IMPROVING SECURITY OFCRYPTOWALLETS
IN BLOCKCHAIN TECHNOLOGIES

by

HOSSEIN REZAEIGHALEH
M.S. University of Central Florida, 281

A dissertatiorsubmitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy
in the Department dElectrical Engineering and Computer Science
in the College of Engineering and Computer Science
at the University of Central Florida
Orlando,Florida

Fall Term
2020

Major ProfessorCliff C. Zou

© 2020 HosseinRezaeighaleh

ABSTRACT

A big challenge in blockchain and cryptocurrency is securing the private key from
potential hackers. Nobody can rollback a transaction made with a stolen key once the network
confirms it. The technical solution to protect private keys is dhgtocurrency wallet,
software, hardware, or a combination to manage the keys. In this dissertation, we try to
investigate the significant challenges in existngptocurrencywallets and propose innovative
solutions. Firstly, almost altryptocurrencywallets suffer from the lack of a secure and
convenient backup and recovery process. We offer a new cryptographic scheme to securely
back up a hardware wallet relying on the sith@nnel human visual verification on the
hardware wallet. Another practical mechanism to protect the funds is splitting the money
between two wallets with small and large amounts. We propose a new scheme to create
hierarchical wallets that we call deterisiic subwallet to achieve this goal. The user can send
funds from the wallet with a large amount to a smaller one in a secure wagrojesea
multilayeredarchitecture for cryptmrrencywallets based on a DefenseDepth strategy to
protect private kys with a balance between convenience and security. The user protects the
private keys in three restricted layers with different protection mechanisms. Finally, we try to
solveanotherchallenge in cryptocurrencieghichis losing access to privakeysby its user,
resulting in inaccessible coindl/e propose a new mechanism callednrecovery transaction
to tackle this problem. We make a change in wallet key management to genexadeery
transactionwhen neededWe implement a proedf-conceptfor all of our propoals on a
resourceconstrainthardware wallewith a secure element, an embedded display, and one
physical button. Furthermore, we evaluate the performance of our implementation and analyze

the security of our proposed mechanisms

ACKNOWL EDGMENT S

| want to extend special thanks to my advisor Dr. Cliff Zou who supports me from the
early stage of my Ph.D. degree and helps me with consulting in my study program, guide me

to publish highquality papers and provides the required equipment avideks.

LIST OF FIGURES ereme s Xi
LIST OF TABLES......cceeeeee ettt eeee et e e e e et e e ene e e e e e eennanns Xiii
CHAPTER 1: INTRADUCTION . ..ottt et irene e e e e e e e eeeeesnennnnnns 1.
1.1 Problem and MOtVALION.uuueiiiiiiiiiiie ettt 1
1.2 Crypto Wallet SECUILY.......ciiiiiieeiiieee e 2.
1.3 Crypto Wallet Backup Problem...........cooooiiiiieee e 2
1.4 SuperWallet/SubWallet MOEL..........oooviiiiiiiiii e 3
1.5 Defensein-Depth Architecture...........cccoeeeviiiiiiiieeee e 4
1.6 Avoiding Inaccessible Wallef.............cooiiiiime e 5
1.7 DOCUMENT STIUCTUIE......eeviiiiiiiiiiiiiie st eeese e e e e e 6
CHAPTER 2: TECHNICAL BACKGROUNDL........iiiiiiiiiiiie et eeee s
21 Cryptography PrimMitiVES........cooiiiiii e ieeeei e eeeeemme e e 1.
2.1.1 HAaSN FUNCHOM......cciiiiiieeeeee ettt e e eeennes 7
2.1.2 Hashbased Message Authentication Code.............oeeeeiivieeeiiiiiee e, 1.
2.1.3 Symmetric Cryptography.......ccoooii oo 8
2.1.4 Asymmetric Cryptography...........uuuuuuuiiiiiesceeeiiiiiiiss s e e e e e e e e e e s aneesa s s e e eaaeaaes 8
2.1.5 Digital SIGNALUIE.......cuueieiiiaiee et rree e e e e e e e e e e eeeeeebbennn e 9
2.1.6 Elliptic-Curve Cryptography..........ooiiiiiiiiiiiiiieees s eeeeeeeeeeeeees 9
2.1.6.1 Elliptic-Curve Domain Parameters f®eCp256K1.............cccevvvvrrrrrrueaeen. 10

TABLE OF CONTENTS

2.1.6.2 Elliptic-Curve AddiNg.........cooiiiiiiiiiiiiiiiemme et e 11
2.1.6.3 Elliptic-Curve DOUDIING.........covviriiiiiiiiis e e e erennen e 12
2.1.6.4 Elliptic-Curve MURIPIYINGoiiiiiiii e eeeee e 13
2.1.6.5 Elliptic-Curve Key Generation............ccccuueieeeeiiiieeceeeeeeeeeeeeee e seeeees 14
2.1.6.6 Elliptic-Curve Digital Signature Generation..............cccceeeiiieeeereeeeennns 14
2.1.6.7 Elliptic-Curve Digital Signature Verification..........c.ccccceeeeeviiiccceeeeeennn. 15
2.2 Blockchain TeChNOIOGYcccuvuiiiiiieiiii e 16
2.2.1 HISTONY. ettt ettt ettt seeer e e 16
2.2.2 Blockchain MECNANICS.cccoiiiiiiiiiiie e 16
2.2.3 UTXO-based versus Accoubtised Blockchain.............ccooccviiiiieeecennnnne. 19
2.2.4 SMAIt CONMACE........ccviiiiiiiiii i 19
2.2.5 CoNSENSUS MECNANISIMS.oiiiiiiiiiiiii e 20
2.2.5.1 ProofOf-WOTK.........oeiiiiiiiiiiiiiiie e e e 20
2.2.5.2 Prod-0f-Stake.........cccuuuiiiiiiiiiii e 21
2.2.5.3 Delegated Proedf-Stake..........ccceeiiiiiiiiiiiiieeeiciiccce e 22
2.2.6 Blockchain NetWOrksS. ...t ieee e 22
2.2.6.1 Public BIOCKCNAIN.cciiiiiiiiice et 22
2.2.6.2 Private BIOCKCNAIN..........ouiiiiiiiiiiiiii e 23
2 T O Y/ o1 o AT [T U 24
2.3. 1 Wallet TYPOS ..ot eeeee e e e e e anee s 24
2.3.1.1 Brain Wallel........oooviiiiiiiiiiee e 24

Vi

2.3.1.2 Paper Wallll........coo ottt a e e 24

2.3.1.3 HOUWaAIIEL.......ouiiiiiiiiiiiiiiiee ettt e 25
2.3.1.4 Cold WallBL......coeeiieeiiie e ereer e e e e e e e aeenees 25
2.3.1.5 DeSktop WallEl.......uuuiiiiiiiiiiiiii e 26
2.3.1.6 MODIle WaAIEL...........euiiiiiiiiiiiiie e 26
2.3.1.7 Hardware WalleL...........cuuiiiiiiiiiiiiieei e 27
2.3.2 Hierarchical Deterministic Wallet...............oooooiiiiiiimaneeee 28
2.3.2.1 BIP-32: Hierarchical Deterministic Wallets...............ccccciviimmnnininnnnnd 29
2.3.2.2 BIP-39: Mnemonic code for generating deterministic keys................ 31
2.3.2.3 BIP-44: Multi-Account Hierarchy for Deterministic Wallets................ 32

2.4 SMAIT CAr......eeeeiiieiiiiiie et eeet e e e e e e s anenr e e e 34
2.4.1 1C Card COMPONENIS.....ccceiiiiiiiiiieeee e e ene e s e eeees 34
2.4.2 Java Card TeChNOIOGY.........ccuuviriiiiii i erre e e e e e e 36
2.4.3 GlODal PIAtfOIML.....uuiiiiiiiiiiiiiiiii e 37
2.4.4 Smart Card Programming..........cccceeeeeeeeeeeieeeiiiiseaeeeeeeeeaeseeseessaenneeeeeeaaaeeeens 37
2.4.5 Smart Card SIMulatiQn..........coooiiiiiiiiee e 39
CHAPTER 3: FINDINGSo e e e e e A0
3.1 SMArt Card SECUIMY......ceeeiiieiii i eeee e e e e e e e eeean 40
3.1.1 Threat MOdel........ccoocuiiiiiiiiiieereie e e A0
3.1.2 Fundamental VUINErabiliti@S.uieiiiiiiiiiiiieeiee e 41
3.1.2.1 Capturing the Smart Card PIN........cccooooiiiiiiiiiieeee e 41

Vii

3.1.2.2 Altering the Digital SIgNature.............ooooiiiiiiiiiieeeeei e 42

3.1.3 Implementation of Smart Card Attacks...........cceevveviiiiiirreeeeee, 42
3.1.4 New Smart Card CapabilitieS...........coeiiiiiiiiiiei e 44
3.2 Crypto Wallet BaCKUP.........ccoiiiiiiiiiiiiiiieeeiiii e eeeee e e e e e e e e e 46
3.2.1 EXIStiNG SOIULIONS......uuiiiiiiiiiiiii e eene e 46
3.2.1.1 Paper BaCKUP......couiiiiiiieee e 46
3.2.1.2 SeCret SNArNg.......ccoiiuiii i a7
3.2.1.3 Multi-Signature WallEL............ueuiiiiiiiiiiiieeeiiieeeeeeee e a7
3.2.1.4 Backup onthe Cloud............ceoeiiiiiiiiiiiiee e 48
3.2.2 Proposed Crypt Wallet Cloning Mechanism.............ccccceeeeiiiisieceevinnnnnnnnn. 48
3.2.2.1 Elliptic-Curve Diffie-Hellman Key Agreement...........cccccoeeeeeeevieeeeennn. 49
3.2.2.2 Proposed AlgOrithm..........oooiiiiiiieeee e 50
3.2.3 Prototype Implementation on Smart Card...............ooovvvviieeeeeeeieeiieeiiiiien, 52
3.2.4 Performance Evaluation................oouiiiiiiieemiiiiiiiieeeee e 55
3.2.5 SECUNMLY ANAIYSIS....ccerririiiiiiiiiiiie et e ceee s e s e e e e e e e e e e e e e et aeensaeaeeeeeeeeeeeessnsennnnne 57
3.2.5.1 Assumptions and Threat Model............cccccciiiiimanee 57
3.2.5.2 Theft of Backup AttacK.........cccoeiiiiiiiei e e 57
3.2.5.3 Vulnerability to Brute Force Attack.............cccccvieiiiiiieeee i, 58
3.2.5.4 Capturing the Master SEed..............uuuiiiiiiiecceiiccir e eeee 58
3.2.5.5 MITM Attack: Replacing the Backup Public Key..........cccoeeeiiiiiiiicnes 59

