
Encrypted Phrase Searching in the Cloud
Steven Zittrower and Cliff C. Zou

Dept. of Electrical Engineering & Computer Science, University of Central Florida, Orlando, United States
steven.zittrower@cs.ucf.edu, czou@cs.ucf.edu

Abstract—As cloud computing is increasing in popularity,
it is difficult to both maintain privacy in datasets while still
providing adequate retrieval and searching procedures. This
paper introduces a novel approach in the field of encrypted
searching that allows both encrypted phrase searches and prox-
imity ranked multi-keyword searches to encrypted datasets on
untrusted cloud. By storing encrypted keyword-location data
along with specially truncated encrypted keyword indexes in a
relational database, we are able to allow for a full range of search
features in our encrypted searches, something that has never
been accomplished before. Furthermore, our approach permits
the encrypted corpus and index to both be stored on cloud
data servers. We modify currently available open-source search
engine software to complete a prototype and provide results from
experiments on a large scale real-world dataset that has more
than half a million documents.

I. INTRODUCTION

Encryption is a method that secures information by making
it illegible or indistinguishable from random noise to anyone
that does not have some privileged information, a key. The
practice of using cryptography to encrypt sensitive information
has been around for millennia. For thousands of years a major
tenet was that the encrypted information was unusable until
decrypted. This served well until recent, when the vast number
of documents needing to be encrypted has made decrypting in-
dividual documents to find query results infeasible in practice.
Searchable encryption was invented to solve the problem of
how to find keywords in documents that are encrypted without
decrypting the entire corpus set.

Searchable encryption is not a new concept but all current
methods have failed in various aspects that keep them from
becoming common or mainstream. Most proposed methods
utilize advanced mathematical structures such as Bloom fil-
ters or trap-doors but they typically only allow for Boolean
searches and do not support phrase searching [1] [2] [3]. Sub-
word matching, exact-matches, regular expressions, natural
language searches, frequency ranking, and proximity-based
queries are all forms of searching that modern search engines
employ and users expect to have. For example, being able
to search for ‘heart attack’ and distinguish between results
related to myocardial infarction (heart attack) as opposed to
‘an anxiety attack that caused heart palpitation’ is important
for the adoption of any searchable encryption scheme. Current
methods are incapable of performing this kind of phrase
searching. Even ranked word proximity searches, a search
that ranks results based on how close the query keywords are
together, has not been fully implemented by previous research.
The closest previous methods stop at ranking documents only

by the number of times a keyword appears in the documents
and whether the keyword is within pre-defined locations [4].

A recent string of widely publicized data breaches in the
cloud, such as an attack on the Gmail accounts of U.S.
government officials [5] and a massive attack on Sony where
thousands of credit card numbers and millions of customer’s
personal information were lost [6], have shown that third-
party cloud providers cannot be fully trusted to safeguard data.
These attacks have further illustrated the need for securely
encrypting private information.

By making use of a trusted client-side server to encrypt and
decrypt words and metadata we can store our files and search
index offsite on untrusted clouds while ensuring the integrity
of the encrypted data and fulfilling potential government or
industry regulations on sensitive data.

We consider the scenario where an organization outsources
its internal data to a public cloud, or generally speaking, we
consider the case where the data owner has the authority and
ability to set up a trusted proxy for access of its encrypted data
in cloud. All of the organization’s employees are considered
as ‘clients’ for the encrypted data search. It would be easy and
practical for the organization to set up a trusted proxy between
the cloud and its employees. All encryption and decryption of
the encrypted data stored on cloud is done by the trusted proxy;
that is, clients have no knowledge of the security keys. Thus,
if an employee’s computer is compromised or the employee
is an inside attacker, once permissions of this employee have
been revoked, the encrypted data is still safe on the cloud.

This paper presents a novel approach to allow for phrase
searching and query proximity ranking for search queries on
encrypted data in the cloud. Neither the source documents,
nor the search index database needs to be hosted on local or
trusted servers. Both of them will be encrypted and hosted in
remote public cloud servers. Further contributions of this paper
include: a complete prototype of our proposed search methods
using a realistic large-scale dataset of over 500K documents
in which searches can be completed within seconds and a
comprehensive experimental evaluation of the overhead, speed,
bandwidth, and security of our method.

The rest of the paper is organized as follows. Section II
discusses related works and previous research in encrypted
searching. In Section III we present our method for encrypted
phrase and proximity ranked searching and discuss the imple-
mentation of these methods in Section IV. We analyze our
results and evaluate our design in Section V. We conclude in
Section VI.

