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Abstract—One of the major challenges in a wireless sensor
network (WSN) is to extend its lifetime by minimizing the energy
consumption. One of the ways to do so is to reduce network
congestion as it increases delays and introduces additional packet
collisions– thus, adversely affecting network performance.

In this paper, we analyze this issue in routing and take an
evolutionary game theoretic approach to show how sensor nodes
in a WSN could evolve their routing strategies to transmit
data packets in an efficient and stable manner. We derive the
equilibrium state for the routing game and prove that there is
no mutant– an individual node which adopts another strategy
to invade the evolutionary stable strategy (ESS). In addition,
we introduce a replicator dynamic model to show that the
behavior of nodes with various strategies over time. The proposed
equilibrium solution aims to alleviate congestion and thereby
improves the network lifetime. Simulation results show that the
proposed system is successful in converging to the strategy choices
to ESS even under dynamic network conditions.

I. INTRODUCTION

A wireless sensor network (WSN) typically consists of a
large number of sensor nodes, which are capable of sensing,
and communicating wirelessly to transmit the sensed data to
the destination for further processing. As the sensor nodes
have limited power resources, efficient energy management
is very crucial. Phenomenon such as power control, medium
access, and routing lead to energy depletion; thus efficient
techniques are always sought. Routing is a specially challeng-
ing task as it involves energy depletion from all the nodes
that lie on a given route for a source-destination pair. Thus,
designing routing protocols in WSNs requires approaches that
are not only energy efficient but are also able to extend the
network lifetime by utilizing the sensors’ limited battery as
efficiently as possible [1]. With ever-increasing deployment of
customized WSN applications, research is still being pursued
that try to improve network capabilities and meet the quality-
of service demands for the application in question.

Congestion is one of the vital issues in WSNs since it has
a significant negative impact on network performance and
energy consumption [2]. While transmitting packets toward
their destinations, the nodes in a WSN have multiple paths
to choose from. Each path can potentially have a different
associated costs as per the various routing metrics. Such
variation in the cost of energy through different routes would
mean that some routes/paths could be considered to be “better”
than the others. Therefore, nodes are expected to have a
clear preference over a set of available paths. To avoid the
overheads of retransmitting dropped packets due to collision,

which can cause an additional drain on battery life, every node
has an incentive to choose the path with the lowest cost while
transmitting packets. When many nodes take this same routing
strategy, this rational behavior of sensor nodes will intuitively
result in further congestion on the same path and lead to
energy depletion of the nodes along that path. A centralized
mechanism will balance the traffic load across various paths.
However, in the absence of a centralized mechanism, it is
challenging to achieve long-term dynamic traffic load balance;
this paper seeks to address this challenge.

Though the route selection problem in a WSN is a well
investigated problem, we are motivated to explore further
where the objective is to alleviate energy consumption and
collisions through a game theoretic framework. Among the
various models of computation in game theory, evolutionary
game provides a powerful modeling tool to i) study the
behavior of populations and ii) design efficient strategies in
communication networks.

In this paper, we leverage concepts from evolutionary
game theory and model the routing decisions in a WSN
as a non-cooperative evolutionary game. We prove that the
mixed strategy Nash Equilibrium (NE) in our routing game
is the evolutionary stable strategy (ESS); where there are no
other strategies except this ESS can dominate the population.
The payoff for every node, also referred to as a player, is
determined by the packet transmitting cost, which depends on
the distance between the nodes. In the routing game, choosing
the shortest distance between the source and the next neighbor
hop is preferable for each player because it will consume
least amount of energy for the transmission, thereby increasing
the payoff. The players who transmit the packets through the
shortest path will gain a higher payoff/lower cost compared
with the players who transmit through longer paths. However,
if every player tries to select the shortest path to the target,
it will result in collisions and lead to energy depletion at the
nodes. Thus, forwarding the packet through the lowest energy
path may not always be the optimal for the network lifetime.
To model the adaptation of the hop selection strategies and
to show the behavior of the system over a period of time, we
present the replicator dynamics of our game. We study how the
sensor nodes improve their strategy selection over time until
they converge to an evolutionary stable strategy. Furthermore,
once the strategies converge to ESS, the population cannot
be invaded by any other populations of the nodes, and the
system will reach stability. The process of selecting the path
to transmit the packets in our routing game will continue until



the destination node is reached. The objective of the game is to
reduce the load and avoid collisions on the most used routes by
distributing the data transmission task on all possible routes.