3.3 SuperWallet/SUBWaIIEL..........cooiiiiii e 60

3.3.1 Classic SupewWallet/SubWallet Model............ueoiiiiiiiiiiiiceiiiii e 60

3.3.2 Proposed Deterministic SBNVallet..............ccoeviiiiiiiiiiieee e 61
3.3.3 Classic versus Proposed Supéallet/SubWallet Model................veiinnnee 62
3.3.4 Proposed Deterministic Stlvallet Detalls................ovvveeiiiiiiccmeiiiiinn 62
3.3.4.1 SubWallet Seed Derivation..............ccccuurmimmimmminiiiiiineeeeee e eeeeeenn) 63
3.3.4.2 SubWallet RefilliNg........ccccuiiiiiiiiiiiiiiieeeiiii e 64
3.3.4.3 SubWallet Seed TranSPOrting.......ccccceveeuiiiiiieeieeee e eeeeas 66
3.3.5 Prototype Implementation on Smart Card..............eevvveniccmeeeeeineeninnn. 6.7
3.3.6 Performance Evaluation..............cccooiuiiiieemiiiiee e seeme e e 69
3.3.7 SECUNLY ANAIYSIS......coiiiiiiiiiiiiei et eeee et e e eree e e e e e e e e e e e e e e e e e e 72
3.3.7.1 Assumptions and Threat Model...............ooovvviiiiccii e e 72
3.3.7.2 Less SupelVallet SIgNiNgS........cccvvviiiiiiiiiiiiiireeeeeeeeeeeeeeeeeee e d 2
3.3.7.3 Capturing Sub/Nallet Seed............coovvrriiiiiieeeeeeeeeeee e L 2
3.3.7.4 MITM: Replacing SubWallet Address.............ueeveeeeiiiiiiiecciiieiieeeeeeeeen 73
3.3.7.5 MITM: Replacing SubWallet Transport Public Key...............ccceeeeiennne 73
3.4 Multilayered Defenseén-Depth ArchiteCture.............ccccuvvviiiiiiieeeeiiiiiiiiiieeeeeee 75
3.4.1 Proposed MultiLayer Wallet.............oovuviiiiiiiiiieeeerr e eren s 75
3.4.2 ProOfOf-CONCEPL.....uuuuiiiiiiiiiiiiiii ittt ettt e e e e e e e e e e e e e e 79
3.4.3 SECUNMLY ANAIYSIS....ceeiiiiiiuuiiiiaieee e e eeesese s s s e e e e e eeeaeeeeeeeeesaeaaeeaeeeeeeeesnnsnnnnnne 80
3.4.3.1 Security AQVANTAQGES.... . oiiiei e eeeeeeeeeeeieeee et eeeeenne 81
3.4.3.2 Adversary MOGeIS........cccooieiiiiiieeeeeee e 81

3.5 Off-Chain Transaction to Avoid Inaccessible Wallet...........cooveeviveeceeinienn... 86

3.5.1 RECOVErY TranSaACHON.........uuuuuiiiieeeeeeeeeeerieseae s e e e e e eeeaeeeeeeesanrneeeeaeeeeeereeeennnsd 87
3.5.2 Hardware Wallet ArChItECIUIE..........cvviiiiiiiiiiiee e 88
3.5.3 Evaluating Recovery Transaction for Hardware Wallets................c.......... 90
3.5.4 Proposed Lean Recovery TranSacCtion...........cceeeevviiiiicmiiiieeeeeeeiiiieeeeeeeanns Q2
3.5.5 EVAIUATION.....euiiiiiiiiiiiiiie e 96
CHAPTER 4: CONCUSIONttt eeeee ettt eneee e e e e e e ra e e e e e ennanas Q8
REFERENGES ..o er e e et e e e e et e e e s enree e e e eata e e e eaeees Q9

LIST OF FIGURES

Figure2-1: Simplified Example of Transaction Signing in Bitcain...............cvvvvvvcmmeen... 9
Figure2-2: Elliptic-Curve Domain Parameters for secp256Kk1...........cccccevvvvvimeeeeirnnnene. 10
Figure2-3: Elliptic-Curve Graph of /= X3 + 7ooeiiiiie e 11
Figure2-4: Addition of Two Points in ECC with Geometry Approach.......................... 11
Figure2-5: Addition of Two Points in ECC with Algebraic Approach...........c......o.oooot 12
Figure2-6: Doubling of a Point in ECC with Geometry Approach.............cc.ovvvvvieeee.. 12
Figure2-7: Doubling of a Poinin ECC with Algebraic Approach...........ccccccociiiiiieeenn. 13
Figure2-8: Multiplying of Two Points in ECC.........ccooiiiiiiii e eeee 13
Figure2-9: Digital Signature Generation in ECC..........cccooiiiiiiiiiiceeiciiie e eeeeeeeeeeeee 14
Figure2-10: Digital Signature Verification in ECC.............oooiiiiiiii 15
Figure2-11: Chain of blocks in the blockchain...........cccoooiiiiiiiiceeiiiiii e 17
Figure2-12: Sample Bitcoin Brain Wallet..............oovviiiiiiiceniiiiiiieeeeeeeeeeieeeee e 25
Figure2-13: BIP-32 master key generation funCtion................uuuuueiircceeeeeeiiniiiene e 29
Figure2-14: BIP-32 private parent key to private child key function................ccccceoeeee. 30
Figure2-15: BIP-32 public parent key tpublic child key function...............ccccoooviiiiceee. 30
Figure2-16: Smart card vs. magnestripe Card...........cceeeivieeieeeiiieeeiieee e 34
Figure2-17: Sample smart card chip layOut.............oovviiiiiiee s 35
Figure2-18: Java Card Runtime Environment (JCRE) Architecture..............ccevvveeend 36
Figure2-19: Java card application compiling and lo@oimocess.........ccccceeeeevvevviiinnnnn. 38
Figure2-20: Command and response APDU StrUCIUIE..............uuueiiiiiccmeeerrinnniianeenns 38
Figure3-1: Windows smart card software stack vs. hacked software.stack...............43
Figure3-2: Smart card with an-paper display, physical buttons, and an IC chip.........45
Figure3-3: Elliptic-Curve DiffieeHellman (ECDH) key agreement...................ccceeeee... 49

Xi

Figure3-4: Proposed secure backup mechanism to transfer master.seed................. 51
Figure3-5: The proposed secure backup procedure from the user perspective......... 54
Figure3-6: Performance of ECC 286t and RSA 204®&it on a smart card.................... 55

Figure3-7: Performance results of the secure backup procedure on a smart.card....56

Figure3-8: Capture thenaster seed by injecting a key by a hacker............................. 59
Figure3-9: Subwallet refilling pSeUdECOde.........coooviiiiiiiiiiii e 64
Figure3-10: Simplified example of proposed swufallet refilling mechanism................... 65

Figure3-11: Subwallet refilingandsulss e ed transporting f.r.88m t he
Figure3-12: Smart card execution time to refill multiple sybllets simultaneously........ 69
Figure3-13: Fee to refill one suwallet multiple times..........ccoooiiiiiiieee e, 71
Figure3-14: Time to refill one sutwallet multiple times...........cccooeiiiccc s 71
Figure3-15: The proposed multayer defensén-depth architecture for cryptocurrency wallets
... {6
Figure3-16: General hardware wallet COMPONENLS............cceeeiiiiiimmiiiiiieee e 89

Figure3-17: Performance of generating recovery transaction on a Trezor One hardware wallet

Figure 3-18: Performance of generating recovery transaction on a Ledger Nano S hardware
LT 2= 1 L PP PPPRRS 92

Figure 3-19: Sample key tree to illustrate the coverages of Recovery Transaction and our
proposed Lean Recovery TranSaCHQN.......cceeeeeeieiiiiiieeeee e eeeeeeeeeeeeteveemmme e e eeeeeeeeeeees Q3
Figure3-20: Example for comparing lean recovery transaction with recovery transa@®n
Figure 3-21: Comparison of micropayment transactions in recovery transaction proposed in

[57] and our proposed lean recovery transaction SChemas..............cccccvvceeieeeeeeeeennnnnn. 97

Xii

Table2-1:

Table2-2:

Table3-1:

Table3-2:

Table3-3:

Table3-4:

Table3-5:

LIST OF TABLES

Relation between Entropy and Mnemonic Sentence............ccccccevvmveeennnnns 31
Account Discovery Process in a Sample HD Wallet..........ccoooooiiiiiceeennnn. 33
Acronyms of proposed secure backup mechanism...............cccccecereeennnnnl 50
Subwallet Refilling pseudaode ACTONYMS..........vvivieeeiiiiiie s 65
Bitcoin NetWOork MEtriCS.......coooiiiiiii e e 70
Adversary Model I: Malicious App with Dangerous Permission.................. 82
Adversary Model II: PhySiCal ACCESS......cuuviiiiiiiiiiiiiieeeeeeeee e 84

Xiii

CHAPTER 1: INTRODUCTION

1.1 Problem andVotivation

As blockchain and cryptocurrencies become increasingly popular and practical in
various areas from purchasing a coffee to transferring vehicle ownership, they also become
more attractive targets for hackers. Every wee&, read the news of stealing money from
exchanges, servers, and cryptocurrency owners. A big challenge in Bitcoin and almost all
blockchains is securing the private keys. Blockchain usually uses etliptie asymmetric
cryptography to control the ownerphof coins or accounts. For example, a user signs a
transaction with her private key to transfer coins to another one, and the blockchain network
verifies the signature of the transaction with her public key. After being confirmed by the
blockchain networkthe transaction, unlike the traditional bank transfer, cannot be rolled back
by anyone.

Consequently, the private key has full control of the crypto funds, and the most crucial
task of the user is keeping her private keys safe. It is one of the essbatlahges in
cryptocurrencie$l]. Existing systems require a particular software or hardware called crypto
wallet to store the private keys and sign the tranmas. Crypto wallets have a spectrum from
online wallet to cold wallet while many experts believe the most secure one is the hardware
wallet. It usually is a dedicated cryptographic device in the form of a USB stick, Bluetooth
device, or smart card. Evdahough the hardware wallet is secure in many aspects, some
essential issues should be addressed. In this work, we consider these issues and propose

innovative schemes to solve them.

1.2 Crypto Wallet Security

At first, we consider the security of the existimgrdware wallets and search to find an
appropriate hardware device to implement that. So, we find a secure hardware wallet must have
direct input and output like a display and few buttons to communicate with the user directly
without trusting to the termal such as a computer and smartphone. Furthermore, a hardware
wallet must have a Secure Element to store secrets and keys and perform cryptographic
operations. As we believe, the most promising device to build a secure hardware wallet is the
smart card (ICard). However, the traditional smart cards do not have any display and button
and have fundamental vulnerabilities. Thus, in the first research we focus on smart card security
and implement such attacks to one the most pervasive smart cards. Therpesge sing a
serverbased solution to solve the digital signature security issue in the traditional smart card.
We published the paper of the result of our research and attack implementatior2@i8he
International Conference on Computing, Networking @unmunications (ICN€018 as

fiSecure Smart Card Signing with Tirhased DigitaBignature [2].

1.3 Crypto Wallet Backup Problem

The first significant problem in current hardware wallets is the backup and recovery
process. Almost all of them use a word list (mnemonics) to back up private keys and restore
them when needed. The user must write these words on a piece of paper ahddfeephis
method converts the seed of private keys from digital form to physical form and moves the
problem to the outside of the wallet. In this work, we propose a new digital scheme for backup
and recovery using Ellipti€urve DiffieeHellman (ECDH)agorithm [3]. This new approach
is very convenient for a user because she does not need to write a word list and keep it safe. At

the end of the backup process, tlser has two same crypto wallets, and she can use both of

them as a functional wallet without any additional recovery 3tép.did this research and
development and published our paperhie 2019 IEEE Global Communications Conference

(GLOBECOM-2019 a sNewi Secure Approach to Backup CryptocurreWllet [4].