II. RELATED WORKS AND BACKGROUND

In the past, most keyword searching encryption schemes
focused on a searchable index of words which remain hidden
to the server until a one-way trapdoor function is given [7].
These indexes have more recently been stored as a Bloom
filter to decrease the size of the index and increase the
security by reducing the chance of active server attacks by
allowing for false positives [2] [3] [8]. In [8], Bellovin and
Cheswick published a method for storing an index using
Bloom filters and its corresponding cipher functions such that
neither the querier nor the receiver knew of each other’s search
or collection. Bellovin went on to modify this paper in [3]
to support database searching functions. Most related works
in this field focus on single-keyword searches or Boolean
searches. However, in the past few years, papers on multi-
keyword ranked searches [9] and very limited proximity
ranking [1] have been published.

In [2], Aviv, et al., developed a method to securely search
files on a remote storage based server. They encrypt and hash
the words into a Bloom filters thus keeping the index secure.
However, their method provides for no way of including
phrases or proximity ranked results as their index does not
store any keyword location data.

In [9] and [10] this method was further improved by creating
a design that supports multi-keyword searches and ranked
searching. Although this is a leap-ahead of previous work,
as it provides ranked results and multiple keyword searching,
it still fails to include any ranking based on word location
proximity or phrase searching capabilities.

Encrypted database research, specially that in the area of the
publisher/subscriber model, has produced interesting results
that is corollary to our research. Raiciu, et al. [11] and Srivatsa,
et al. [12] both developed methods of maintaining confiden-
tially in a Content-Based Publish/Subscribe. While our model
technically only has one subscriber (the trusted client-side
server), further research in this area could potentially allow
for direct cloud-to-client communication.

Another area of research that is similar to ours is public-key
searchable encryption. Boneh et al. [13] published a method to
allow a public-key encrypted document’s owner to provide a
gateway server a specialized trapdoor to test whether a word
is contained in the owner’s encrypted documents. Many of
extensions have been given to allow multiple keywords [14]
and conjunctive searching with keyword subsets [15]. While
these are similar to our end goal they are very limited in scope
as the documents must be encrypted with a single user’s private
key and keywords to search for must be known in advanced.
Also, while conjunctive and disjunctive searching is possible,
proximity ranking is not.

Current research focuses on two fronts: adding features
to previous designs (such as keyword ranking, proximity
ranking, predicate and disjunctive searches and Boolean search
operators) [9] [16] [17] and creating more computationally
efficient encrypted searching designs [18].

The closest design that does support proximity ranking was
introduced by Artzi, et al, in [1]. It divides each document into

64 separate sections and stores the hashes of this metadata
along with each keyword separately in a Bloom filter. This
allows the search engine to tell whether a word is within a
generous range of another. While this does support limited
proximity ranking it still lacks support of phrase searching.

Our model is unique and novel as it implements phrase and
proximity based ranking of search results. It abandons using a
Bloom filter to store document information in favor a relational
database. Our method trades the small storage size and the
secure nature of Bloom filters for a more flexible, but larger,
data structure. We then take extreme caution and diligence
to prevent information leakage related to active and passive
attacks on the database, search query, and search results.

Where previous models were limited in their search func-
tionality and, therefore, unlikely to be used in commercial set-
tings our model allows for a full complement of modern search
features including but not limited to stemming (reducing words
to their root), lexicographic parsing, Boolean searching, phrase
searching, and frequency and proximity ranking of the results.
Currently, no other research offers a full set of these features.

Some prior research on encrypted searching do not have
a trusted client-side server in their architectures [4] [9]. We
believe it is practical and reasonable to assume that the data
owners can set up their own trusted servers locally, which is
not difficult for a data owner and does not introduce much
overhead cost. In addition, the trusted local server can greatly
simplify the networking architecture and protocol design and
improve data security against insider attacks. Most impor-
tantly, we believe the simplicity of the proposed architecture
will make it easier to be understood and accepted by company
management teams to implement data outsourcing to the cloud.

III. PROPOSED ENCRYPTED PHRASE SEARCHING

“Proximity ranked searching” implicitly ranks documents
by a function, f , that is directly proportional to the distance
the keywords in the search phrase appear from each other. We
adapted [19]’s keyword ranking algorithm and modified it to
allow for more than three keywords. In addition, we implement
search querying techniques presented in previous research such
as Boolean searching and multi-keyword ranking.

To allow for proximity ranking, the location information
of keywords must be preserved in the encrypted index created
from the data corpus. This is a challenge that previous research
relying on Bloom filters cannot easily overcome. Instead of
using a highly compressible index, such as a Bloom filter, we
make use of a relational database to store the three valuable
components to each document: document reference, keywords,
and keyword locations.