The rest of the paper is structured as follows. Evolutionary
games and routing related work is presented in the next
section. System model and game structure are proposed in
Section III and Section IV, respectively. We investigate the NE
and ESS for the game solution in Section V. The simulation
model and results are discussed in Section VI. Conclusions
are drawn in the last section.

II. RELATED WORK

Finding optimal routes have been some of the most in-
teresting research topics in communication networks. Various
research tools have been proposed to investigate these issues
including game theory. Game theoretical methodologies have
been successfully used in sensor networks [3]. This paper pro-
vides a game theoretic model with utility functions considering
forwarding and routing in the presence of adversaries. In [4],
a pricing and payment model is presented as a cooperative
game. The goal of the game is to find an optimal path in a
WSN by considering reliability, energy, and traffic load, where
the nodes have incentives to cooperative in the game.

Buttyan and Hubaux [5] proposed nuglets, which are virtual
currency in the system, to stimulate the cooperation of the
nodes participating to forwarding packets in a mobile ad hoc
networks. Furthermore, a reliable length-energy constrained
routing issue in WSNs has been presented in [6], where
a game-theoretic approach is utilized. In this approach, the
sensors cooperate as rational agents in order to find the optimal
route and maximize their payoffs in the game. Two different
possible payoff models and utility functions were illustrated.
The issue of energy efficiency in wireless sensor networks has
been addressed in [7]. It provided a game theoretic adaptive
algorithm in order to manage sensor behavior for achieving
complete decentralized control in an energy-constrained sensor
network.

Evolutionary game theory emerged as a robust tool to
investigate and solve the dynamic networking issues. Evo-
lutionary game theory was applied in [8] where the authors
proposed a three-dimensional game theoretic energy balance
(3D-GTEB) routing protocol to enhance the routing decisions
and to decrease the overhead in a WSN. They addressed
the unbalanced energy consumption problem by applying
evolutionary and classical game theory at two levels of game
theoretic decision making. The two levels were called wedge-
level energy balance and node-level energy balance. In this
paper, we formulated the routing problem by utilizing an
evolutionary game to study the behavior of the population and
induce the equilibrium even under dynamic wireless sensor
network conditions.

III. SYSTEM MODEL AND ASSUMPTIONS

In this paper, we study a non-cooperative routing game in
wireless sensor networks. We model the set of next hops that
is available for a node to transmit packets as a set of R =
{1, 2, 3, ..r} hops. The sensor nodes are independent, where
each node takes its own decision to transmit the packet without

cooperation with the other nodes. Transmitting the packets
through different hops sustains diverse cost. This cost is related
to the transmission energy cost which in turn depends on the
distance between the transmitter and receiver. For example, if
the distance between the next hop and the transmitting node is
increased, then the cost of transmission will also increase. This
is because, all receivers must have the signal to interference
and noise ratio (SINR) above a certain threshold in order to
decode signals correctly. Obtaining the nearest hop will result
in a lower transmission cost and a higher payoff. Similarly,
selecting farther hops will result in a higher transmission cost
and a lower payoff. Furthermore, transmitting packets through
the same hop simultaneously by two or more nodes will raise
the contention situation and waste the transmission energy of
all nodes in question.

For the sake of simplicity, we consider two nearby nodes
that have packets to transmit to their potential next hop
neighbors. As the distances to the next hop are diverse, so
are the costs associated with the respective transmission. For
this reason, the payoff of selecting a specific strategy for each
node could be different. Consequently, we model the game
as an asymmetric routing game between two populations (i.e.,
υ = {A,B}) based on the distance between the nodes. In
order to select the next hop, each node must have the same
set of strategies S. R = {1, 2, 3, ..r}, as explained above,
denotes the set of hops that are available to transmit the packet.
Each selected hop for either node will incur a specific amount
of energy that is the cost of transmitting the packet, and we
denote it by C. As an example, selecting r as the next hop
to transmit the packet individually from population A will
cost CAr. Nodes are always interested in transmitting the
packet through the hop with the least possible minimum cost
(i.e., minimum value of C). As demonstrated, the evolutionary
game is concerned with the evolution of the strategy, payoffs,
and stability [9]. Thus, the number of sensor nodes is not
significant in the game model.