1.4 SuperWallet/SubWallet Model

The second issue crypto walletsis separating funds between wallets. Etleough
the hardware wallet is a secure option, it is risky that the user puts all of her funds on one device
and uses that for dap-day purchase. A smart and simple solution is proposét icalled
superwallet/subwallet model. The supewallet is like a saving account that stores a large
amount of money and onl-waletrindrdquehtly whert neegled.sTheme
subwallet is like a spending account that saves a small anofdohd used by the user for
daily expenses. T h evalletfisolasteoy hackéd, shehdees oot lese @ s
significant amount of money.

In the classic model, every time a user wants to refill hemallet, she sends the fund
from the supewvallet address to the swhmallet address. This process is straightforward but has
significant drawbacks. First, each time the user refills thengllet, the supewallet creates
a transaction and publishes that to the blockchain network. Thus, sherpags éee for each
such transaction. Also, she should wait for confirmation, so refilling thevsillbt takes time.
Also, refilling the subwallet is risky because a hacker could perform Niaithe-Middle
(MITM) attack to replace the original swirallet aldress by his address to receive fund from
the supemwallet. Furthermore, the user must maintain the backup of both-agtlet and sub
wallet.

To resolve these challenges in the supellet/subwallet model, we propose a new

scheme that we call deternstic subwallet. In this model, the sulvallet seed is derived from

the supemwallet seed. The sup&vallet calculates the suballet addresses and transfer the
fund to them in only one blockchain transaction. To refill, the user transportsneaiebsed
from the supewallet to the sulwallet instead of creating a blockchain transaction.
Consequently, this model can refill multiple swhllet addresses with only one mining fee and
onetime waiting for confirmation. It is secure because the swadlet does not need to get
the subwallet addresses from the outside of the wallet, and it prevents the MITM attack. Also,
there is no need to back up the sudillet, because it can be derived from the suyatet. For
proof-of-concept, we implement a protpey of our proposed deterministic swhllet in a
hardware wallet and evaluate its performawe. did the research and development of this
project and published our paperthe 2019 IEEE International Conference on Blockchain

(Blockchain2019)a sDet@rmhistic SubWallet for Cryptocurrencied[5].

1.5 Defensen-Depth Architecture

In this project, v proposea multilayeredarchitecture for crypturrencywallets based

on a Defensén-Depth strategy to protect private keys with a balance between convenience

and security Defensein-Depth (DiD) is an approach in IT security that usually conveys

multiple layers with various security mechanisms to protect a system frathsaitaseveral

steps.The user protects the private keys in three restricted layers with different protection

mechanisms. So, a single breach cannot threaten the entire fund, and it saves time for the user

to respond. W implement a proedf-concept of ouproposedarchitectureon both a smart

card hardware wallet and an Android smartphone waligh no performancepenalty.

Furthermore, we analyze the security of our proposed architecture with two adversary models

We published our paper ithe IEEE 6th Iriernational Conference on Computer and

Communications (ICC2020 a s AMul t i | ayneDemhd Arclitecfure nfere

Cryptocurrncy Walleto

1.6 Avoiding Inaccessible Wallet

Blockchainuser locks her private keys with a password and stores them on a piece of
software or a hardware wallet to protect them. A challenge in cryptocursesdising access
to private keys by its user, resulting in inaccessible coins. These coins are assigned to addresses
which access to their private keys is impossible. Today, about 20 percent of all possible bitcoins
are inaccessible and lost forever. fomising solution is the ofthain recovery transaction
that aggregates all available coins to send them to an address when the private key is not
accessible. Unfortunately, this recovery transaction must be regenerated after all sends and
receives, and is time-consuming to generate on hardware wallets. Inpgtagect we propose
a new mechanism callddanrecovery transaction to tackle this problem. We make a change
in wallet key management to generate the recovery transaction as less frequerdbitds. po
In our design, the wallet generates the lean recovery transaction only when needed and provides
better performance especially for micropayment. We evaluate the regular recovery transaction
on two real hardware wallets and implement our proposethaném on a hardware wallet.
We achieve a %40 percentage of less processing time for generating payment transactions with
few numbers of inputs. The performance difference becomes even bigger with larger number
of inputs.We published our paper theThird International Workshop on Blockchain Systems
and Applications (BlockchainSys2020)n conj uncti on wi t lEffidieBtEE Tr u

Off-Chain Transaction to Avoid Inaccessible Coins in Cryptocurredfigs

1.7 Document Structure

In this document, we first overview the technical background of crypto wallets. We
review the required cryptography primitives like hash function, digital signature, and elliptic
curve cnptography. Then, we introduce the blockchain technology, including blockchain
mechanics, consensus mechanisms, smart contract, and various types of blockchain. Next, we
consider crypto wallets, which includes explaining different wallet types and hiexarchi
deterministic wallet. We also describe smart card technology as a secure option to implement
the hardware crypto wallet. In the next chapter, we start by discussing smart card security issues
and explain our implementation to evaluate them. We conimtiee next chapter with argue
about existing crypto wallet backup mechanisms and their drawbacks. Then, we propose a new
cryptographic backup mechanism based on ellipticve DiffieeHelman. Following sections
present the prototype implementation, perfance evaluation, and security analysis of this
new mechanismThen, we explain the details of our proposed solution for swpbet/sub
wallet model. We describe our prototype implementation, performance evaluation, and security
analysis of this modeNext, we propose our mullayer architecture for cryptocurrency wallets
that provide a defenga-depth architectureThis model uses our previous proposed
mechanism for wallet cloning and derivatidve present our proasf-concept implementation
and depit two adversary model for security analysimally, we propose a key management
schema to avoid inaccessible wallet using an efficientlndin transaction. In this section, we
examine the current solution on two hardware wallets to illustrate tisahdt applicable to
resourceconstraintvalletsand then evaluate our proposed efficient mechanism on a hardware

wallet. In the end, we finish with the conclusion.

CHAPTER 2: TECHNICAL BACKGROUND

2.1 Cryptography Primitives

In this section, we provide aoverview of the essential concepts of cryptography

required for the subject of this dissertation.

2.1.1 Hash Function

The hash function is a ofweay procedure to create a unique digest for a message or
transaction. Ongvay means everybody can compute the diffesh the message, while the
reverse of this function; recovering the message from its hash, is not possible or is very hard to
do. Hash functions generate a fixtzhgth hash value, and the message length can be larger
than the hash length. Since the héshctions map a larger set to a smaller set, they have
collisions. The stronger hash function has a lower collision probability.

Blockchain technology employs the hash function in several situations. For example,
the Bitcoin transaction ID is the hashtloé whole transaction body, and the key derivation and
address generation procedures use hash functions. The most popular hash algorithm in Bitcoin

is SHA256, SHA512, and RIPEMD160.

2.1.2 HashbasedViessagé uthenticationCode

Hashbased message authenticatiomde (HMAC) is a specific type of message
authentication code that includes a hash function and a secret key. Therefore, HMAC provides
both integrity and authentication of data. The most used HMAC algorithms in crypto wallets

are HMAGSHA256 and HMAGSHAS512

2.1.3 Symmetric Cryptography

Symmetric encryption refers to a cryptography scheme where the encryption key and
the decryption key are same. It means that everyone who has the secret key can both encrypt
and decrypt all messages. The most pomyarmetric algorithms are TriplPES and AES.

The main advantage of symmetric cryptography is the performance where encryption
and decryption functions are fast and make it suitable for large data encryption. On the other
hand, the significant disadvantagesymmetric cryptography is the key distribution which

requires a prexisting key or oubf-band channel.

2.1.4 Asymmetric Cryptography

In contrast to symmetric algorithms, asymmetric cryptography uses different keys for
encryption and decryption. Intheengry i on scheme, the sender wuse
to encrypt a message, and the receiver uses
the ciphertext. Therefore, the receiver publishes her public key to the desired senders. Everyone
who haghe receiver public key can encrypt a message for her. However, only the receiver can
decrypt the cipher because only she has the corresponding private key. The most popular
symmetric algorithms are RSA and ECC.

In comparison to the symmetric cryptograpllye main advantage of asymmetric
cryptography is the easier key distribution. On the other hand, the encryption and decryption
functions are usually slower. Thus, for encryption scheme, the hybrid solution is more realistic
while a symmetric key encryptise data and an asymmetric public key encrypts the symmetric
key. So, only who has the asymmetric privat

symmetric key and consequently decrypt the data.

2.1.5 Digital Signature

The digital signature is a processagymmetric cryptography when the signer uses her
private key to sign the hash of a message and generates a signature value. The verifier verifies
the signature using the signer public key. The digital signature provides data integrity and
authenticity inaddition to norrepudiation. The last one means the signer cannot deny her
action to sign a signed message.

The digital signature is one of the fundamental elements of blockchain technology. In
the blockchain, each user has a private key aka secret keldggtadly signs a transaction to
transfer funds to others or initiate ancmain functionFigure2-1 demonstrates a simplified

transaction signing in Bitcoin blockalm when Alice wants to transfer one bitcoin to Bob.

Alice Bitcoin Node

Sign (oo] Verify
. h_ oIEn
— — Al ey
Add to the next block

Alice Secret Key lice Public K

0100000001071188b Push 0100000001071188b
73caSdafblaeb3s.. 73ca5dafblaeb3s...
No

Yes
Bitcoin Transaction

Send 1 Bitcoin To Bob
with 0.02 Bitcoin Fee

Figure2-1: Simplified Example of Transaction Signing in Bitcoin

2.1.6 Elliptic-Curve Cryptography

Elliptic-curve cryptography (ECC) is a typeasymmetric cryptography based on the
elliptic curve over finite field mathematics. The detail explanation of ECC is out of the scope

of this document. However, we overview the basic concepts of ECC in this section.

2.1.6.1 Elliptic-Curve Domain Parameters for gt56k1

The elliptic curve equation is shown lguation(l). It is a cubic operation in a finite
field which means every integer result of multiplication, additiontraghion, and division will
get modulo number p where p is a prime number.
y?=x3+ ax + b(mod p) (1)
There are various ECC equations with different a and b parameters, but one of the
popular ones used in marblockchains is secp256kl defined in Standards for Efficient

Cryptography $EQ [6]. Figure2-2 lists thesgparameters

p=2 61 271 271 1 21 21 2i 1
= OxFFFEFFFFFC2F
a=0
b=7
G:x ¢ = Ox79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798,
ye = 0x483ADA7726A3C4655DA4FBFCOE1108A8FD17B448A68554199C47D08FFB10D4B8
n = OXFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCEGAF48A03BBFD25E8CD0364141

Figure2-2: Elliptic-Curve Domain Parameters for secp256k1

As Figure2-3 demonstrates the simplified graph of secp256k1, this is symmetric over
x-coordinate and goes to infinity for positive and negathag@rdinate. For simplicitythis
graph is drawn for the real number, while, the secp256k1 is defined for an integer finite field

which is different and like a set of randomly scattered dots on a page.

1C

Figure2-3: Elliptic-Curve Grap ofy? =x3+ 7

2.1.6.2 Elliptic-Curve Addng

Elliptic-Curve Cryptography definesn addingoperation for EGPoints. To add two
pointsP (X, Yp) and G(%, yg) onthe ellipticcurve graph in ECC, we should draw a line between
the points. This line intersects with the elliptiarve graph in the third poiritR). Then, we
find the reflected poirR(x: ,yr) of the third point overscoordinate ortheelliptic-curve gaph.

This point is the result dheadditionas displayed ifrigure2-4.

