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Abstract— Bitcoin and other altcoin cryptocurrencies 
use the Elliptic-Curve cryptography to control the 
ownership of coins. A user has one or more private keys to 
sign a transaction and send coins to others. The user locks 
her private keys with a password and stores them on a piece 
of software or a hardware wallet to protect them. A 
challenge in cryptocurrencies is losing access to private 
keys by its user, resulting in inaccessible coins. These coins 
are assigned to addresses which access to their private keys 
is impossible. Today, about 20 percent of all possible 
bitcoins are inaccessible and lost forever. A promising 
solution is the off-chain recovery transaction that 
aggregates all available coins to send them to an address 
when the private key is not accessible. Unfortunately, this 
recovery transaction must be regenerated after all sends
and receives, and it is time-consuming to generate on 
hardware wallets. In this paper, we propose a new 
mechanism called lean recovery transaction to tackle this 
problem. We make a change in wallet key management to 
generate the recovery transaction as less frequently as 
possible. In our design, the wallet generates a lean recovery
transaction only when needed and provides better
performance, especially for micropayment. We evaluate 
the regular recovery transaction on two real hardware 
wallets and implement our proposed mechanism on a 
hardware wallet. We achieve a %40 percentage of less 
processing time for generating payment transactions with 
few numbers of inputs. The performance difference 
becomes even more significant, with a larger number of 
inputs.

Keywords—blockchain, cryptocurrency, off-chain,
Bitcoin.

I. INTRODUCTION

Today, a user can perform various electronic 
commerce transactions like paying a bill, booking a hotel 
or flight, purchasing online products, and paying taxes 
with cryptocurrency. While cryptocurrencies become 
more usable for average users, the inaccessible coins 
issue arises as a challenging problem in cryptocurrencies. 
Since, as a design paradigm, only the user's private key 
can send the coins from its associated address, if the user 
cannot access her private key, she loses her coins. The 
user may forget her password, or in a worst-case, she may 
die, and her coins will be lost forever. It happens in the 
cryptocurrency ecosystem many times, and as several 

reports like [1] shows, about 21 percent of all possible 
bitcoins are out of circulation and maybe are lost forever. 

Furthermore, in several cases where the owner of the 
key dies or pretends to die to steal the coins from others. 
These persons control other users' coins, like investors in 
the position of an online cryptocurrency exchange 
president [2]. Since there is no clear technical solution to 
recover the lost coins, the investors lost their money.

There are limited choices for users to avoid 
inaccessible coins, such as creating a backup for another 
person or using a multi-signature wallet. These solutions 
not only are inconvenient but also put the user at risk. 
Recently, authors of [3] suggested generating an off-
chain recovery transaction and publishing such a 
transaction when the coins are inaccessible. The wallet 
must frequently regenerate this transaction because any 
change in inputs by a sending transaction invalidates the
previously generated recovery transaction. Also, any 
receiving transaction conveys new coins that should be 
added to the recovery transaction.

This paper investigates this off-chain recovery 
transaction and evaluates its performance in real 
conditions with actual hardware wallets as a secure option 
for cryptocurrency users. We demonstrate that generating 
such a recovery transaction consumes a significant 
amount of time on hardware wallets or other resource-
constraint wallets. Hence, it is not a practical solution in 
real life. We propose a new key management schema to 
separate frequent micropayments from other transactions 
and keep the recovery transaction updated with 
regenerating as less frequently as possible to resolve this 
performance challenge. Our proposed schema prevents 
inaccessible coins in most cases and provides better 
performance compared to the previous method. This 
paper offers the following research contributions:

Evaluating off-chain recovery transaction in real
hardware wallets
Proposing a new key management schema to 
minimize the frequency of regenerating lean recovery 
transactions
Implementation of proposed lean recovery transaction 
on a hardware wallet as a proof-of-concept
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II. RELATED WORKS

There are a few solutions to protect the wallets from 
being inaccessible but do not thoroughly meet the 
requirements. We review them here before starting.