IV. GAME STRUCTURE

The routing game is represented as <R,S, U>, where R
represents the set of available hops in the game; S = {sr|r ∈
R} is the strategy space, which is the set of actions that are
available for the players. The payoff for playing strategy sr
and st is denoted by u(sr, st) ∈ U when competing against
each other. This happens when the player who is adopting
the strategy sr meets another player who is adopting the st
strategy. In our game, the cost of transmission is permanently
preferred to be low, which will increase the payoff and prevent
energy wastage. Thus, we define the payoff as:

u(sr, st) =

{
( 1
Cυr

, 1
Cυt

) when r 6= t, υ ∈ {A,B}
(0, 0) when r = t

(1)

where Cυr is the transmission cost of the packet through hop
r, which either belongs to the population A, or belongs to the
population B. For example, CBr denotes the cost of selecting
hop r by the player, who belongs to population B.

We define the routing game as a strategic matrix shown in
Table I with a player set composed of players that comprise



TABLE I: Strategies competition form of evolutionary routing
game (i.e., strategies sr and st)

sr st
sr 0 , 0 1

CAr
, 1
CBt

st
1
CAt

, 1
CBr

0 , 0

υ = {A,B} populations. The payoff for players playing
strategies sr and st, which are competing against each other,
is denoted by u(sr, st). Without loss of generality, we assume
that transmitting the packet by using the strategy sr will cost
less than transmitting the packet by using strategy st based on
the distance between the nodes. Thus, it preferable for all the
nodes to forward the packets through hop r, which produces
a high payoff. In addition, transmitting the packet through the
same hop (i.e., r or t) will raise the collision situation and the
payoff will be zero (see eqn. 1).

We show the competition between the two strategies sr and
st as a demonstration to clarify and analyze the performance
of the game. These players adopt one of the two available
hops (i.e., r or t). We analyze the payoff based on Table I we
employ the same to answer fundamental questions as: 1) What
does a strategy sr gain as a payoff when it meets another same
strategy sr or st? 2) How does the equilibrium solution make
the player satisfy and respect the other’s choices? In addition,
we utilize the same technique in the case of having multiple
hops, as will be presented later in the experimental results in
Section ??.

V. EQUILIBRIUM AND EVOLUTIONARY STABILITY
STRATEGIES

In this section, we derive the equilibrium state for our
routing game where the populations mix in the equilibrium
state and there is no incentive to change the selection strategy
and improve payoff. In this state, there are no mutant strategies
that can invade the population who utilizes an incumbent
strategy which is the ESS. Once the strategy reaches ESS,
then the proportion will be stable and does not change over
time. Next, we will provide the evolutionary stability analysis
of our game in order to seek equilibrium solution.

A. Pure NE and Evolutionary Stability

1) Pure Nash Equilibrium: We prove that our evolutionary
routing game has two pure Nash Equilibrium strategies [10].

Lemma 1: In the evolutionary routing game, strategy pairs
(sr, st) and (st, sr) are pure NE.

Proof: Suppose two nodes are picked randomly from
two large populations of sensor nodes in the network. These
nodes are supposed to select one of the two strategies, each
competes against the other, in order to transmit the packet. In
Table I, assume the row and the column are the two players
from populations A and B, respectively. These players select
strategy pairs (sr, st) and (st, sr). The payoffs of the selection
are 1

CAr
, 1
CBt

and 1
CAt

, 1
CBr

, respectively. Let us say that the
players select strategy pairs (sr, sr) and (st, st) instead. Thus,
the payoffs for those strategy pairs will be zero. This means
that the player who is playing strategy sr does not have an
incentive to change the strategy to st because of the penalty of
reducing the payoff according to equation 1. As a result we can

say that strategy pairs (sr, sr) and (st, st) are not profitable
deviations. According to the NE definition [10], the strategy
pairs (sr, st) and (st, sr) are a pure NE for this game.

2) Evolutionary Stability: We will examine if the pure
NE strategies (sr, st) and (st, sr) in the routing game are
evolutionary stable or not. Consider a group of two populations
playing the same strategy s, which is referred to as the
incumbent strategy. That means the players will play (s, s),
which is a symmetric NE. The strategy s is called evolutionary
stable if a small group playing a different strategy, ś, which is
referred to as the mutant strategy, would disappear with time.
The ESS defined [10] as any evolutionary stable strategy must
be a symmetric pure NE, where the performance of strategy
s against itself is better than it does against a mutant strategy.
However, if the strategy is not strictly Nash, it should satisfy
the second condition of the evolutionary stability. The second
condition defined as that the incumbent s must do strictly
better against the mutant ś than a mutant strategy does against
a mutant. In this game, the pure strategies are not symmetric
pure NE where the payoff of strategy sr is different from the
payoff of strategy st (i.e., u(s, s) < u(ś, s)). According to the
definition of ESS, the pure strategy NE in our game is not
evolutionary stable.