6

Yo

| R

-6

Figure2-4. Addition of Two Points irECCwith Geometry Approach

11

Figure2-5lists the algebraic approach to add two points in BE@nite field Z where
Zp is a set of integer numbers between 1 arldtpat is achieved by modulo fphe term

Amodi nvo me averse dafired by thenExterided Euclidedgorithm[9].

s=(y ¢ 1 ypymodinv(x ¢ i Xp)modp

Xr =(s 27 Xp I Xg)modp

yr =(s*(x p T Xr) T yp)modp

Figure2-5: Addition of Two Points ifreCCwith Algebraic Approach

2.1.6.3 Elliptic-Curve Douhing

Elliptic-Curve Cryptography also defines another primitive operation foP&Gts
called doubling means put P eqt@iG in the addition equation. To find the double operation
in geometry approach, we must draw a tangent line to the eltiptie graph at point P. Then,
this line intersects with the ellipticurve graph in the second po{rR). When we find the
refleded pointR(x: ,yr) of the second point overcoordinate on the ellipticurve graph, it is

the result of doublingFigure 2-6 demonstrates the double operation onipkd-Curve

Cryptography.

-6

Figure2-6: Doublingof aPoint inECCwith Geometry Approach
12

Similar tothe addition operationk-igure2-7 shows the algebraic approach to compute

thedouble of a EC-Point.

s=(3x p?)modinv2y , modp

Xr =s 27 2xp modp

yr =(s*(x p T Xr) T yp)modp

Figure2-7: Doublingof aPoint iInECCwith Algebraic Approach

2.1.6.4 Elliptic-Curve Multiplying

Elliptic-Curve Cryptography defines the point multiplication based on the point
addition and the point doubling. This operation multiplies a point to a scalar value and finds
the resulting point when we double the input point P in scaler times. Howesrerjsha more
efficient way to multiply called doublendadd, which is similar to multiphandsquare in
modularexponentiatior{9]. In this method, we scanthebcar fAs o0 binary valu
right and double the point P for each bit and add the point P to the result if the bit is 1. In the

end, we have the result point Rgure2-8 lists the pseudocod# this algorithm.

ECMultiply (P, s) {

if not 0 < s < n then error
R:=P
for i=0 to len(s) {

R : = ECDouble(R)

if s[li] == 1

R : = ECAdd(R, P)

}

return R

}
Figure2-8: Multiplying of Two Poinsin ECC

In Figure2-8t h e f | thalehgth)obscalerss in bits. The first line of the function
checks thathe scaleis in the correct range where can be from 1 wefined in secp256k1

unless there will be a cycle in the infinite field.

13

2.1.6.5 Elliptic-Curve Key Generation

In the Elliptic-Curve Cryptographythe private key is a random scaler which is less
than pedefined fix value n. n is the uppleound of possible private keggfined in secp256k1
and listed irFigure2-2. The public key is a point calculated with Equati@from predefined
Generation point G listed iRigure2-2.

publicKey = privateKey * G (2

In the above equatiod;ddenotes ECC multiplication of point G and scaler privateKey.
The result is an E®oint with x and y value used as the public kBgcause theliscrete
logarithmis a hard problem in computseiencg9], calculating the private key from the public

key is not practical while extracting the public key from the private keyvial.

2.1.6.6 Elliptic-Curve Digital Signature Generation

Elliptic-Curve Cryptography has a special algorithm to generate the digital signature.
Figure2-9 displays the algorithm where the inputs are the hash of the message or transaction
and the private key. The output is the generated signature. In this algorithm, G is Generation
point, and ns the modulo according to secp251kl definedrigure 2-2. rand is a 256it
random value, and messageHash is the calculated hash of the message or transaction. The

reallting signature is the concatenation of r and s.

PXp,y p)=rand*G

r=x p modn

s = ((messageHash + r * privateKey) * rand modinv n) mod n
signature = (r, S)

Figure2-9: Digital Signature Generation BECC

Temporary point P is calculated by performing ENM@ltiplication of scaler rand and

Generation point. Then, x coordinate of P is used to compute r and s value.

14

2.1.6.7 Elliptic-Curve Digital Signature Verification

The verification algorithm demonstrated Figure 2-10 is used to verify a digital
signature in ElliptieCurve Cryptography.The inputs are the hash of the message or
transaction, the generatsemnature, and the public key, and the output is true or false. In this
algorithm, G is Generation point, and n is the modulo according to secp251k1 defigratén
2-2, and messageHash is the calculated hash of the message or tranBaotorary point Q
is calculated by adding two results: the resulting point of multiplication of scaler ul and
Generation point, and the resulting point of multiplication of sc@lemd the public key point.

The final result is the comparison between the calculated value t and the extracted value r from

the signature. If these two values are equal, the signature is valid.

w =s modinv n

ul = (messageHash * w) mod n

u2 = (r * w) mod n

Q(Xq, Y q) = (ul*G)+ (u2 * publickey)
t=Xx ¢ modn

if (r == t) signature is valid

Figure2-10: Digital SignaturéVerificationin ECC

15

2.2 Blockchain Technology

2.2.1 History

Blockchain idea is started froh®91[10] by Stuart Haber and W. Scott Stornetta work
to record timestamped digital documents and make it tangsestant by chaing them in a
set of blocks. The authors of this project continued their work, and in 1992, they added Merkle
Tree to group mul t i plbleck[tilp Napnaetioat psofect usedgheset |
studies. In 2004, Hal Finney introduced a hashteas®ed token which uses PragfWork and
generates RSAigned token and controls the ownership of them in a central teestesl{12].

The real blockchain emerged with the Bitcoin project sk@@8[13]. A person or a group
known as Sathi Nakamoto designed a distributed cryptocurrency that is not controlled by
any central trusted server, government agency, or private company. Blockchain is an open
distributed ledger that records all transactions increasingly in autonomous networklnodes.
other words, the classic blockchain is a-fliitributed database that its only operation is
append and there is no update or delete operation.

In 2013, Vitalik Buterin crafted Ethereui] that upgrades the classic blockchain and
creates a distributed virtual machine that records-stansitions as apperahly records in the
blockchain. Finally, the most advanced consensusrigtign for the blockchain to solve its
classical problems was introduced by Daniel Larime20@4[15] and implemented in EOS

blockchain. It is a digital democraty operate and govern the whole blockchain system.

2.2.2 Blockchain Mechanics

Blockchain is a chain of blocks which means that each block has the hash of the

previous block. It makes a chain of blocks, and if someone wants to change one of them, he

16

must changall next blocks too. A block usually contains a random number to make the change
operation more difficult. This random number, aka nonce causes to generate a particular hash
value that is less than a predefined number. In other words, the hash valueweusoime

zeros at the beginning. The blockchain network updates this predefined number periodically to
adjust the difficulty of the system and balance the required computing power and the hacking
risk [16].

Each block contains the hashes of the transactions. A transaction is a message digitally
signed by the sender and includes some information like transferring fund from someone to
others or calling a function inldockchain virtual machinésigure2-11 demonstrates a sample
chain of blocksA particular hash tree called Merkle Tree calculates the haslesséctions
to insert in a block. Using Merkle Tree, there is no need to record all hash value of transactions
in a block which saves storage, bandwidth, and computation péweire 2-11 displays a

Merkel Tree in the blockchain.

Block 110 Block 111 Block 112
Prev_Hash Timestamp vl Prev_Hash Timestamp Prev_Hash Timestamp
Tx_Root Nonce Tx_Root Nonce Tx_Root Nonce

/\
/ \
Hash01 Hash23
Merkle Tree
Hash —— | Hash0 Hashl || Hash2 Hash3
t t f t
Tx0 Tx1 Tx2 Tx3

Figure2-11: Chain of blocks intheblockchain

In Figure2-11, Prev_Hash is the hash of the previous block, Tx_Root is the root of the
Merkle Tree, and Tx indicates the transaction. Each block also has a timestamp, the time that
the block is mined. The first block of a chain called genesis block wherevisps hash value

is set to 0.

17

There are a few types of entities which are a little bit different in various blockchains.
The first entity is the user that has funds and make a transaction to transfer her fund to other
users or entities. The second enigtythe full node or verifier that checks the transaction and
records that in the ledger. These nodes are connected intaqpeer network. The third entity
is miner that aggregate transactions, find the nonce, and generate blocks to append that to the
blockchain. Miners compete to find the matched nonce and produce the next block and get
rewarded for that with the blockchain cryptocurrency. It is the point that generates a new fund
called coin in a blockchain. A miner also charges the sender of adtiansasmall amount of
money called transaction fee to put the transaction in its next block. If the sender pays more
fee, her transaction will be inserted in the next block sooner because the miners would like to
add the transactions that pay more tratisa fee.

Since the hash function is omay, there is no way to find the nonce from the desired
hash value. So, a miner has to generate many random nonces and compute the hash of the entire
block to check the final result. Thus, each time a mindudky and finds the nonce, it
propagates the result to the blockchain nodes and gets the reward. Besides, two miners may
find a nonce to solve this puzzle at the same time and publish their result to the nodes. Two
different sets of nodes could accept botbssages because the blockchain network istpeer
peer, and there is not any central node to manage the system. Therefore, they could accept the
new block and append it to their ledger. After some time, there will be two different chains of
blocks calledemporary fork. To tackle this problem, when a node receives two different forks,
it accepts the longest fork and rejects the shorter one. Therefore, in theimeatmere are

two chains of the block, but after some time, there will be only one chthe iedger.

18

2.2.3 UTXO-based versus Accoubtised Blockchain

There are two transaction models in the blockchains. For example, Bitcoin uses the
Unspent Transaction Output (UTXO) model, and Ethereum uses the Account model. In the
UTXO model, each transaction hemme inputs and outputs. Each input indicates one previous
transaction output and the amount of that. The new transaction spends all amount of the
previous transactions input and put them in its outputs. The next transaction does the same. If
an output of transaction is used as an input with another transaction, it is called "spent output".
While, if an output of a transaction is never used by another transaction, it is called "unspent
output”. The blockchain nodes only accept a transaction that itssiapnot spent, if so, it is
doublespending that is not permitted in the blockchain. Hence, this model is called the Unspent
Transaction Output (UTXO) model. It is very similar to cash transferring in the real world
where the coins move from one persomnother.

On the other hand, there is another model called Acdoased. In this model used in
Ethereum, each account has a balance, and each transaction indicates fund transfer from one

account to another. It is similar to the bank account in thevadd .

2.2.4 Smart Contract

The new generation of blockchain technology employs the idea of the chain of the
blocks and extends that to building a distributed virtual machine. The most popular instance of
this type of blockchain is Ethereum. In this schemeh @acle has a Touriagpmplete virtual
machine that gets a piece of code and executes that until obtaining the result or reaching to a
limit. This piece of code is called Smart Contract. All nodes of the blockchain run the code by
receiving a trigger messagand compute the same result, then record that in the blockchain.

A user or another smart contract can call a function of a smart contract by sending a transaction.

19

The nodes receive a transaction fee (e.g., gas in Ethereum) to add a smart contracthesul
blockchain. So, each block includes the state of all smart contracts and appends that to the
ledger. The smart contract is a special part of code should run on a trusted computer while does

not have any user interface and called as a libraryhier grograms.

2.2.5 Consensu®echanisms

Blockchain includes an algorithm called consensus mechanism to achieve the shared
data or state between all nodes. This mechanism is distributed along with autonomous nodes
which run the consensus protocol independerittythe end of this process, all nodes must
agree on the same data value or state with no central authority to control them. There are
various types of consensus mechanisms, and we overview the most popular ones here.
Consensus mechanism defends again laakemalfunction nodes and miners would like to
cheat, for example, by making a fake fork for dotdppending. With this algorithm, nobody
can attack the network until having 51 percent of the nodes. It is because if a hacker controls
51 percent of the mtes, he can make a new fork of the blockchain and force the entire network
to accept that by creating the longest chain. It is called 51 percent attack in the blockchain

terminology.