A. Wallet Backup
Existing cryptocurrency wallets usually use the paper 

backup. The wallet generates a mnemonic word list to 
convert the master seed from digital form to physical 
form as a backup [4]. The user may either save these
words in a computer file or writes them down on a piece 
of paper. In our previous paper [5] we suggest a new
mechanism to back up a wallet on another wallet directly 
with the elliptic-curve Diffie-Hellman key agreement.

The backup mechanism is not a suitable solution for 
the inaccessible coins challenge. If the user uses a 
password for the backup on the paper or another wallet, 
the coins are inaccessible when she forgets the password 
or dies. On the other hand, if she gives the backup and 
password to another person, this person has equal access 
and can use the coins anytime without the primary user 
acknowledge.

B. Multi-Signature Wallet
Multi-Signature Wallet is another solution [6] where 

multiple private keys with a threshold (e.g., two of three) 
are used to sign a transaction; if one key (or more key) is 
lost, other keys can recover the coins. Some literature like
[7] and [8] advise the users to use multi-signature; 
however, it has significant drawbacks. Multi-signature 
requires multiple wallets to sign a transaction, which 
would cause complexity in the signing procedure. It may 
be good enough for corporate use-cases. However, it is 
more than challenging for average individuals.

C. Recovery Transaction
Authors of [3] explain a mechanism to recover 

inaccessible wallets using an off-chain transaction. Each 
time that the wallet sends or receives a coin, the wallet 
creates a recovery transaction to gather all available coins 
in Unspent Transaction Outputs (UTXO) and saves it on 
a file. When the user forgets her wallet password or the 
password became inaccessible because of any reason like 
death, the wallet retirement mechanism activates with a 
policy like no login for more than six months. The wallet 
publishes the last recovery transaction and transfers all 
coins to a reserved address. Since the recovery 
transaction is signed in-advance, there is no need for 
private keys.

On the other hand, all received coins in the last six 
months, aka the retirement period, are lost because these
new coins are not included in the recovery transaction. 
The user can set the retirement period. It is not a timer on 
the wallet; it is a value embedded into the recovery 
transaction itself. If the wallet or other entity publishes 
the recovery transaction on the blockchain, it will not be 
effective until the pre-defined time. This mechanism 
works for UTXO-based cryptocurrencies like bitcoin, and 
the lock time in bitcoin transactions supports this feature.

The recovery transaction that authors of [3] explain is 
designed for old-fashion software wallets like Satoshi 
Client [9] that runs on a powerful enough personal 
computer. However, regenerating a recovery transaction 
has a significant performance problem in modern wallets 
like mobile wallets that use Trusted Execution 
Environment [10] [11] and hardware wallets running on 
a microcontroller secure element with limited resources. 
This paper proposes a practical off-chain recovery 
transaction that avoids inaccessible coins in hardware 
wallets with a minimum performance penalty. We call it 
the lean recovery transaction.

III. TECHNICAL BACKGROUND

A. Bitcoin Transaction
There are two transaction models in blockchains.

Bitcoin uses the Unspent Transaction Output (UTXO) 
model, and Ethereum uses the Account model. In the 
UTXO model, a transaction has inputs and outputs. Each 
input indicates one previous transaction output and its
amount. The new transaction spends all amounts of the 
previous transactions' outputs and moves them into its 
outputs. The next transaction does the same.

If an output of a transaction is used as an input on
another transaction, it is called "spent output". If no 
transaction uses an output of a transaction, it is called 
"unspent output". The blockchain nodes only accept a 
transaction that all of its inputs are unspent; otherwise, it 
is a double-spending that is not permitted in the 
blockchain. Hence, this model is called the Unspent 
Transaction Output model. It is similar to cash circulation
in the real world, where the coins move from one person 
to another. On the other hand, there is another model 
called Account-based. In this model used in Ethereum, 
each account has a balance, and each transaction indicates 
fund transfer from one account to another, similar to the 
real world's bank accounts.

Bitcoin transactions may have several inputs and 
outputs; however, they usually follow regular formats. 
For example, a payment transaction usually has one input 
and two outputs. The input is a UTXO that the payer has 
enough coins on it. One of the outputs includes the 
payee's address, and another output conveys the payer 
change address to receive the remaining coins of the input 
after deduction of payee output. On average, 60 percent 
of all bitcoin transactions are in this format, with one 
input and two outputs [12].