A. Overview

Our architecture makes use of an encrypted index which
is generated prior to searching. A trusted client-side server
generates the encrypted index and transfers this index to an
untrusted cloud server. Further details on this index and how
to create it are discussed in Section III-B.

ID Content Rank
3 . . . it was a disease of the heart that induced . . . 2
5 . . . heart disease is the leading cause of death in the . . . 1

10 . . . diseased ideas led to him becoming disheartened . . . 3
13 . . . his small heart grew three sizes that day . . . N/A

Table I: Four example documents sorted by ID and their suggested
ranking for search query ‘heart disease’

Fig. 1: Flowchart of the proposed encrypted phrase searching pro-
cedure. For a company that outsources its dataset to an untrusted
public cloud, a ‘trusted client-side server’ is set up internally (several
identical trusted client-side servers can be set up for robustness
purposes). ‘Client’ represents any company employee or user.

Fig. 1 outlines the general process of our proposed en-
crypted phrase searching. First, the client sends a plaintext
search query to a trusted client-side server (step 1). The
client-side server encrypts all keywords in the search query
individually using symmetric-key encryption; it then truncates
the encrypted keywords to a set number of bits to improve
security by allowing for collisions, and queries the untrusted
cloud server for the documents containing the set of truncated
encrypted keywords (the order of these encrypted keywords
will be randomized) (step 2). The cloud server does a database
query of its encrypted index and returns to the client-side
server encrypted data that corresponds to document paths,
truncated encrypted keyword index offset, and encrypted key-
word locations (step 3). The client-side server decrypts this
data first. From the newly decrypted keyword index offset it
can then determine which returned results are actually for the
keywords searched and which are simply collisions. It discards
those collisions and filters and/or ranks the pertinent returned
documents based on relevant keyword locations and frequency.
Finally, it sends this ranked listing to the original client (step
4). At this point, the user can peruse the results for the desired
documents and, if desired, perform a request to the untrusted
cloud server to retrieve the desired encrypted documents.

B. Indexing
In our model, prior to searching for a document δ, an

encrypted index of the corpus must be generated by the trusted

client-side server. The index is then encrypted and sent to the
untrusted cloud server. Searching takes place by running SQL
queries over the encrypted index.

For illustration purposes, a small representation of such an
index based on Table I is shown in its unencrypted form in
Table II and the corresponding partially encrypted version is
shown in Table III. Each row in the encrypted index table
corresponds to one document δ ∈ corpus. Each row contains
two columns: an arbitrarily assigned unique document id
(ID) and a specialized data structure that contains truncated
symmetric-key encrypted keywords associated with encrypted
versions of the keyword’s location in δ (Word Vectors). In
addition, this data string contains an offset that is used to map
the truncated encrypted keyword with its full version (stored
on the trust client-side server). Table III depicts the offset and
the keyword locations unencrypted to better show the structure
of the string. In actuality, these characters are concatenated
and encrypted together using a block cipher, thus making it
unfeasible to determine the offset or keyword locations without
the key κ. Without loss of generality, we assume that the
cryptographic keys used for both encryptions are the same
key κ and that κ can be used for decryption as well. Only the
trusted client-side server has access to the value of κ.

Once the encrypted index is transferred to the untrusted
cloud server, an inverted index, Table IV(a), based on the
encrypted index, is generated by the cloud server to facilitate
the searching speed of the index.

C. Keyword Truncation
A main attack point on the proposed scheme thus far is

that it is highly susceptible to statistical frequency analysis
attacks. If each keyword were encrypted individually using a
deterministic encryption method, a nosey cloud provider could
compare the encrypted index with a language probability table
to estimate which words map to which encrypted words. To
combat this problem we truncate the encrypted words to a
predefined number of bits β. Therefore, numerous collisions
are created since the entire encrypted keyword space size has
been reduced to 2β , as seen in Fig. 6.

This method can also thwart a separate analysis attack
based on multiple keyword searches. Since keywords are
likely to be related to each other it would be possible for a
malicious cloud provider or user to create associations between
multiple encrypted keywords. If even one encrypted keyword
is decrypted, such a table could reveal a large amount of
information about the data. To illustrate this point, take the

ID Word Vectors
3 diseas:3 heart:6 induc:8
5 heart:1 diseas:2 led:5 caus:6 death:8

10 his:1,6 diseas:2 idea:3 led:4 employe:7
becom:8 heart:9

13 his:1 small:2 heart:3 grew:4 three:5
size:6 day:8

Table II: Unencrypted representation of the database that the cloud
server stores. Keywords are to the left of the colon and the location
in the documents are in bold. Multiple locations are delimitated by
commas.