2.2.5.1 Proofof-Work

Proofof-Work (PoW) is a widespread consensus mechanisnd wse Bitcoin,
Ethereum, and many other blockchains. In PoW, a miner solves a puzzle that requires
significant computational resource. For example, the miner should find a random number
called nonce included in a block that creates a particular hash ¥ahesldock, which is less

than a predefined number. To find the nonce, the miner has to generate many random numbers

20

and calculate the hash of the whole block.
So, if a miner presents a correct nontlgs is proof that it has performed significant
computation work. The main disadvantage of the PoW is high energy consumption to find the
nonce for the next block. All attended miners consume a lot of energy simultaneously, and only
one of them wins and tge the reward while others wasted their power. Also, PoW is
computation, and it is possible to make the Applicagpecific Integrated Circuit (ASIC)

board speed up the process. So, somebody with a big server farm and a lot of ASIC boards can

aggregate massive hash power to make 51 percent afteglk

2.2.5.2 Proof-of-Stake

The Proofof-Stake (PoS) is proposed to solve the problems of fbafork. In PoS,
there is no eed to compute a magic nonce and consume a lot of energy for computation. In
contrast, the validators replace the miners. Each validator has a deposit of cryptocurrency as a
stake to participate in the block creation. Validators with bigger stakes haeechwece to
select for creation of the next block. The blockchain network uses a randomized protocol to
choose the next validator. It prevents selecting the validator with a massive capital for all blocks
creation and gets the control of the whole systémperform the 51 percent attack in PoS
blockchain, the attacker has to own 51 percent of the entire cryptocurrency.

The main issue of the PoS is nothimgstake problem that occurs when two forks are
created. Because the validator has no cost to crdatelg it validates both forks to choose
one of them in the future, which has more rewards. Since the validator does not lose anything
in both cases, it could bet on them. A validator has enough motivation to make this attack
because when it chooses oogkfand spends time to validate its blocks if a longer fork emerges

and invalidates this fork, the validator losses its time and rewards.

21

T

2.2.5.3 Delegated Progebf-Stake

One of the recent new consensus mechanisms is the DelegatedPstaite (DP0S).

In DPOS, the owners of the stakes are all users who have coins of the cryptocurrency, and they
vote to elect a limited number of delegates from a set of candidates to validate next blocks. The
election repeats in a period, and the users vote again to chengdelégates. If a delegate
cheats, in the first step, other delegates could vote against him, and in the second step, the users
remove him from delegates by do not vote for him. Usually, each delegate deposits a number
of coins to escrow in case of matiois behavior. DPoS is a form of digital democracy that all
users participate in network decisions. New blockchains like EOS and TRON employ DPoS
consensus mechanism.

DPoS is very faster than PoW because there are no computational or other types of
puzzle to solve. It does not waste much energy too. This algorithm is considered as the most
distrusted consensus mechanism. The disadvantages of DPoS is the classic challenges of the
reallife election. For example, if the number of delegates is smallpdssibility of attack
increases. Also, the users with fewer coins may do not participate in the election because they

think their vote in comparison to who has a high volume of coins has no impact.

2.2.6 BlockchainNetworks

Another taxonomy of blockchain netwois according to their accessibility a is

explained in this section.

2.2.6.1 Public Blockchain

In public blockchain, everyone with an Internet connection can join the network to own

coins or tokens, send transaction and become a node, miner, validator, ther Wmoods, there

22

IS no restriction to use a public blockchain. The two most prominent public blockchains as
market cap are Bitcoin and Ethereum. The public blockchain is reliable and trustable because
its community is extensive and includes entities wahous interest, and no one can control

the entire system strategy or technology and can be fully distributed.

2.2.6.2 Private Blockchain

A private blockchain is restricted from the public community. To join a private
blockchain as a user, miner, node, etc. dailpge from the administer is required. A common
usecase of the private blockchain is a group of companies that would like to create a
blockchain to use in their products and services, but they do not want to open it to public users
to engage. An examptd the private blockchain is Hyperledger Fabric. The private blockchain
has lower trustworthy because one or a group of company with common interests control the

system, and it is not fully distributed.

23

2.3 Crypto Wallet

Crypto wallet is a term that used faptographic applications that manage secret keys,
addresses and seed for a user in blockchain and cryptocurrency. This program can be on an
online server, laptop, smartphone, and even particular hardware. It would securely generate

and store the keys aptdovide some mechanism to back up and restore them.

2.3.1 Wallet Types

2.3.1.1 Brain Wallet

The brain wallet is the simplest one. The user chooses a passphrase, and all secret keys
and addresses are derived from that. So, the user does not need to maintain affvegrer, s
or device as a wallet. Each time he needs to make a transaction, he enters the passphrase into a
wallet program and constructs the secret keys. After signing a transaction, the wallet program
removes the passphrase and all constructed keys fromoma he brain wallet has significant
drawbacks. Firstly, if the user forgets the passphrase, he losses all funds. Secondly, malware

in the wallet program can sniff the passphrase and steals his funds.

2.3.1.2 Paper Wallet

Another popular, still simple wallet the paper wallet. A paper wallet usually is one
page paper where the secret key and public key or address are printed inGloel€Qfermat.
There are some online and offline we@igeq17] that generate secret keys and prepare paper
wallet to print.Figure2-12 shows a sample paper wallet. The user is not required to remember
a passphrase, although she can add a passphrase to encrypt the secret key for better security.
Each time the user needs to raak transaction, she uses the-Q&le on the printed paper

24

wallet to recover the secret key and sign the transaction. A paper wallet is easy to backup just

by coping a paper.

VIGH19

address-org

Bitcoin Address Private Key

1GE4U9kJQHEMWcK1Vd ILAMGBgkvQZUHSN

L24Rk6W1EMLuG3QP2PzeQYkAecrAl lmw3byD6fjaWeLZtISYETEE

A Bitcoin wallet is as simple as a single pairing of a Bitcoin address with its coresponding Bitcoin private
key. Such a wallet has been generated for you in your web browser and is displayed above.

Figure2-12: Sample Bitcoin Bain Wallet

The paper wallet has the same issue with the brain wallet. Because it needpartpird
wallet program to make a transaction, malware can steal the secret key, even if the user adds a
passphrase to that. Also, if a hacker finds a paper whadletan recover the secret key unless

the user uses a complex long passphrase, and it increases the chance to forget.

2.3.1.3 Hot Wallet

One of the most popular wallets is the hot wallet (e.g., Coinlbabet[18]) where the
user stores the keys on an online cloud server like exchanges protected with a passwerd or two
factor authentication. It is convenient and accessible everywhere on the desktop, laptop, and
smartphondput i f hackers exploit a cloud server,

many times in the reaborld [19][20] because these servers are a honeypot for hackers.

2.3.1.4 Cold Wallet

There is another secure alternative; cold wallet also called offline wallet which is a

wallet program installed on an offline aeapped device (laptop, smartphone, and even

25

Raspberry Pi) to avoid any online hack and virus. This device has no Internettomand
transfers keys and transactions with a USB stick. This type of wallet is still vulnerable to
advanced attacks. For example, élmhorof [21] transferghe secret keys via ultrasound from

an offline wallet to an adjacent online computer.

2.3.1.5 Desktop Wallet

Another option is the desktop wallet that stores the secret keys on a desktop or laptop
computer. Desktop wallets usually require a passphrase from thanasencrypt the keys on
the computer storage. The first implementation of bitcoin client also called Satoshi%®8ient
and Bitcoin referencelientis an instance on the desktop wallet.

This type of wallet is popular too, but it is vulnerable to virus lzaxcks[22]. Because
desktop and laptop are a gengratpose computer, a hacker can install malware like key

logger and trojafhorse to capture the user passphrase or copy the secret key.

2.3.1.6 Mobile Wallet

The mobile wallet is a mobile application installed on a smartphone. There are many
mobile wallets in AppleAppStore for iPhone and Google Play for Android. These wallets
usually store the secret key on the smartphone and not on an online server. The wallet app is
protected by smartphone lock mechanisms such as password, fingerprint, and facial
recognition. Bessles, there are new mobile wallets that use security features of smartphones
such as ARMTrustZone [23][24]. TrustZone is a hardwateased Trusted Execution
Environment (TEE) and is available in many smartphones. The advanced mobile wallets use
TEE to store the secret key securely and execute critical operations suchaaditmassggning

in a trusted environment.

26

The mobile wallet has its disadvantages. Even though it is suitable for daily and online
purchases, it is not appropriate to store a large amount of money when it can be lost or stolen.
Also, the existing mobile whdts do not have a secure backup solution, and most of them use

online solutions or paper backup.

2.3.1.7 Hardware Wallet

The most secure existing wallet is the hardware wallet, which is a dedicated
cryptography device to generate and store secret keys andesigadtions, anauthorsof [25]
introduced the early functional version of that. This type of wallet usually is a USB stick,
Bluetooth device, or smart card with special embedded software to do cryptography functions.
Becaug a hardware wallet is not a genegpalpose computer like desktop, laptop, and
smartphone, a hacker cannot install a malware program easily. Also, most of the hardware
wallets have a special chip called Secure Element module (SE) as a cryptogragphbezssor
to perform cryptography operations like key generation and transaction signing fast and secure.

There are various forms of hardware wallets from a W8Bgle[26] to a full tablet
[27]. A secure hardware wallet must have a screen and buttons to interact with the user directly.
Otherwise, if a hardware wallet uses a texah like a computer or a smartphone to
communicate with the user, it is vulnerable to MasnThe-Middle attack{2]. In this situation,
the user enters the passwand a generaburpose computer (terminal) and gets the wallet
responses on the computer screen. Therefore, the malware program can steal the password or
displays mislead information on the screen.

In addition, a secure hardware wallet must have a Secareelat module to protect

the secrets from electrical and physical attacks such asclsahmel attacks and power

27

analysis. Theauthorsof [28] demonstrate a series of successful attacks to the most popular

hardware wallets that do not have Secure Element or are nedessdined.

2.3.2 Hierarchical Deterministic Wallet

Bitcoin, Ethereum, Litecoin, and almost all popular cryptocurrencies use etlitie
cryptography (ECC) to sign and verify transactions. Therefore, the user has a key pair and uses
the private(secretk ey t o sign transactions and transfe
sender must know t he r e mesactos,ar sl ugers publishctheik ey t
public key in a specific format called address. Therefore, a user keeps her private key secret
and publishes her address to other users in the network that causes privacy concerns because
everyone that has accessthe Internetand the blockchain netwokka n di scover t he
addresses and track her transactions.

Thus, anonymity is a challenge in most cryptocurrencies because all transaction history
is on the blockchain network. To tackle this problem, the useridhuse a new address in each
transaction to receive fund from others or return the remaining value of spending transaction
called 6change addr esso. It means that she g
nobody can track her just by watobi her transaction history, and this is a @sactice in
Bitcoin and many cryptocurrenci¢k6]. However, generating a random private key for each
transaction regjres maintaining a lot of private keys, which is hard to manage. Deterministic
wallets are invented to solve this problem and use a predictable algorithm to generate new
private keys, and because it can be hierarchical, they are called Hierarchicalibstierm
(HD) wallets[29]. In HD walllet, the user has a tree of private keys which any node is derived
from its parent using a deterministic algorithm. The rodhi tree is a private key which is

called Omaster private key®é and derived fro

28

words, anyone who has the master seed can derive all subordinate private keys and addresses.
Consequently, the user only need&éep one seed value safe and generates a lot of pseudo

random addresses which provide anonymity.