B. Hierarchical Deterministic Wallet
In the blockchain, a sender signs a transaction with 

her private key and inserts the receiver's public key into 
the transaction output. It decreases privacy since 
everyone who has access to the blockchain network can 
track a particular user's activities. To avoid tracking, the 
user can generate a random key for each transaction. 
Therefore, a potential hacker or investigator cannot link 
different transactions to gather information about a user. 
It is already a best practice in bitcoin and many 
cryptocurrencies [7]. However, it causes another 
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challenge since the user should manage many keys. The 
solution is a deterministic pseudorandom algorithm for 
key generation. The cryptocurrency community 
developed a multi-level deterministic algorithm called 
Hierarchical Deterministic Wallet [13]. HD wallet has a 
key tree, and each node is derived from its parent. The
tree's root is called 'master private key' and derived from 
a random value called 'master seed'. Therefore, with a 
given master seed, the wallet builds the entire key tree. 
Consequently, the user only needs to keep the master seed 
safe and enjoys a brand-new key for each transaction.

BIP-32 is a Bitcoin Improvement Proposal that 
defines the Hierarchical Deterministic (HD) Wallet [13].
It explains different algorithms to derive a node from its 
parent in the key tree. This document's core is the master 
key generation, and two Child Key Derivation (CKD) 
functions. The master key generation function generates 
the master key using the HMAC-SHA512 on a 128-bit to 
a 512-bit random value called the master seed. On the 
other hand, BIP-44 defines a comprehensive path for all 
cryptocurrencies' key trees on a wallet using only one 
master seed [14]. A path in BIP-44 format has the 
following levels in BIP-32:

path = m/purpose /coin /account /change/address_index

In this path, m is the master seed, and the purpose is 
44 for BIP-44, coin is a predefined value for registered 
coins, for example, 0 for bitcoin. An account is a group 
of funds that helps the user manage her money, such as 
creating a separate key set for a spending account and a
savings account. Change element is 0 for external address 
and 1 for internal address. The external address is a 
regular address published to others to receive funds. In 
contrast, an internal address is "change address" for 
receiving remaining funds from the spending transaction 
and never published to others. address_index is a 
sequential number that starts from 0 to generate multiple 
unique addresses.

C. Hardware Wallet
The hardware wallet is a dedicated cryptographic 

device to generate and store the secret keys and sign the 
transactions. Since a hardware wallet is not a general-
purpose computer, a hacker cannot easily install a 
malware program. Furthermore, some secure hardware 
wallets have a secure element. It is a tamper-resistant 
module to protect the secrets from electrical and physical 
attacks such as side-channel attacks and power-analysis.

Hardware wallets usually have a screen and a few 
buttons to interact with the user directly; otherwise, they 
are vulnerable to Man-In-The-Middle attack [15]. Figure 
1 depicts the general components of hardware wallets. 
They usually have a main control unit (MCU) that 
connects all components and communicates with the host 
application via USB, Bluetooth, or NFC. 

Figure 1. General hardware wallet components

Since a hardware wallet does not have internet access, 
it uses an app on the host like a personal computer or a 
smartphone to connect to the blockchain network.
However, critical tasks like storing the keys and signing 
a transaction will be done on the hardware wallet. The 
overall procedure of signing a transaction on a hardware 
wallet is as follows.

Transaction Signing Process on a Hardware Wallet:

1. Host App: Gather information from blockchain nodes 
and prepare inputs and outputs.

2. Hardware Wallet: Receive data and display the 
receiving addresses, amount, and fee of the 
transaction on the embedded screen and get the user 
confirmation by pressing an embedded button.

3. Hardware Wallet: Derive required keys, sign the 
transaction for each input, and return the result to the 
host app.

4. Host App: Publish the signed transaction to the 
blockchain nodes.

While the network connection is good, and the host 
has enough resources, the time-consuming steps are step 
2 and step 3 that run on the hardware wallet. A transaction 
with more input UTXOs takes more time on the hardware 
wallet for key derivation and digital signature.