ID Word Vectors
3 f7b:0—3 487:0—6 477:0—8
5 487:0—1 f7b:0—2 55d:0—5 d37:0—6 ff3:0—8

10 110:0—1,6 f7b:0—2 aef:0—3 55d:0—4 7e9:0—7
498:0—8 487:0—9

13 110:0—1 99f:0—2 487:0—3 2f3:0—4 498:1—5
667:0—6 eef:0—8

Table III: Partially encrypted version (keyword index and location left
in plaintext for illustration purposes) of Table II that is stored on the
cloud. Keywords and locations have been encrypted with a symmetric-
key cipher. The encrypted keywords have been truncated to 12-bits.

Enc. Word ID
487 3,5,10,13
498 10,13
.
f7b 3,5,10
ff3 5

a: Encrypted

Word ID
heart 3,5,10,13
become/three 10,13
.
disease 3,5,10
death 5

b: Unencrypted

Table IV: Inverted index generated from Table III that maps keywords
to documents. (a) is stored on the cloud. (b) is unencrypted and is
not stored anywhere but is for illustration purposes only.

following example where, for simplicity, encrypted words are
only 4 alphanumerics long. Without this feature, if the search
terms ‘United Nations’, ‘United States’, ‘United Airlines’, and
‘United Healthcare’ with unique encrypted keywords returned
of ‘ABCE 1A3B’, ‘ABCE 6C8D’, ‘ABCE 2E4F’, and ‘ABCE
5A7B’ respectively, had previously been searched for, an
attack could store this information. It could be inferred that the
encrypted value ‘ABCE’ is likely a common preceding word
or adjective, thus an attacker has gained information about a
distinct encrypted keyword. In addition, with enough analysis
of this type if it is ever determined that ‘ABCE’ corresponds
to ‘united’, each other encrypted word in the searches are
now known to likely be a term related to ‘united’. Having
a random, many-to-one, mapping of keywords to encrypted
keywords prevents attacks of this nature from reducing the
security of the index.

The trusted client-side server creates a unique keyword
truncation index value for each encrypted keyword. A table
that is stored on the client-side server maps the truncated index
value with the fully encrypted keyword. Each index number
is stored along with the keyword locations in the encrypted
index. This string is encrypted using AES and a randomized
salt. As many multiple keywords now map to the same bits it
makes any statistical frequency analysis attack far less useful.

The security gained from the truncated encrypted keyword
collisions does come at a cost though. Since it is impossible,
prior to decryption, to determine which keywords in the
collision set were actually being searched for, they must all
be returned, decrypted, and then filtered. Therefore, as shown
in Fig. 3 and Fig. 6, the more collisions there are the more
bandwidth and computation power is required per search.

ID Encrypted Result
3 f7b:488Burh1fH 487:F1vFFNWp=
5 487:AjDL7i1Bo== f7b:1tsaFlvlBhY

10 f7b:XnSh0NB+u 487:JnhVD5N7a

Table V: Encrypted unranked results generated by the cloud server
and returned to the trusted client-side server from the search phrase
‘heart disease’. The keyword truncation index and the location data
are shown encrypted (and in Base64). ID 13 is not returned because
it does not contain both of the search terms.

D. Searching

When the search begins, the client sends the query phrase
with multiple keywords, k1, . . . , kn, to a client-side server,
which concatenates the keywords to a list, K (step 1 in Fig. 1).
The client-side server then encrypts each k ∈ K using κ in

which the order of keywords is randomized. Each keyword in
this list is truncated to β bits to create the encrypted keyword
list, K ′. In our reference example shown in Fig. 1, the client
searches for ‘heart disease’. Therefore, with β=12 bits, this
phrase is transformed into ‘487 f7b’. The client-side server
then transfers this encrypted query, K ′, to the untrusted cloud
server (step 2). In Section IV-C we discuss other enhancements
that can be implemented during this phase, such stemming
(reducing words to their root) and the removal of commonly
found words.

The untrusted cloud server parses K ′ into individual en-
crypted keywords k′ and, using the inverted index (Table IV),
determines the documents, δ, that contain a k′. It then refer-
ences Table III to find the encrypted location(s), l′i, for each k′i
in δ. In our example, only documents 3, 5, and 10 contain both
of the encrypted keywords so these IDs, the keyword locations,
and the truncated keyword index, as shown in Table V, are sent
back to the trusted client-side server (step 3).