2.3.2.1 BIP-32: Hierarchical Deterministic Wallets

BIP-32 is a Bitcoin Improvement Proposal that defines Hierarchical Deterministic
Wallet (HD Wallet)[29]. This document explains different algorithms to derive each node
from its parent in the key tree. The core of this document is one master key generation, and
two Child KeyDerivation (CKD) functions. The master key generation function is as follows
where S is 128 to a 53t random value called master seed, H is aldiiBash value, and HL
is left 256 bit, and HR is right 256 bit of H. km as master private key and cmsasrrohain

code are 25®it outputs.

MKGS)=>(k mC m:

H := HMAC - SHA512(Key = "Bitcoin seed" , Data = S)
km = H L
Cm :: H R

Figure2-13: BIP-32 master key generation function

The firstderivationfunction, CKDpriv converts the private parent key to private child
key. These keys are extendadhich means each key hasadditional256-bit random number
called the chain code to prevent solely depending on parenfTkey function getkpar as
private parent keygparas parent chain code and i as indagl computeki as private child key
andci as child chain codé and c are 25®it, and i is 32bit value.H is a512-bit. The CKDyriv
conversion function is as follow$he HD wallet consticts all private keys from the master

private keyusing CKDyiv function,

CKQriv ((k par , C par)1 |) => (k i,C i):
ifi 2 2% then
H := HMAC - SHA512(Key = ¢ par, Data = 0x00 || k par || 1)

29

else

H := HMAC - SHA512(Key = C par, Data = point(k par) [1'1)
ki =H +K par modn
ci =Hgr

Figure2-14: BIP-32 private parent key to private child key function

Anotherderivationfunction isCKDpub that converts public parent key to public child
key. This function getkparas parent public keyyaras parent chain code and ieaendex and
computesK; as public child key andi as child chain code.The HD wallet usingCKDpub
constructs all public keys from the master extended public key.

CKDub((Kpar, € par), i) => (Ki, ci):
ifi 2 2% then
error
else
H := HMAC - SHA512(Key = Cc par, Data = Koar || 1)
Ki = point(H) + Ko
Ci =HRr

Figure2-15: BIP-32 public parent key to public child key function

Because itheindex (i) bemore than 2, it is impossible to compute the public child
key from the public parent key, the private keys for index bigger tHfaralkedhardenedkeys
and are more secure than normal keys for index lesser than 2

ConsequentlytheHD wallet computes the master key from the master seed and derive
child keys from the master kefD wallet uses a path to address each key in the key tree that
is a sequence of a letter and a few numbers. The first elemémgmat h i s | et ter
denotes master seahd subsequent numbers are the input indexeSK@priv algorithm in
the corresponding roun@hen hardened key index is indicatedjlmharacterThe format of
this pathis as follows

path=mi / é

For exampl e, t h erunpiray tCKDyi{{km,/ cd), /1)3coconmpetefkinis

cmi) and CKDyriv((km1, Gwa), 3) to computgkmws, Cwws).

30

2.3.2.2 BIP-39: Mnemonic code for generating deterministic keys

The BIR39 document describes a method to build a set of rememberable words to
generate the masteeed[30]. These wordsirereadable and easy to remember for husnan
The algorithm is as follows. At first, a random number is generated as entropy that is multiple
of 32 bit and is from 128 to 286t wherelonger entropy means more security and more words.

Then, the checksum of the entropy is calculated with firsopptlength divided by 32
bits of the SHA256 hash of entropy. This checksum is appended to the end of the entropy.
Then, the result spéitnto 11-bit groups which each of them is a number between 0 and 2047
(21%-1). Each number is used as an index inexpfined fixed word listand all numbers make
a 12 to 24 set of wordcalled afimnemonic sententéeThe following table demonstrates
different word list lengths.

Table2-1: Relation between Entropy aiMihemonic Sentence

Entropy Checksum Length = | Entropy + Mnemonic Sentence Length =
Length Entropy Length / 32 | Checksum Length | (Entropy + Checksum Length) / 11
(bits) (bits) (bits) (words)

128 4 132 12

160 5 165 15

192 6 198 18

224 7 231 21

256 8 264 24

To convert a mnemonic sentence to the master seee3BlBes PBKDF2unction
[52]. This function getgpseudorandonfunction, password, salt, number iérations,and
desired length ahederived key to generate a key from a password-FReeds the PBKDF2
function by HMAC-SHA256 function apseudorandorfunction, the mnemonic sentence as
thepassword, string Amnemoni thenunmérofsteraiomand p hr a s
512 bits as output derived key length. Therefore, the output of this function alwayshg 512

pseudorandomasterseed.In this function,the passphrase is an additional password chosen

31

by the user to protect the master seed. If the user apesphrase, a hacker cannot recover

her master seed only by knowing the mnemonic sentence.

2.3.2.3 BIP-44: Multi-Account Hierarchy for Deterministic Wallets

In addition to HD wallet base algorithms, the cryptocurrency community proposed a
complementarngtandardBIP-44 [31] to define a universal path format for all coins (Bitcoin,
Ethereum, Litecoin, and other coinbecause BH32 only defines the derivation function and
path.The BIR44 path addresses abins in @ HD wallet with only onesinglemaster seed. It
makes key management and backup processA&asyh in BIR44 format has following levels
in BIP-32:

path = m/purposg&oinj/accounychange/address_index

In the aboe path, m is the master seed, the purpose is the fixed number 44 64 BIP
the coin is a predefined value for registered coins, for example, O for Bitcoin and 60 for Ether.
The account is a group of funds and helps the user to manage her money, fde exacngate
a separate set for the spending account and the saving account. Change is 0 for external address
and 1 for internal address. The external address is a regular address that published to others to
receive funds whi |l engeen aidndtreersmsadl tahdadr @ sss fiog fr
from spending transaction and never published to others. Address_index is a sequential number
from O to generate multiple unique addresses.

BIP-44 document defines a process called Account Discovery to explore all used
addresses in an HD wallet and finds the user funds in the blockchain. The HD wallet traverses
all nodes of the key tree from the root that is the master seed and searchearfsacion

with the derived address as input or output in the blockchain. The exploring process is infinite

32

because the BH32 key tree definition is unbound. To limit the exploring process;&IP
define an algorithm for discovery as follows:

1. Start fromm/44i/coinj key and run this algorithm for all supported coins

2. Setaccountto.0

3. Set change to.0

4. Derive the external chain node

5. Search foexternaladdresses. To do that, set address_indexaoile incrementt

oneby-one derive addressesd searcthatthemin the blockchainlf a transaction
found, set change to 1 and search for the internal chain nodéttereis no used
externaladdress for 20 continues indexes, stop the search.

6. Increment the account value and repeat from step 3 until toeiaicnode does not

have any used address.

The HD wallet should not let the user create a new account when the previous one does
not have any transaction in the blockchain; otherwise, the above algorithm does not work.
Searching for external chain nodegmough because an internal chain node receives fund if
and only if the corresponding external node is u3edble 2-2 demonstrates a stdjy-step
samplerunning of the account discovery process in an HD wallet that supports Bitcoin and
Litecoin. This sample wallet has only two used Bitcoin addresses in the first account and no
used Litecoin address.

Table2-2: Account Discovery Process irSampleHD Wallet

coin account chain address_index Path

Bitcoin first external | first m/44;/0;/0i/0/0
Bitcoin first internal | first m/44;/0j/0i/1/0
Bitcoin first external | second m/44;/0i/0;/0/1
Bitcoin first internal | second m/44;/0;/0i/1/1
Bitcoin first external | no transaction for 20 addresseg m/44;/0i/0j/0/2-21
Bitcoin second | external | no transaction for 20 addresseg m/44;/0j/1j/0/0-19
Litecoin | first external | no transaction for 20 addresseg m/44;/2;/0;j/0/0-19

33

2.4 Smart Card

As discussed before, in a blockchain application, each user has a unique asymmetric
key pair (public and private keys) to digitally sign a transaction. Usually, the user must have a
security device such as a personal smart card whickssher private key, and she can access
it by entering her PIN. In a simple scenario, when the user approves the information of a
transaction, her terminal (such as a desktop computer, laptop or smartphone) computes the hash
of the transaction and sendga her smart card. Then the user enters her PIN, and the smart
card generates a secure digital signature using her private key. The smart card is-a tamper
resistant cryptography device that stores private keys and performs cryptographic operations
like sgning. Usually, the smart card is used as a term for a plastic card where has an IC chip

to execute a cryptography program in a secure execemti@nonmen{32].

2.4.1 IC Card Components

The smart card is an IC card that has computing capabilities and is different from the

magnetiestripe card and memory card. These two different cards are shéwgune2-16.

Programmable Chip
Magnetic Stripe

Magnetic-stripe Card Smart Card

Figure2-16: Smart card vs. magnetstripe card

The magnetiestripe card like many credit cards stores a smadbunt of data, for

example, cardholder name, credit card number, etc. in a magnetic stripe memory. They do not

34

have any computing capabilities, and they are easy to clone. In contrast, smart cards have
computing features and usually are programmablec@ifebissuer like banks and government
can store card holderdés private data on t he
cryptographic operations like encryption and digital signature in a secure way on smart card
chip. Because of that, new credit caatls based on smart cards for better security, and several
national ID cards are issued on smart cards. The components of a classic smart card are
explained in the next paragraphs.

A regular smart card has a programmable chip (IC), which is a tiny compebescute
limited programs in a secure execution environment. This chip has a small processor (CPU), a
memory about 1 to 3 kilobytes (RAM), storage between 32 to 256 kilobytes (e.g., EEPROM)
and a bytestream input/output, but usually does not havermateclock and batteryrigure

2-17 demonstrates a sample layout of a smart card[8Rip

Figure2-17: Sample smart card chip layout

Smart cards have two popular interfaces, including contact and contactless. A terminal
must have, for example, a USB smart card reader to connect to the contact interface compatible

with ISO/IEC 7816 part fo 3. Smart cards also support contactless interface according-to ISO

35

IEC 14443 and recently Near Field Communication (NFC). Consequently, smartphones which
have NFC antenna do not need any additional card reader and connect to the smart card with
NFC inteface. Some new smart cards also support Bluetooth Low Energy (BLE) interface but

requires a battery.

2.4.2 Java Card Technology

There are few solutions to develop a program which is call Card Application or Card
Applet for a smart card. The most popular one is the JavaTeatthology{33]. Smart cards
that support Java Card Technology have a limited version of Java Virtual Machine called Java

Card Runtime Environment (JCRE)igure2-18 shows the archecture of JCRE in the smart

card[34].
(loyalty) wallet authentication
Applets applet C applet) applet)
JCRE

framework industry-specific ‘ installer]
classes (APIs) I extensions

system classes ‘

—
‘ | applet l transaction] | 1/0 network other
{ management l management | communication} services
Java Card virtual machine ‘ ,
native methods
(bytecode interpreter)

smart card hardware and native system

Figure2-18: Java Card Runtime Environment (JCRE) Architecture
JCRE in amart card is similar to an Operating System in computers. It runs multiple

programs (Applets), manages memory allocation, provides system functions as APIs, etc.