IV. EXPERIMENT

This section conducts some experiments to evaluate 
the recovery transaction suggested in [3] with real 
hardware wallets. We illustrate that the recovery 
transaction is a heavy-loaded transaction to generate. We 
show that creating a brand-new recovery transaction for 
all sendings and receivings has a significant performance 
penalty, making it impractical in resource-constraint
cryptocurrency wallets like hardware wallets.

In contrast to payment transactions, recovery 
transaction has several inputs and only one output. It
aggregates entire available UTXOs to transfer all coins to 
the reserved address. Multiple inputs make the recovery 
transaction larger than a typical payment transaction. A
recovery transaction needs several key derivations to 
calculate required private keys for all UTXOs and several 
ECC signings to generate outputs. Even though a 
recovery transaction is not very different from a payment 
transaction for traditional software wallets like Satoshi 
Client [9] that runs on a computer, it has a significant 
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performance penalty on a resource-constraint device 
Hardware Wallets.

Since bitcoin is the gold standard in UTXO-based 
cryptocurrencies and many other coins copy the entire or 
parts of its codebase, we choose bitcoin to do our 
measurement. We also choose the Segregated Witness 
protocol, aka SegWit, to perform our tests. It is a new 
version of the bitcoin protocol [16] with better 
performance for multiple inputs. To employ SegWit 
protocol, we use the following path for key derivation:

path = m/49 /1 /0 /change/address_index

The number 49 refers to BIP-49 [17] that defines the 
derivation scheme for SegWit addresses. Next, number 1 
is the defined constant for bitcoin testnet. To compare 
recovery transactions with typical payment transactions, 
we use the typical payment transaction format with one 
input and two outputs. The recovery transaction has one 
to ten inputs for available UTXOs and one output for the 
reserved address. It may have more than ten inputs in real 
life, but we assume this number just for demonstration. 
We use WireShark to monitor USB packets and measure 
the timing [18]. Our tests were executed on a MacBook 
Pro with Intel Core i7 2.2 GHz processor and 16 GB 
memory, and we use the same USB port for all tests.

Figure 2. Performance of generating recovery transaction on a Trezor 
One hardware wallet

To evaluate generating a recovery transaction on 
hardware wallets, we only measure step 2 and step 3 of 
the Transaction Signing Process on the Hardware Wallet
because step 1 and step 4 are executed on the host 
application and network. Figure 2 and Figure 3
demonstrate the results for two hardware wallets [19]
[20]. Increasing the number of input UTXOs takes more 
time on the wallet to generate a recovery transaction. In 
comparison, Ledger Nano S has lower performance 
because it uses a secure element [21]. In the worst-case 
scenario, generating a recovery transaction on a secure 
hardware wallet like Ledger Nano S takes around 40 
seconds, with only ten input UTXOs.

Authors of [3] discussed that the wallet must create a 
recovery transaction after all sending transactions 
because one or more input UTXOs is spent. Spending
invalidates the previous recovery transaction because at 
least one of its input UTXOs is not available. In other 

words, the wallet has to generate a brand-new recovery 
transaction after even a micropayment transaction like 
buying a coffee, purchasing a ticket, or paying a bill.

Figure 3. Performance of generating recovery transaction on a Ledger 
Nano S hardware wallet

V. PROPOSED LEAN RECOVERY TRANSACTION

As we explained, inaccessible coins are a big 
challenge in cryptocurrencies. The recovery transaction
proposed in [3] to generate two transactions for each 
payment and save one of them off-chain for disaster 
recovery has a significant performance penalty in reality. 

In this section, we propose a more efficient solution 
called lean recovery transaction. In this solution, the 
wallet generates the recovery transaction less frequently 
and only when needed. To do that, we make a change in 
wallet key management and divide the key tree into two 
sections. One section is assigned to a spending account, 
and the other section includes other accounts. The path is 
as follows when the account is 0 for spending account and 
non-zero for non-spending accounts.

path=m/purpose /coin /account(0|n) /change/addr_index

Figure 4 illustrates a sample key tree. The wallet uses 
only the spending section for all spendings 
(micropayments). It creates the off-chain recovery 
transaction only for the non-spending section, which 
means all addresses except under the spending account. 
We call it the lean recovery transaction because it does 
not include the massive part of a recovery transaction, 
including many but small amounts of UTXOs.