The client-side server parses the results that the cloud
server returns, which include the document’s IDs, paths, and
associated encrypted keywords, index, and encrypted locations
l′. Each l′i is decrypted to the truncation index τ and li. A
proximity ranking function R, hosted by the client-side server,
is utilized to meaningfully rank the results, as shown in Table I.
This proposed ranking algorithm is presented next.

IV. IMPLEMENTATION

A. OpenFTS
To build a working implementation of our encrypted phrase

ranking search we modified and rewrote the free and open
source application OpenFTS written and designed by Bar-
tunov, et al. [20]. OpenFTS is a full-text search engine fronted
written in Perl for PostgreSQL’s tsearch2. Since the function-
ality of tsearch2 is inherently made for natural languages and
not for encrypted data and custom data structures, it has strict
limits on the size of the database rows and type of data allowed
in it. MySQL has looser limits on these and therefore, when
rewriting OpenFTS, we modified it to use MySQL.

OpenFTS’s Perl frontend allows custom configuration of
the indexer, parser, stemmer, dictionaries, search functions and
other cosmetic methods that are not of integral importance to
the novelty or functionality of our search method but instead
show that our method can be extended to include all of these
modern searching devices.

The indexer was completely rewritten to encrypt the corpus
of documents prior to sending them to the cloud server. The
search function wrapper was modified to encrypt the query
and decrypt the results so they could be ranked and displayed
to the end user.

B. MySQL Full-Text Search
Full-Text Search is a natural language text search engine

integrated into MySQL natively since version 3.23. It provides
the functions and storage of the encrypted documents, location
values, and document names.

We chose to use this implementation for its lack of re-
strictions on the Full-Text data type field and its support of

inverted indexes. Whereas, a traditional index maps keys to
values (or documents to words in our case), an inverted index
reverses this and maps words to the documents that contain
them (Table IV). Inverted indexes are a necessity for our search
engine to be scalable and efficient when indexing a large
corpus of documents. The MySQL source code was modified
to restrict indexing only to the truncated encrypted keywords.

C. Implementation Outline

1) Indexing: Indexing of the corpus takes place prior to
keyword searches and is performed by the client-side server.
Continuous indexing is possible because each document is
self-contained in its own encrypted form, as shown in Table III.
However, recreating the inverted index is a time-consuming
task, therefore, it is assumed that the index is updated at an
order of magnitude less frequent than keyword searching.

Perl scripts parse each unencrypted plaintext document into
its root stems. For example, diseases and diseased would both
become the keyword disease. At this point, very common
words, such as the conjunctions and and or, as well as
other words that appear in most documents but provide little
insight or distinguishing value are removed (these common
words are called stop-words). We encrypt each keyword using
a symmetric-key cipher. The location of each keyword in
the document is also encrypted. In our implementation, we
used AES for its security (any kind of symmetric encryption
algorithm can be used in practice). The encrypted keyword
is then truncated to a specified number of bits, β. The client
then searches the truncated index array for the index number
corresponding to this encrypted keyword. If the full encrypted
keyword is not already contained in the index array it is
appended to the end and the truncated index becomes one
greater than the previous maximum truncated index for the
corresponding bits. The index and location data are salted and
encrypted via AES and appended to the encrypted keyword.
It is then transferred to the cloud to be stored in a custom-
made MySQL structure. Finally, once the encrypted index is
transferred to the untrusted cloud server an inverted index of
the table is created to allow queries to be a function of the
number of unique encrypted keywords.

2) Searching: Our implementation of searching closely
follows that described in Section III-D. Just as in indexing we
modified the OpenFTS code to parse the keyword string for
stop-words and stem each keyword to its root. We then encrypt
and truncate each keyword using the same AES algorithm,
salt, and β value that were used in indexing. A SQL query is
formed and transferred to the cloud to run against its database.

The query is first compared against the inverted index to find
which documents (and their corresponding rows in the index)
contain the keyword set. Then these rows are analyzed and
the encrypted truncated keyword index and keyword locations
are returned to the client-side server.

Our modified OpenFTS code then decrypts the keyword
index and locations using the symmetric-key that they were
encrypted with. It discards any results with truncated keyword
indexes that do not correspond to the searched keyword

and then calls the ranking function. All document ranks are
normalized, sorted, and thresholded to the maximum number
of results requested. This sorted list is returned to the client.

V. EVALUATION

To evaluate our proposed encrypted phrase searching and
ranking search engine we indexed our encrypted modified
search engine and an unencrypted standard OpenFTS/MySQL
Full-Text Search database with over 500,000 emails. Numer-
ous queries were run to compare the two search engines for
speed, bandwidth, size, and security. It is expected that our
methods would add certain overhead to all of the benchmarks.