However, there are fundamental differences between computer and smart card. For example, a

36

smat card cannot perform mutasking and runs only one program at a time. A card
manufacturer could add extra packages and functions to his JCRE for additional features, for
example as GSM library for the mobile network. Furthermore, JCRE hasl@agdrscific

applet to manage the loading and removing other applets called applet manager.

Today, Oracle is the owner of Java Card Technology and publishes the Java Card
Platform Specification to define Java Card API and features. The last version of Java Card
Platform Specification is 3.0.5, and popular versions are 2.2.2, 3.0.1 and 3.0.4. In our projects,
weuseanopes our ce ¢ ommand avoaocla rcdaol .l eTdh ifisa ntto o | i s
Oracle Java Development Kit (JDK) to compile a Java code todnjggclass file) and convert

that to card application file (CAP file).

2.4.3 Global Platform

Global Platform (GP) is a consortium of several smart card companies which defines a
series of standards to manage the application on s@at$[35]. For instance, they define
administration commands, key management, and applet life cycle for all smart cards, including
Java Cards. Thmost popularersion ofGlobal Platform specification is 21. In our work,
we useGlobalPlatformPrd36], an opersource commantine program to load and delete

applet to/from a smartacd.

2.4.4 Smart CardProgramming

To programa smart card, developer writes his program in a limited version of Java
language and compiles that to Jaygecode with Java Card compiler. Then, he uses Java card
tools to convert the compiled code to a Card Agailon Package (CAP) and load it to a real

smart card chip. Finally, he can send his defined commarttie form of bytearrays to the

37

card and receiviheirresponses in bytarrays too.Figure2-19 demonstrates the whole process

of compiling and loading of card applicatifg#].

=
class
files

|

Y

runtime environment

on-card l
- installer

smart card

L converter J

CAP
file
=

off-card installation
program

Figure2-19: Java card application compiling and loadprgcess

The input and output of card applications are in {sgteam form. These bgtstreams
are in a particular format defined in ISO/IEC 784 @alled Application Protocol Data Unit
(APDU). There are two types of APDUs; command APDU eARDU and response APDU
or RAPDU. Command and response APDUs have the following strud@4gs

Command APDU structure

Mandatory header Optional body

CLA INS Pl P2 Lc Data field Le

Response APDU structure

Optional body Mandatory Trailer

Data field SW1 SW2

Figure2-20: Command and response APDU structure

38

The detail description of each APDU fields asglainedn ISO/IEC 78164 [37], and
we discuss only the related parts here. The CLA field is one byte to indiassefield which
is 0x00 usually. The INS field is a ofiagte instruction code determined by the card application.
P1 and P2 are two bytes parameters for the instruction. Lc is one to three bytes to indicate the
length of the data field. Data filed convdyge-stream data with flexible length, and Le is the
length of expected response bgteeam.

In response APDU, Data field is response data returned by the card application. SW1
and SW2 are two bytes status words which indicate the error, warning, essiutaesult

return by the card application.

2.4.5 Smart CardSimulation

A big challenge in smart card programming is the simulation. To develop a program, a
programmer needs a set of tools to write the code and test that with tracing and debugging line
by-line. Unfortunately, the smart card does not have these features and cannot run a card
application in debug mode. The programmer needs a simulator to run the code on a computer
before loading that to a real smart card. There are few tools to simulate ardawacbading
Java Card Reference Implementation by Ord8&); however, this tool has significant
limitations. So, in our work, we chose an ofsaurce tool calléjCardSim[38]. It is a regular
Java package that includes command definitions and API of Java card application. The
programmer writes his Java card code in Jahdebugs it in regular Java Virtual Machine
using jCardSim packages. If everything works, he compiles and loads his code to a real smart

card.

39

CHAPTER 3: FINDINGS

3.1 Smart Card Security

The smart card is a mature technology to build a hardevgptowallet. It has a tamper
resistant chip and usually has passed hardware security evaluations in a cryptographic module
lab [40][41]. This chip is a secure element that has limited resources in terms of memory
amount and processing power and unfortunately is toapidogram. Even though all wallets
can use ouproposedschems, we implementhemonthesmart card as a prooff-concept to
prove that a hardware wallet with limited resources couldouselesigns So, at first, we

consider the security of the smaatrd as a platform for the hardware wallet.

3.1.1 Threat Model

The authorsof [39] proposed a reference threat model for smaud. CBney identify
various parties in a smart card system inigclgdcardholder, data owner, terminal, card
manufacturer and software manufactuhemhardware crypto wallet, we can map these parties
as follows.Cardholder is the owner of the private keys that signs the transaction and owns the
coins. Data owner is same as cardholder because there is no additional data like personal
information and photo on a crypto wallet. Terminal is usually a desktop comfaytp,
smartphone and etc. Card manufacturer is the company that produce the physical card including
the programmable chip, NFC antenna and etc. Finally, software manufacturer is the company
that provides the card application for crypto wallet.

In our work [2], we focus on the user or cardholder point of view and consider the
security threats from this anglgo, we assume that the cardholder is the trusted pHetpnlso

assume the card manufacturer is trusted because the smdnaspa$sed the hard security

40

checks in an evaluatidab [40][41]. In addition, we assume that the software company that
provides the hardware wallet is trustedhile it can bea subjecffor consideing in another
researchSo, we focus on terminal partigat can be compromised by a hackercausehe
least secure part of the system is the terminahe rest of thissocumentwe assume that the

terminal is not secure at all.

3.1.2 Fundamental Vulnerabilities

Authors of[39] claim that the existing smart cards have fundamental vulnerabilities
because they do not have direct interface withuiee andise the terminal input/outpdevices
like display and keyboard to show the messages and get the comMéthdsespect to this
threat model, there are two distinguished attacks that we inspecbed work [2] and are
discussed nexi hese attacks are Mdn-The-Middle attack and change the terminal software

parts to misguide the digital signature process.

3.1.2.1 Capturing the Smart Card PIN

A smart card receits passwordika Personal Identifatcion Number(PIN) to gain

accesstthek ey s on the card. The main securaty

c h:

direct input device and must use thetheer mine

user. In this situation, an attacker campromisethe terminal and install a key logger or

another malware to capture the PIN. Then, the attacker can use this PIN to authenticate himself

to the card wit houSo, torhegamples e rcan signaaurankaotion andat i 0

transfer fundrom the crypto wallet without the user interaction.

41

3.1.2.2 Altering the Digital Signature

The majorusage ofthe smart card is digital sigrture, for example, for signing a
transaction in the blockchaifhe regular digital signature mechanism is as followsea sees
the information of a transaction like the amount, the receiver address andheto. online
website, computer or smartphoapplication and if she approves it, she signs it using her
hardware crypto wallet, in this case, her smart darthis process, a cryptographic library, as
part of the application, computes the hash ofttaesactiorand sends this hash valuethe
smart card for signing. The challenge is that a malware can change the hash value just before
transmitting it to the smart card, resulting in the user signing an unwiaamsactiorwith her
private key For instance, a hacker can change the receiveessldnd transfer the coins to his

address.

3.1.3 Implementation of Smart Card Attacks

To measure the possibility of these attacks in practice, we designed an attack scenario
and implement these attacks gpesivasivesmart card. We implemented the mentionealcktd
on Windows, but they are applicable on other operating systems, too. The attack code is called
MinidriverSpy. We used Personal Identity Verification (Ptdyd[42] in our attacks. PIV is a
smart card standard which is supported with Baildrivers from Windows 7 SP1, from
OpenSC 0.11.1 (in Linux), and from Mac OS Sierra 10.12. So, it is a mature technology that
all operating system use that as Fractor Authentication. In addition, the PIV cards are used
in many government organizations

Microsoft Windows uses a software stack to communicate with smart card and conduct
cryptography operations, and its important modulmiisidriver [43]. Windows has a buiin

minidriver for PIV smart card which is MSCLMD.DLL. We implemented a spyware

42

AMi ni driver Spyo as a hooking DLL and replac
Figure3-1 shows our change on attack. The only permission we need to do this action is file

copy permission.

A A
[Crypto Applications Lr Crypto Applications
(Ex. Outlook, Word, IE) (Ex. Outlook, Word, IE)

‘ ¢

MSCAPI2 MSCAPI2
; i 1 i
BaseCSP.DLL] [SCKSP.DLL BaseCSP.DLL] [SCKSP.DLL

i i S I ’

[MSCLMD.DLL]

;
[WinSCard.DLL] [MSCLMD.DLL]
;

[WinSCard.DLL]

Figure3-1: Windows smart card software stack hackedsoftware stack

Original mi nidriver (MSCLMD.DLL) has only
This function returns a set of function pointers of smart card minidriver. We added
iCar dAcquireContexto in our Minidriver Spy an
to the caller, with some changes to implement our attacks. To sniff the smart card PIN,

Mi nidriver Spy alters pointer of R®@aebdfdrait hent
sending it to the original minidriver. To alter digital signature, MinidriverSpy modifies pointer

of ACardSignDatad function t o thdsmartgad dnd s h v a
with this attacking tool, a user will be trickéal sign a fake data using her private keyttos

smart card.

43

To test our attack, we used two types of smart card including embedded smart card in
USB token and traditional 2 sized smart card (credit card size) with USB card reader. We
tested our MinidrverSpy successfully on YubiKey 4, PIVKey T600 USB Tokens and PIVKey
C910 PKI Smart Card on Windows 7 Service Pack bi6&and Windows 10 6#4it. We
publishedthe essentigbarts of MinidriverSpy as opesourceprogramat GitHub [44].

Therefore, we proof that the threat modetig,and the hacks are applicable to one of
the most common smart cards that are used for traditional security challenges like login to a
computer or a websit&o, the classic smart card is not secure to use as the crypto hardware

wallet, unless it has direct input and output for the gaeh as a screen and some buttons.

3.1.4 New Smart Card Capabilities

To summarizethe most secure crypto wallettise hardware wallet equipped with a
screen and at least one physical button. Howeveresrgued the traditional smart card is
not secure for the digital signature because it uses a terminal (e.g., computer ancbseartph
for interaction with the user, and a hacker may install malware on the terminal and make a
ManIn-The-Middle attack. Fortunately, now there are new smart cards in the market that use
e-paper technology as an-gard screen. This technology enablesdhmrt card to display
information to the user with no intermediate terminal. Also, buttons are available in these new
smart cards. Thus, we use a smart card with a screen and a button to implement our mechanism

andFigure3-2 shows the photo of such a smart card.

44

Logo for NFCAntenna

Sreen
[Main Wallet] (E'Paper)
Programmable
Secure Hement
Buttons

Hidden MQU

Figure3-2: Smart card with an-paper display, physical buttons, andl@ chip

45

3.2 Crypto Wallet Backup

Hardware wallet as protected storage and trusted source of random numbers is
responsible for generating and storing the master seed and other keys. Maybe the master seed
is secure in a hardware wallet, but a wallet can be lost or broken and needs Backup.
convenient and secure backup and restore process is a challenge in all crypto wallets including

hardware crypto wallets.

3.2.1 Existing Solutions

3.2.1.1 Paper Backup

Existing hardware wallets (and many other wallets) use a mnemonic word list to
convert the master seeaifn digital form to physical form as a backig®]. As we discussed
in previous sections, this list is a limited number (from 12 to 24) of words while more words
provide higher security. This algorithm converts a seed value to several groups of bits (from 4
to 8 bits), and each group maps to an indexwbml in a predefined 2048wvord list. It makes
a Asentenced that is a unigue order of words
in a computer file that is not secure at all or writes them down on a piece of paper.

