such as secure boot and secure
storage [21]. Runtime software attacks targeting IoT devices
can be mitigated in a way with few costs by properly enabling

some of the security features provided by MCUs. Taking SAM
L11 as an example, the code injection attack can be neutralized
via setting the RXN (RAM eXecute never) and DXN (Data
eXecute never) fuse bits, via which code execution from
data memory would not be allowed. In addition, SAM L11
supports secure debugging port with key authentication and
allows to disable the write operation on code memory. These
two security mechanisms ensure the code integrity at runtime
so that adversaries cannot easily hijack the control flows
by rewriting the firmware. However, other aforementioned
runtime software attacks (i.e., ROP, heap-based BOF, format
string exploits, and NSC-specific attacks) are difficult to resist
with the equipped security features.

The control flow integrity (CFI) is a technique for pre-
venting runtime control-oriented attacks such as ROP. By
monitoring the control flow of a program at runtime, it
can detect unexpected control flow changes. [7] provides
an implementation of CFI for TrustZone-M to protect the
NSW. In it, a control flow graph (CFG) of the Non-secure
program is constructed by static or dynamic analysis of its
code and is saved in a non-writable region of the NSW. Code
instrumentation is performed so that the program jumps to a
branch monitor before any control flow changes in the original
code. The branch monitor refers to the CFG and monitors
control flow changes at runtime. Before a function call, the
correct return address is pushed on a shadow stack in the SW.
Since a function might be called by different callers and return
to different places at runtime, the CFG cannot tell the exact
return address at runtime. The shadow stack in the SW is used
to record the correct return address for a certain function call.
Here the stored return addresses must be fully protected from
being altered. The SW, which can be seen as a trust anchor for
the NSW, provides the required secure storage, namely shadow
stack, for the correct return addresses and a trusted execution
environment for any operations on the shadow stack.

The CFI for protecting the control flow of the NSW is not
sufficient for the overall system security. It can be observed
from Table I that all software attacks may occur in both
the SW (including NSC and SWX) and NSW. Recall that
the CFI mechanism requires a trusted execution environment
and a secure storage. In the case of TrustZone-M, the SW is
supposed to play the role of such a trust anchor. If the SW
itself is insecure and vulnerable to potential software attacks
at runtime, it cannot provides the indispensable secure storage
and trusted execution environment required by CFI for the
NSW. Thus the effectiveness of the CFI enforcement for the



NSW would be harmed. Another issue of CFI is that it may not
defeat the heap-based BOF or format string attacks if control
flows are unchanged but sensitive data are modified.

For the overall security of TrustZone-M based IoT devices,
the following strategies may be adopted. First, the SW shall
be very cautious about authenticity and security of the Internet
connection in order to avoid remote exploits of SW software
vulnerabilities. Second, the arguments sent from the NSW to
an NSC function may be an address or application data. If it is
an address, the NSC function must verify that it is not a Secure
address before passing the address argument to the SW, since
an NSW program shall not access the SW resources directly.
If it is application data, input validation and sanitization shall
be carefully performed. Third, security mechanisms including
CFI and onboard executable space protection of TrustZone-M
shall be applied to the NSW for control flow integrity. Finally,
secure coding, code review and penetration testing are critical
to the overall system security and the best practice shall be
adopted [22]. Runtime software attacks may also be mitigated
by programming the MCUs with security oriented languages
such as Java [23], [24] and Rust [25].

VI. CONCLUSION

This paper gives the first systematic runtime software secu-
rity analysis for TrustZone-M enabled IoT devices. We present
possible pitfalls of TrustZone-M programming and present
five potential software attacks against TrustZone-M, including
the stack-based BOF attack for code injection, return-oriented
programming, heap-based BOF attacks, format string attacks
and attacks against NSC functions. We validate these attacks
on a TrustZone-M enabled MCU, SAM L11. To defend these
attacks, we present guidelines for an overall system security
of TrustZone-M enabled IoT devices.

ACKNOWLEDGEMENTS

This research was supported in part by National Key R&D
Program of China 2018YFB2100300, 2018YFB0803400, and
2017YFB1003000, US National Science Foundation (NSF)
Awards 1931871 and 1915780, US Department of En-
ergy (DOE) Award DE-EE0009152, National Natural Sci-
ence Foundation of China (Grant Nos. U1736203, 61877029,
61972088, 61532013), Jiangsu Provincial Natural Science
Foundation for Excellent Young Scholars under Grant
BK20190060. Any opinions, findings, conclusions, and rec-
ommendations in this paper are those of the authors and do
not necessarily reflect the views of the funding agencies.