A. Dataset and Experiment Setup

For our sample dataset we used a collection of over 500K
emails from the former Enron Corporation that were made
public by the Federal Energy Regulatory Commission during
their investigation of Enron in 2003. This plaintext email
archive contains over 1.8 GB’s worth of data. We formatted
the data to be compatible with our indexer and removed attach-
ments, non-text words such as XML tags, and binary data. The
email archive we used, along with a comprehensive description
of the dataset, can be found at http://www.cs.cmu.edu/∼enron/.

We used two commodity computers to conduct the exper-
iments. One computer behaves as the client-side server, the
other computer behaves as the cloud server. Each computer
was installed with Ubuntu 11.10, MySQL 5.1.58, Perl 5.12.4,
and OpenFTS 0.40, as well as the custom built software
described in Sections III & IV. These two computers are
connected through Ethernet LAN. We used a Linux utility
IP Network Monitor, IPTraf, to capture the network traffic
between the client-side server and the cloud server.

B. Speed

For our search speed experiments we eliminated the network
overhead, lag, and transfer times associated with communicat-
ing across a WAN and analyze these aspects in Section V-C.
Instead, we only calculate the time it takes for the cloud server
to run its queries and return with the results. Furthermore, to
eliminate external factors such as initial index caching and
set-up times all searches are run on a hot database.

The speed of individual search queries varies proportionally
to the number of documents containing the set of keywords in
the query and the number of keywords in the query. The later
is due to a custom MySQL user-defined function we wrote
that scans each document for each keyword and location data
of interest and discards the rest. This function is necessary
as otherwise the database would return the entire document
to the client-server, however, this user-defined function is in
most cases the bottleneck in terms of time and can take up
to 6 times as long as the database query itself. Research
is being conducted into improving the performance of this
function. Fig. 2 shows this relationship for queries contained
in 100 documents to 22,000 documents. Most reasonably
descriptive queries are returned in well under 10 seconds. It
should be noted that many extremely common words such as

100 1,000 10,000

1
100

1
10

1

10

100

Number of Returned Document IDs

Se
ar

ch
Ti

m
e

(s
)

Unencrypted 3 keywords
Encrypted 1 keyword
Encrypted 2 keywords
Encrypted 3 keywords

Fig. 2: The search time vs. the number of doc-
uments returned with a corpus size of 517,214
documents and β=12 bits. Search time is pro-
portional to the number of documents returned
and the number of keywords searched for.

12 13 14 15 16

200

400

600

800

1,000

Encrypted Keyword Bits (β)

K
ilo

by
te

s

Bandwidth
Wasted Bandwidth

Fig. 3: The average bandwidth used for an average
three word search phrase. For each additional bit
in the index word roughly 21% less bandwidth is
used. Wasted bandwidth is the bandwidth used to
transfer documents that are eventually filtered.

Fig. 4: Number of documents that contain the truncated
encrypted keyword (β=13). Each line corresponds to a
single encrypted keyword. Note: a few outliers dominate
the set. An analysis attack might conclude that these
encrypted keywords likely correspond to common words.

conjunctions and pronouns are included in our stop-word set
and thus not included in the index.

A prohibitive part of extremely large search returns is
the bandwidth considerations of transferring the results to
the client-side server to be ranked. Since documents cannot
be excluded prior to being decrypted the server must either
arbitrarily trim its result set (thus risking filtering a document
the user was actually searching for) or return megabytes worth
of data to be filtered by the client-side server. Server trimming
and suggesting the user to create more descriptive search
queries are compromises that we could implement to handle
the problem gracefully.

C. Bandwidth Usage

In the encrypted method bandwidth is dependent on the
number of documents returned, the number of query keywords,
and the number of instances the query words appear in those
documents. However, a comparable unencrypted version is
only dependent on the number of documents returned. For
example, ‘stock’ appears often in the documents in our testing
dataset. It is located in 14,828 out of the 517,214 emails in
the dataset and appears a total of 63,316 times for an average
of 4.27 times per email. However, another 1,412 documents
contain words that encrypt to the same bits as ‘stock’ when
truncated. These additional documents are returned as well.
The bandwidth required to search for ‘stock’ in our encrypted
database is roughly 1.19MB. ‘Dear’, on the other hand, is a
word that typically begins letters but appears rarer elsewhere.
It is contained in 20,093 emails but only 1.12 times per email.
In addition, 1,076 other documents have keywords that collide
with ‘dear’. Therefore, the bandwidth needed to search for
‘dear’ (1.07MB) is less than that of ‘stock’ even though there
are 5,265 more emails with ‘dear’ in them. In contrast, both of
these search terms lie almost exactly on the linear regression
line for the comparable unencrypted searches and require 1.6
to 3.8 times less bandwidth than their encrypted counterparts.