It is critical for the useto keep this paper in a safe place because whoever gets access
to that can build the entire key tree. For better protection, the user may use a passphrase in the
converting process and remember that for the recovery process. However, it brings two
problems:

1. If a hacker finds the word list, he can make a brute force attack to the passphrase

without any limitation. So, the user should choose a complex long passphrase.

46

2. If the user chooses a complex long passphrase and later forgets the passphrase, she

canna recover the keys and loses all funds.

3.2.1.2 Secret Sharing

One traditional alternative solution is secsbfring[47]. Secret sharing mechanism
splits the master seed multiple parts (shares) that must be stored and protected separately.

To recover the master seed, a threshold (e.g., two of three) of shares must be present. It has the

following disadvantages:

1. Secret sharing would downgrade usability in crypto walletcause a user has to
keep the multiple secrets safe to protect her fund.

2. Secret sharing requires a trusted terminal to create shares and recover them.

3.2.1.3 Multi-Signature Wallet

Another solution is muksignaturg48] where a user uses multiple private keys with a
threshold (e.g., two of three) to sign a transaction; if she loses one (or more) of her keys, she
still can protect her funds. Some literatlikee [16] and[49] advise the users to use multi

signature; however, it has thesawbacks:

1. Multi-signature has a similar challenge to secret sharing where the user must protect

multiple secrets separately.

2. Multi-signature requires multiple wallets to sign a transaction, which would cause

downgrade of usability in crypto wallets.

47

3.2.1.4 Backup on the Cloud

One recent crafted solution is backing up the master seed on the cloud. In this solution,
the user chooses a passphrase to generate an encryption key. Then, this key encrypts the master
seed and the wallet store it on a user provideddcktorage like iCloud, Google Drive or Drop
Box account. So, the user does not worry about keeping a paper in a safe place and the backup
never be lost. However, the disadvantage of this solution is that, the cloud server is a honeypot
for hackers, and iis similar to the problem of storing the keys on exchange servers and hot
wallets. Similar to paper backup, choosing a complex long passphrase is risky when the user
may forget that and choosing a simple passphrase is vulnerable to hack, becauskef a hac

finds the backup on the cloud, he can make brute force attack with no limitation.

3.2.2 Proposed Crypto Wallet Cloningechanism

In this research, wproposea cryptographicscheme to tacklerypto wallet backup
problem[5]. In contrast to the papéased backup, our scheme uses ECC to back up and restore
the keys on another wallet. So, the user does not need to either write a list of words or remember
a complex long passphradeurthermore our scheme does not require theemto protect
multiple secrets similar to secret sharing and ruigfhature which downgrades the usability
of wallets.In addition it does not enforce using a trusted terminal for backup and recovery and
does not need multiple wallets to sign a traneacFinally, because our proposed mechanism
backs up the wallet on another wallet, there is no any soft file of encrypted the master seed out

of the wallet to store on the cloud which has potential hack opportunity.

48

3.2.2.1 Elliptic-Curve DiffieHellman Key Agrement

Our new scheme uses elliptiarve cryptography to back up the keys. It employs a
crafted version of Ellipti€Curve DiffieeHellman (ECDH) key agreement protod@] for
backup and recovery. In ECDH, each party has its key pair, and both parties compute a shared
secret with its privat e HgeeB3-3idlustchtedalyeneraltiever p a
of ECDH. As we discussed, in ECC the private key value is a random scaler, and the public
key is calculated with multiplying (6*086) pri

secp256kl domaim par £t e t | ornd c@*t i on

A : ecPri, B : ecPri,
ecPub,= ecPri, * G ecPubg= ecPriz * G
ecPub ,
ecPuby

S, = ecPriy * ecPuby Sg = ecPrig * ecPub,
= ecPriy * (ecPriz * G) = ecPriy * (ecPri, * G)
S, ==25p

Figure3-3: Elliptic-Curve Diffie-Hellman (ECDH) key agreement

In Figure3-3 A and B have their private keys, and they exchange their public keys with
each other. Then, A multiplies its private Kk
and B does the samalculation with its private key to calculate. By replacing public keys
with its corresponding calculation, the S calculation is as shown in Eqatiarboth partes
and S\ is equal to &.

Sa=S=ecPrh*ecPre* G ©)]

In this way, both parties create a shared secret with only exchanging their public keys.
Also, an additional SHA&56 computation of ECDH result value is recommer{8¢d

The problem of ECDH is the Mam-The-Middle attack where a hacker replaces the

public key of B by a fake public key, and A cannot distinguish the originaicdudy from the
49

fake one. To solve this problem, we employ ssl@annel user visual confirmation (verification
code aka vcode), which will be explained in the next section. Existing hardware wallets use a
similar method to confirm transaction informatidee receiver address, amount and fee before

signing[26][27].

3.2.2.2 Proposed Algorithm

In summary, our contributions in this work are:
1 Proposing the first crypto mechanism for secure backup and recovery in cryptocurrency
hardware wallets relying on the sideannel human visual verification
1 Implementing a prototype usingsenart card as the hardware wallet and smartphone to
realize the secure and convenient backup operation
Figure 3-4 illustrates our proposed backup scheme diadble 3-1 describes the
meanings of used acronyms. In the backup process, there are two wallets: the main wallet and
the backup wallet. Before start, the main wallet has getbend stored the master seed, and
the goal of our proposed backup process is to transfer a secure copy of the master seed from
the main wallet to the backup wallet.

Table3-1: Acronyms of poposed securealckup mechanism

Acronym Meaning

mseed MasterSeed

ecPrk Elliptic-Curve Private key ofvallet X

ecPul Elliptic-Curve Public key ofvallet X

b58 Base58 encoding algorithm

veode Ve_)rification codeof wallet X
(displayedon the hardware wallscreen

ECDH Elliptic-Curve DiffieeHellman algorithm

tk Transport Key

encMSeed Encrypted MasteBeed

50

We assume both wallets have a screen and (at least) one physical button. Also, we
assume the backup channel is an untrustethinal like a smartphone that may be

compromised by a hackérhe gray boxes Figure3-4 illustrate the vcode that displayed on

hardwar e wal | et ificatiors The \wlaas shbwn on the s$we walletsesihould be
identical.
Main Wallet (M) SmartphoneA Backup Wallet (B)
, — (Untrusted Terminal) ?
(ecPrig,ecPubg) := EC256GenerateKeyPair
STEP 1 vcodeg := bS8(RIPEMD160(SHA256(ecPubg)))
ecPuby | vcode:
D Wm7HQZEJTRPauv64

[vcodey, := b58(RIPEMD160(SHA256(ecPuby))) | / UYXRrS3cak?
vcode: @

Wm7HQZEJTRPauvé 4 4‘;

UYXRrS3cak? Visual
Confirmation

User confirms

STEP 2 < Error (veodey, == vcodes)

(ecPriy,ecPuby,) := EC256GenerateKeyPair
tk := SHA256(ECDH(ecPriy,, ecPubg))
encMSeed := AES256Enc(tk, mseed)

[encMSeed, ecPuby,

|

tk := SHA256(ECDH(ecPrig, ecPuby,))
STEP 3 mseed := AES256Dec(tk, encMSeed)

* mseed

Figure3-4: Proposed secure backup mechanism to transfer master seed

Our proposed mechanism has three steps:

1. The backup wallet generates a key pair and computes the verification code (vcode)
of its public key to display on the backup wallet screen. Then it exports the backup
wal l etdéds pushlic key (ecPub

2. On the other sidghe main wallet receives the backup wallet public key (egPub
and calculates the same vcode to display on its screen. Then, the user visually
compares these two vcodes in walletsd sc
a button on the main wallet. Next, the main wallet generates its key pair and

computes Trasport Key (tk) using ECDH algorithm. Then, it encrypts the master

51

seed (mseed) under transport key (tk) with AESBBa-inally, it exports its public
key (ecPuk) and encrypted master seed (encMSeed).

3. The backup wallet imports ecRwland encMSeed, comfas Transport Key using
ECDH algorithm and decrypts encMSeed to retrieve the master seed. Consequently,

the backup wallet has the master seed to build the entire key tree.

3.2.3 Prototype Implementation on Smart Card

To build a prototype as a preof-concept fo our proposed backup mechanism, we
implement our code on a secure but rescgmestraint hardware that is the smart card. As
displayed inFigure 3-2, this smart carthas a programmable IC chip, NFC interfacpaper
display and physical buttons. So, it has direct trusted input and output with the user without
requiring relying on an untrusted terminal.

As we explained earlierptdevelop a card application for theancard, we employ
Java Card technolod®3] which is a limited version of Java Runtime Environment with fewer
features. We write and compile our program in Jaeayert it to a Card Application (CAP)
and load it to the programmable IC chip on the smart card. We implement our code with Java
Card (JC) 3.0.1 API, and it can run on all JC compatible smart cards, but the screen API is
cardspecific.

Java card (at leasJC 3.0.1 API) supports ECC 2b@& key generation and
signing/verification, SHA256 digest algorithm, AES 286t encryption/decryption, and
Elliptic-Curve Diffie-Hellman (ECDH) key agreemertoweverdoes not include secp256k1
domain parameters that weed in cryptocurrency. Furthermore, for vcode calculation, we use
the SHA256 hash algorithm to digest the public key, RIPEMED hash algorithm to shorten

the digest length and baS8 encoding to make it more readable for users. These algorithms

52

are spported and available on existing hardware wallets for address generation, but smart
cards usually do not provide them. To resolve these issues, we utilize some codes of the Ledger
Java Card wallet GitHutepository[50] with a few minor changes to add these algorithms.

Anotherchallenge was the public key derivation. Existhiigrarchical Deterministic
(HD) wallets back up the master seed and compatie private key tree using the master
seed; but what about the public kyn ECC, as we explained in previous sections, the public
key is derived from the private key. Therefore, ¢chgptowallet requireonly the private key
and calculatethe corresponding public key with multiplying private key witle Generabr
point (G). In our prototype, the ECC multiplication is not easy due to the limited resaafrces
the smart cardTherefore, we use ECDH function in a tricky way. In this solution, we use the
ECDH key agreement function with the private key as the input key andeher&or point
(G) as the input data. Thus, the result of ECDH will be the public key instead of a shared secret,
becauseas we discussed earlidECDH actually multiplies the private key to the input
Generabr point.

Additionally, in actual implementatiorwe split the second step of our mechanism
(shown onFigure 3-4) to two substeps to get confirmation from the user. Step 2.a includes
importing the backup card publkey, computing its vcode and getting confirmation from the
user. Step 2.b includes encrypting the master seed and exporting the encrypted seed with the
main card public key.

Figure3-5 demonstrates thestep process from the user perspective. At first, the user
taps the backup card to the smartphone to generate a backup card key pair and export its public
key. The backup card screen displays the calculated vcodtheander sees the vcode on the
smartphone to compare. Then, at the second step, she removes the backup card and taps the
main card to the smartphone to import the backup card public key and export encrypted master

seed with main card public key. Duringdistep, the user must compare the vcodes displayed

53

on the main card screen and smartphone and confirm their equality by pressing a physical
button (OK button) on the main card. At the third step, she taps the backup card again to import
and extract the nsder seed finally. The backup card screen displays a message to acknowledge

the backup procedure completion.

Figure3-5: Theproposedsecure backup procedure from the user perspective

In summary, oumechanism requires neither trusted terminal nor mutual authentication
and session encryption between wallets. As a result, it can be deployed using only one regular

smartphone with no additional device and no paper and is very convenient for average users.

54