B. Mixed Strategy NE and Evolutionary Stability

1) Mixed Strategy Nash Equilibrium (MSNE): The mixed
strategy Nash Equilibrium of the routing game is a probability
distribution p̂ (collection of weights) over the set of pure
strategies S for any player [11]. The pure strategy will be
available with certain probabilities where the payoffs from all
opponents of their strategies are eventually equal. Thus, the
expected payoffs given to strategies in a mixed NE are equal.

In our game, let p̀ = {p, 1 − p} denote the proportions of
the population A adopting sr and st strategies, respectively,
and q̀ = {q, 1−q} denote the proportions of the population B
adopting sr and st strategies, respectively. In a 2-hop scenario,
player 1, who belongs to population A, plays strategy sr
with probability p and strategy st with 1 − p probability.
Player 2, who belongs to population B, plays strategy sr
with probability q and strategy st with 1− q probability. We
calculate those probabilities using the mixed strategy algorithm
and the payoff in Table I. According to Mixed Nash definition,
the expected utility from playing strategy sr is equal to the
expected utility for playing strategy st for any player as
follows:

EUυ(sr) = EUυ(st), υ = {A,B} (2)

The expected utility for playing strategy sr for the player
who belongs to A population and the player who belongs to
population B, respectively, are:

EUA(sr) = q · 0 + (1− q) 1

CAr
(3)

EUB(sr) = p · 0 + (1− p) 1

CBr
(4)

The expected utility for playing strategy st for the players
in the two populations are:

EUA(st) = q
1

CAt
+ (1− q) · 0 (5)



EUB(st) = p
1

CBt
+ (1− p) · 0 (6)

Setting (3) and (5) equal as in (2), then solve it to find the
probability distribution p̀ = {p, 1 − p}. Similarly, setting (4)
and (6) equal as in (2), then solve it to find the probability
distribution q̀ = {q, 1− q} such as:

p =
CAt

CAt + CAr
, 1− p =

CAr
CAt + CAr

(7)

q =
CBt

CBt + CBr
, 1− q =

CBr
CBt + CBr

(8)

The players from A and B populations adopt the strategy sr
with probabilities (p, q), respectively, and the strategy st with
probabilities (1 − p, 1 − q), respectively. The players in the
routing game mix their selections of the next hop to transmit
the data packet with (p, q) and (1− p, 1− q) probabilities. In
addition, none of the players would change the strategy with
an expectation of gaining a better payoff. The reason behind
this behavior is that adopting the strategies in that manner will
represent the same outcome.

2) Analysis Evolutionary Stability for MSNE: We analyze
the evolutionary stability of mixed strategy NE (MSNE) (i.e.,
(p̀, q̀)) in our asymmetric routing game according to asym-
metric ESS [12]. Previously, we already proved that the game
solution is a mixed strategy Nash Equilibrium (p̀, q̀).

Asymmetric ESS Definition [12]: Define (p̀, q̀) as a two-
species evolutionary stable strategy if it is asymptotically
stable under the two-dimensional equation whenever it is based
on the strategy pair (p̀, q̀) and (p̂, q̂), when (p̀, q̀) 6= (p̂, q̂).

In other words, the two-species ESS with strategy pair
(p̀, q̀) cannot be invaded by a mutant subsystem, which uses
a different strategy pair (p̂, q̂).

Lemma 2: Our mixed strategy NE (p̀, q̀) is a two-species
evolutionary stable strategy.

Proof: First, we define the replicator equations, which is
ruling the behavior of the system over time [13], based on
the strategy pair (p̀, q̀). In our routing game, we define the
replicator equation such that the fraction of strategy sr grows
at a rate equal to its fitness minus the average fitness of the
player. We have the following replicator equations:

ṗ = p[(
1− q
CAr

)− (
p(1− q)
CAr

+
(1− p)q
CAt

)]

= p(1− p)(1− q
CAr

− q

CAt
)

(9)

q̇ = q[(
1− p
CBr

)− (
q(1− p)
CBr

+
(1− q)p
CBt

)]

= q(1− q)(1− p
CBr

− p

CBt
)

(10)

Second, we need to find the stable fixed point for the two
replicator equations. We have the MSNE point, which we
calculated in V-B1. We proved how this point is a fixed point
under the two replicator equations (9) and (10).