A considerable amount of bandwidth transferred is due
to the salting of the AES encrypted blocks. In fact, since
each keyword’s location and truncated keyword index is salted
individually and each salt is 8 bytes plus an attached header,
between 25% and 50% of the bandwidth is due to the salt. By

reducing the size of the salt or removing the header altogether
this overhead can be greatly reduced while the former sac-
rifices security, the later’s only consequence is slightly more
complexity on the client-side server for decryption.

The bandwidth needed to perform a search varies by the
number of keywords specified. Fig. 7 compares bandwidth
usage for searches between one and three keywords. While
the increase in the number of keywords used does increase
the bandwidth by roughly 90% per keyword, this affect is
countered by the fact that adding keywords substantially
decreases the number of documents returned. For example,
to return 10,048 documents with one keyword a relatively
uncommon word ‘green’ was chosen. However, to return
roughly the same number of documents with four keywords,
four of the most common words in the English language had
to be used (‘make’, ‘time’, ‘first’, ‘like’). Each of these words
are between 10 to 50 times more common than ‘green’[21].

D. Database Size

The database size is the last portion of our model that we
analyze. It is expected that the encrypted index adds overhead
compared to a non-encrypted index, which has a high rate
of compression. These compression techniques are rendered
useless due to the randomized nature of the encryption al-
gorithms in our encrypted search. In addition, our index size
is expected to be much larger than previous work that used
Bloom filters and database indexes without storing location
information. Bloom filter sizes are typically a function of the
number of unique words in a document. Our inverted index is
also a function of the unique words; however, the size of our
non-inverted index is proportional to the total word count.

Fig. 5 compares the overall storage size for our encrypted
database and a standard MySQL Full-Text search database
indexed with the same documents but unencrypted. The en-
crypted index is larger but by a relatively small amount. For a
database size of 2.6GB our encrypted solution is only 1.15GB
larger than its unencrypted counterpart.

Direct comparison with other encrypted searching schemes
is difficult as much of the previous work either did not publish
results of the size of their system or focused on much smaller
sample corpus sizes than ours, often with less than 5,000

0 1,000 2,000 3,000

0

2,000

4,000

Corpus Size (MB)

D
at

ab
as

e
Si

ze
(M

B
)

Encrypted
Unencrypted

Fig. 5: Relationship between the size of the un-
encrypted corpus of data plus index and the en-
crypted corpus plus encrypted index

12 13 14 15 16
0

100

200

300

of bits per word in index

A
ve

ra
ge

#
of

co
lli

si
on

s

Keyword Collisions

Fig. 6: Relationship between the number of bits
used to encrypt words and the average number
of collisions between encrypted keywords

0 5,000 10,000 15,000 20,000

0

1,000

2,000

3,000

Number of Returned Documents IDs

K
ilo

by
te

s

1 keyword
2 keywords
3 keywords
4 keywords

Fig. 7: Bandwidth needed for 12-bit truncated keywords
with variable number of keywords in the search query.
The trend-line for each group is shown.

documents [9]. However, to further show the claim that our
approach is efficient, Fig. 5 shows that the size needed to store
both the unencrypted and encrypted databases and original
documents scale linearly with the corpus size.

E. Evaluation of the Keyword Truncated Index

Our proposed method still has areas that could be attacked.
Even though there is a many-to-one relationship between key-
words and their encrypted counterparts not all encrypted values
are equally distributed. For example, in a 13-bit keyword
truncated index, the encrypted keyword ‘0E18’ is contained in
262,941 documents (roughly half of the corpus) while ‘1C91’
is in only 1,005 documents. This is not all that surprising as
the extremely common word, enron, encrypts to ‘0E18’ while
a much rarer words (such as jackal, among others) encrypt to
‘1C91’. Despite that multiple keywords encrypt to the same
values of ‘0E18’ and ‘1C91’, a large size for the index value
suggests that a common word may map to this value (Fig.
4). For larger truncated bit-values this disparity typically only
increases.

As previously explained, the more bits used for the en-
crypted keyword the stronger an attack on the index might be.
In addition, the more bits used for encrypted keywords also
reduces the number of collisions (Fig. 6). However, using more
bits for encryption greatly decreases the bandwidth and, thus,
the speed of searches (Fig. 3). Therefore, there is an inverse
relation between the security of the database and speed of the
searches. It is important to understand the dataset being used
and to choose a sufficient β such that the collisions sufficiently
interrupt any brute-force or analysis attacks.