Only sending and receiving for addresses out of the 
spending account requires regenerating a recovery 
transaction, like buying new bitcoins or getting paid for 
salary with cryptocurrency. So, micropayments do not 
change the existing lean recovery transaction inputs, and 
only large payments need a new one.

In another scenario, for receiving transactions, a new 
received UTXO must be added to the recovery 
transaction to avoid potential inaccessibility of it. To 
prevent from regenerating a recovery transaction for all 
receives even small transactions, we define a threshold 
that can be changed by the user. If the sum of receiving 
coins reaches the threshold, the wallet generates a new 
recovery transaction to add the new UTXOs.
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Figure 4. Sample key tree to illustrate the coverages of Recovery Transaction and our proposed Lean Recovery Transaction

The spending account does not receive any coins from 
outside. So, we define a new transfer function, where the 
user transfers coins from other accounts to the spending 
account or, in other words, from the non-spending section 
to the spending section. After creating a transfer 
transaction, the wallet generates a new recovery 
transaction because its inputs have been changed.

Our proposed schema has the following advantages in 
comparison to the recovery transaction proposed in [3]:

Generating a lean recovery transaction takes 
considerably less time on the wallet because it has 
fewer input UTXOs, crucial to hardware wallets.

The wallet generates the lean recovery transaction 
less frequently because spending from the spending 
account does not change the input UTXOs of the 
existing lean recovery transaction and does not 
invalidate it. 

Everyday payment transactions for micropayments 
are faster in our proposed mechanism because they 
do not need to generate a recovery transaction.

The wallet adds new receiving UTXOs into a lean 
recovery transaction only when their total funds 
reaches a defined threshold, and it makes generating 
recovery transactions less frequent.

To help a reader understanding our proposed lean 
recovery transaction mechanism, we use an example to 
illustrate and compare the recovery transaction in [3] and 
our proposed method. Assume that a user has a bitcoin 
wallet with a $7000 value that conveys three UTXOs with 
$500, $2500, and $4000 equivalent bitcoin.

Figure 5. Example of comparing lean recovery transaction with 
recovery transaction

Suppose the user makes three regular payments today 
to buy a $5 soda, pay an electricity bill for $70, and 
purchase a $35 T-Shirt from an online store. She uses her
wallet to make these payments by bitcoin. Figure 5
illustrates sample bitcoin transactions that the wallet 
generates. We ignore purchase taxes and fees, bitcoin 
exchange fees, and bitcoin network fees to simplify the 
example. We assume the bitcoin price is $10,000, and we 
use milli-bitcoin (mBTC) in our sample.

We assume that before beginning, the wallet has 
generated a valid recovery transaction. In the first 
scenario, the wallet uses the recovery transaction 
described in [3], including all three UTXOs with 50, 250,
and 400 mBTC. In the second scenario, the wallet uses 
our proposed lean recovery transaction, including only 

1907

Authorized licensed use limited to: University of Central Florida. Downloaded on August 31,2021 at 17:00:36 UTC from IEEE Xplore.  Restrictions apply. 



two UTXOs with 250 and 400 mBTC, and assigns one 
UTXO with 50 mBTC to the spending account.

This example demonstrates that each payment in the 
first scenario includes generating a payment transaction 
and a recovery transaction. In contrast, it includes
generating only a payment transaction without any 
recovery transaction in the second scenario.

In our test setup described in Section IV, Trezor One 
[19] hardware wallet takes 2.2 seconds for a payment 
transaction and 3.2 seconds for a recovery transaction with 
three UTXOs. Ledger Nano S takes 9.7 seconds and 15.8 
seconds, respectively. The payment process takes 5.4 
seconds for Trezor One and 25.5 seconds for Ledger Nano 
S in scenario one. In comparison, it uses 2.2 seconds for 
Trezor One and 9.7 seconds for Ledger Nano S in scenario 
two when using the lean recovery transaction. Therefore,
the lean recovery transaction has a significant advantage,
at least 40 percent of less processing time for generating 
payment transactions with three input UTXOs. The 
performance difference becomes even more meaningful
with a larger number of UTXOs in the wallet. 