REFERENCES

[1] SonicWall, “2020 sonicwall cyber threat report: Threat actors
pivot toward more targeted attacks, evasive exploits,” Feb. 2020.
[Online]. Available: https://www.sonicwall.com/news/2020-sonicwall-
cyber-threat-report/

[2] “Owasp internet of things project,” 2018. [Online]. Available:
https://owasp.org/www-project-internet-of-things/

[3] K. Gyarmathy, “Comprehensive guide to iot statistics you need to
know in 2020,” Mar. 2020. [Online]. Available: https://www.vxchnge.
com/blog/iot-statistics

[4] A. Mohanty, I. Obaidat, F. Yilmaz, and M. Sridhar, “Control-hijacking
vulnerabilities in iot firmware: A brief survey,” in The 1st International
Workshop on Security and Privacy for the Internet-of-Things (IoTSec),
2018.

[5] H. HaddadPajouh, A. Dehghantanha, R. M. Parizi, M. Aledhari, and
H. Karimipour, “A survey on internet of things security: Requirements,
challenges, and solutions,” Internet of Things, p. 100129, Nov. 2019.

[6] K. V. English, I. Obaidat, and M. Sridhar, “Exploiting memory corrup-
tion vulnerabilities in connman for iot devices,” in 2019 49th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN). IEEE, 2019, pp. 247–255.

[7] T. Nyman, J.-E. Ekberg, L. Davi, and N. Asokan, “Cfi care: Hardware-
supported call and return enforcement for commercial microcontrollers,”
in International Symposium on Research in Attacks, Intrusions, and
Defenses (RAID). Springer, 2017, pp. 259–284.

[8] “Trustzone for cortex-m,” Arm. [Online]. Available: https://www.arm.
com/why-arm/technologies/trustzone-for-cortex-m

[9] L. Liu, J. Ma, C. Zhang, T. Chong, H. Zhang, and Y. Dong, “Security
software system design and implementation for microcontrollers based
on trustzone,” DEStech Transactions on Computer Science and Engi-
neering, no. cisnrc, 2019.

[10] J. Jung, J. Cho, and B. Lee, “A secure platform for iot devices based
on arm platform security architecture,” in 2020 14th International Con-
ference on Ubiquitous Information Management and Communication
(IMCOM). IEEE, 2020, pp. 1–4.

[11] D. Cerdeira, N. Santos, P. Fonseca, and S. Pinto, “Sok: Understanding
the prevailing security vulnerabilities in trustzone-assisted tee systems,”
in Proceedings of the IEEE Symposium on Security and Privacy (S&P),
San Francisco, CA, USA, 2020, pp. 18–20.

[12] A. K. Iannillo and R. State, “A proposal for security assessment of
trustzone-m based software,” in 2019 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW). IEEE, 2019,
pp. 126–127.

[13] “Saml11 xplained pro evaluation kit,” Microchip. [Online]. Avail-
able: https://www.microchip.com/DevelopmentTools/ProductDetails/
PartNO/DM320205

[14] D. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volckaert, P. Larsen, and
M. Franz, “Sok: sanitizing for security,” in 2019 IEEE Symposium on
Security and Privacy (S&P). IEEE, May 2019, pp. 1275–1295.

[15] “Return oriented programming (arm32),” Azeria Labs. [Online].
Available: https://azeria-labs.com/return-oriented-programming-arm32/

[16] “Nx bits - microsoft wiki - fandom,” Microsoft. [Online]. Available:
https://microsoft.fandom.com/wiki/NXbit

[17] “Arm heap exploitation,” Azeria Labs. [Online]. Avail-
able: https://azeria-labs.com/heap-exploitation-part-1-understanding-
the-glibc-heap-implementation/

[18] J. Xu, Z. Kalbarczyk, and R. K. Iyer, “Transparent runtime random-
ization for security,” in 22nd International Symposium on Reliable
Distributed Systems, Oct 2003, pp. 260–269.

[19] “Armv8-m secure software guidelines,” Arm. [Online]. Available: https:
//developer.arm.com/docs/100720/0200/secure-software-guidelines

[20] “The ultimate disassembly framework – capstone – the ultimate
disassembler.” [Online]. Available: http://www.capstone-engine.org/

[21] B. Pearson, L. Luo, Y. Zhang, R. Dey, Z. Ling, M. Bassiouni, and X. Fu,
“On misconception of hardware and cost in iot security and privacy,”
in ICC 2019 IEEE International Conference on Communications (ICC).
IEEE, 2019, pp. 1–7.

[22] Berkeley Information Security Office, “Secure coding practice
guidelines,” 2020. [Online]. Available: https://security.berkeley.edu/
secure-coding-practice-guidelines

[23] S. A. Ito, L. Carro, and R. P. Jacobi, “Making java work for microcon-
troller applications,” IEEE Design & Test of Computers, vol. 18, no. 5,
pp. 100–110, 2001.

[24] “Stm32 ide,” STMicroelectronics. [Online]. Available: https://www.st.
com/en/development-tools/stm32-ides.html

[25] “Rust: Embedded devices,” 2020. [Online]. Available: https://www.rust-
lang.org/what/embedded

Authorized licensed use limited to: University of Central Florida. Downloaded on August 31,2021 at 16:05:14 UTC from IEEE Xplore.  Restrictions apply. 