VI. CONCLUSION

We propose a unique and novel encrypted keyword search-
ing design with proximity ranking and phrase searches within
the cloud. We design a four step solution that safeguards the
documents contents while still allowing for efficient searching
and ranking of results that is a function of the number of
unique keywords. We have developed a fully functional pro-
totype that can work within the confines real-world response
times on a large-scale dataset. In practice we show that the size
overhead of the encrypted indexed database is a linear function
of a non-encrypted index. Finally, whereas non-encrypted
proximity ranking models have a roughly static bandwidth

usage per search, our model is dependent on the number of
documents with the query keyword set.

REFERENCES

[1] S. Artzi, A. Kieżum et al., “Encrypted Keyword Search in a Distributed
Storage System,” MIT, Tech. Rep. 1738, Feb. 2006.

[2] A. Aviv, M. Locasto et al., “SSARES: Secure Searchable Automated
Remote Email Storage,” in Computer Security Applications Conference,
Dec. 2007, pp. 129 –139.

[3] M. Raykova, B. Vo et al., “Secure Anonymous Database Search,” in
ACM Workshop on Cloud Computing Security, 2009, pp. 115–126.

[4] C. Wang, N. Cao et al., “Enabling Secure and Efficient Ranked Keyword
Search over Outsourced Cloud Data,” IEEE Transactions on Parallel and
Distributed Systems, pp. 1467–1479, 2012.

[5] E. Grosse, “Ensuring Your Information is Safe Online,” http:
//googleblog.blogspot.com/2011/06/ensuring-your-information-is-safe.
html, June 2011.

[6] S. O. Entertainment, “Sony Online Entertainment Announces Theft
of Data From Its Systems [Press Release],” http://www.soe.com/
securityupdate/pressrelease.vm, May 2011.

[7] D. X. Song, D. Wagner, and A. Perrig, “Practical Techniques for
Searches on Encrypted Data,” in IEEE Symposium on Security and
Privacy, vol. 3, 2000, pp. 44–55.

[8] S. M. Bellovin and W. R. Cheswick, “Privacy-Enhanced Searches Using
Encrypted Bloom Filters,” Department of Computer Science, Columbia
University, Tech. Rep., Sep. 2004.

[9] C. Wang, N. Cao et al., “Privacy-Preserving Multi-keyword Ranked
Search over Encrypted Cloud Data,” in IEEE International Conference
on Computer Communications, Apr. 2011.

[10] ——, “Secure Ranked Keyword Search over Encrypted Cloud Data,” in
Int’l Conference on Distributed Computing Systems, 2010, pp. 253–262.

[11] C. Raiciu, D. Rosenblum et al., “Enabling Confidentiality in Content-
Based Publish/Subscribe Infrastructures,” in Proc. of the 2nd Int. Conf.
on Security and Privacy in Communication Networks, Aug. 2006.

[12] M. Srivatsa and L. Liu, “Securing Publish-Subscribe Overlay Services
with EventGuard,” in ACM Conference on Computer and Communica-
tions Security, 2005, pp. 289–298.

[13] D. Boneh, G. D. Crescenzo et al., “Public Key Encryption with Keyword
Search,” in EUROCRYPT, 2004, pp. 506–522.

[14] J. Baek, R. Safavi-Naini et al., “Public Key Encryption with Keyword
Search Revisited,” in Computational Science and Its Applications, 2008.

[15] B. Zhang and F. Zhang, “An Efficient Public Key Encryption with
Conjunctive-subset Keywords Search,” Journal of Network Computer
Applications, pp. 262–267, 2011.

[16] J. Katz, A. Sahai, and B. Waters, “Predicate Encryption Supporting Dis-
junctions, Polynomial Equations, and Inner Products,” in EUROCRYPT,
2008, pp. 146–162.

[17] E. Shen, E. Shi, and B. Waters, “Predicate Privacy in Encryption
Systems,” in Theory of Cryptography Conference, 2009, pp. 457–473.

[18] P. van Liesdonk, S. Sedghi et al., “Computationally Efficient Searchable
Symmetric Encryption,” in Secure Data Management, 2010, pp. 87–100.

[19] C. Clarke, G. Cormack et al., “Relevance Ranking For One to Three
Term Queries,” Inf. Process. Manage., vol. 36, pp. 291–311, Jan. 2000.

[20] “OpenFTS,” http://openfts.sourceforge.net.
[21] J.-B. Michel, S. Pinker et al., “Quantitative Analysis of Culture Using

Millions of Digitized Books,” Science, vol. 331, pp. 176–182, 2011.