VI. PROOF-OF-CONCEPT

To evaluate the lean recovery transaction model, we
implement a hardware wallet from scratch that supports 
fundamental functionalities of hierarchical deterministic 
wallets, according to BIP-32 [13] and BIP-44 [14]. We use 
a secure element for key operations such as key generation 
and digital signature.

We choose a device that has essential parts of a secure 
hardware wallet. It has a secure element for cryptography 
operations and key storage, a screen to display sensitive 
information to the user, and a button to get confirmation 
from the user. Figure 6 demonstrates a picture of our test 
device. This device is in credit card size and has NFC and 
contact interfaces to communicate.

Since the secure element is a resource-constraint device 
with limited memory and processing ability, our code 
must use the minimum memory amount. We use the 
sharing memory technique and allocate the entire memory 
to only two arrays. We pass these arrays with the 
maintained indexes to the functions that require arrays,
minimizing the heap consumption.

Furthermore, we do not use a very nested function and 
any recursive call, minimizing stack memory usage. We 
use the Java Card framework [22] to program the secure 
element. It is a limited version of Java Virtual Machine 
with fewer features to run on microcontrollers and secure 
elements. We compile the code with the Java 
Development Kit, convert it to a Card Application (CAP),
and load it into the secure element.

One of our implementation challenges is the public key 
derivation. A public key calculates by multiplying the 
private key and the Generator point (G) [23] in ECC.

Figure 6. Test device with secure element, screen, and button to create 
a hardware wallet

Unfortunately, our secure element (and many others) 
does not support EEC multiplication, and its software 
implementation has no acceptable performance due to the 
limited resources of the secure element. However, Java 
Card API and our secure element support Elliptic-Curve 
Diffie-Hellman (ECDH) key agreement. In ECDH, each 
party calculates a secret by multiplying its private key and 
the other party public key. An ECC public key is an EC 
point. Therefore, the ECDH function mathematically is 
multiplying a scaler and an EC point. We use the ECDH
function with the private key as the scaler and the 
Generator point (G) as the EC point. Thus, the result of 
ECDH will be the public key.

VII. EVALUATION

As discussed, our proposed lean recovery transaction 
has several advantages compared to the recovery 
transaction explained in [3] because it generates lighter 
recovery transactions with less input UTXOs. It reduces 
the number of generating recovery transactions by 
assigning a section in the key tree to spending and defining 
a threshold for adding receiving funds to the recovery 
transaction. In this section, we measure our proposed lean 
recovery transaction's performance on our implemented 
proof-of-concept wallet with a secure element.

We test our implementation with two payment 
scenarios. In the first scenario, the wallet uses the recovery
transaction proposed in [3] and generates a recovery 
transaction just after the payment transaction. In the 
second scenario, the wallet uses the lean recovery 
transaction mechanism, and it does not generate a 
recovery transaction for payment transactions. Figure 7
illustrates our tests' results in both scenarios for various 
recovery transaction sizes with one to ten input UTXOs.

Since the lean recovery transaction schema does not 
require regenerating a recovery transaction after each 
micropayment, the payment transaction performance does 
not change in Figure 7. On the other hand, the regular 
recovery transaction makes double the payment 
transaction time on the wallet, and more input UTXOs 
increase its generating time.
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Figure 7. Comparison of micropayment transactions in recovery 
transaction proposed in [3] and our proposed lean recovery transaction 
schemas

Our tests have been executed on a MacBook Pro with 
Intel Core i7 2.2 GHz processor and 16 GB memory, and 
we use the same USB port for all tests, which is similar to 
our tests in Section IV.

VIII.CONCLUSION

This paper proposed a new mechanism called lean 
recovery transaction to avoid inaccessible coins and 
achieve optimum performance to generate off-chain 
recovery transactions. We examined the previous 
recovery transaction on real hardware wallets to show its 
significant performance penalty. We proposed separating 
spending account from other accounts in the wallet key 
management and define a threshold for adding new 
received UTXOs into the recovery transaction.
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