Since we already have a stable point (p̀, q̀) in our model,
we need to show that the point is fixed under the replicator
equations. Therefore, we need to satisfy that the last part (i.e.,
( 1−q
CAr
− q

CAt
) and ( 1−p

CBr
− p

CBt
)) in equations (9) and (10),

respectively, should equal zero. Therefore, if we substitute the

values of p and q from equations (7) and (8) with these last
parts, we will get zero. As result, (p̀, q̀) is a asymptotically
stable fixed point for the replicator dynamic. Based on asym-
metric ESS [12], our mixed strategy NE (p̀, q̀) is a two-species
evolutionary stable strategy.

3) Numerical Analysis of ESS for MSNE : For the sake of
certainty, we will analyze the ESS for the proposed MSNE so-
lution by satisfying the condition of the following theorem [12]
numerically in this part.

Theorem [12]: (p̀, q̀) is a two-species ESS if and only if
either p̀ · (Dp̂+ Eq̂) > p̂ · (Dp̂+ Eq̂)

or q̀ · (F p̂+Gq̂) > q̂ · (F p̂+Gq̂)

for all strategy pairs (p̂, q̂) that are sufficiently close (not
equal) to (p̀, q̀). D, E, F , and G are the payoff matrices for
intra-specific interaction.

In our routing game, suppose two sensor nodes are picked
randomly from two population (i.e., A and B), and these nodes
are supposed to select one of the two strategies (i.e., sr and
st), which compete against each other in order to transmit the
data packet. Assume that we have the payoff matrix values
for Table I as: CAt = 4, CAr = 2, CBt = 8, and CBr = 6.
Based on those values, we calculate the MSNE and the rest of

the elements as: (p̀, q̀) =

(
4
7

2
3

3
7

1
3

)
, D =

(
0 1

2
1
4 0

)
, and E =(

0 1
6

1
8 0

)
. D and E are the payoff matrices for interspecies

interactions. Suppose there are small groups adopting a mutant
strategy (p̂, q̂) instead, which is greedier than the incumbent
strategy (p̀, q̀). Furthermore, assume that the mutant strategy
selects the near hop r with higher probability (i.e., p + δ,
q + δ) and selects the farther hop t with lower probability
(i.e.,(1−p)−δ, (1−q)−δ), where δ is a small positive number

(i.e., δ = 0.1). Thus, (p̂, q̂) =

(
4
7 + δ 2

3 + δ
3
7 − δ

1
3 − δ

)
. Then, by

substituting those values in the first condition of the theorem
[12], we have p̀.(Dp̂+Eq̂) > p̂.(Dp̂+Eq̂) (i.e., 0.23 > 0.22).
Accordingly, (p̀, q̀) cannot be invaded by the greedier mutation
and is ESS.

C. Replicator Dynamics

Replicator dynamics describe populations’ behavior of
sharing associated with different strategies that evolve over
time [13]. We introduce the replicator dynamic model in order
to show how the players, who repeatedly play the routing
game, evolve their behavior in every stage of the game. The
populations learn with each strategies interaction until they
reach a stable state. In the following equations, we derive the
replicator dynamics of our routing game framework with r
hops. Our replicator dynamic equations will define the fitness
as follows:

Consider two populations of interacting nodes. Each time,
nodes from one population (row players A) are randomly
paired with nodes from the other population (column players
B). All players have a set of strategies S, and strategy
sr ∈ S are adopted. Let p̀ = {p1, p2, p3, ..., pr} and q̀ =
{q1, q2, q3, ..., qr} denote the proportion of the two-population



adopting s1, s2, s3, ..., sr strategies, respectively, where sum-

mation of the proportion equal to 1 (i.e.,
r∑
i=1

pi = 1 and
r∑
i=1

qi = 1 ) as described in section V-B1. Let (p̀, q̀) represent

the incumbent strategy of selecting hop r with probability
pr,qr. In addition, let the set of U = {u1, u2, u3, ...ur}
represent the average payoff of the players selecting hop r
at a given stage of our game. Furthermore, let ur denote the
utility function of adopting strategy sr. The payoff of selecting
hop r strategy sr for row player (A) is given by:

ur = u0 +

R∑
x=1

qru(sr, st), ∀r, t ∈ R (11)

The payoff of selecting hop r strategy sr for column player
(B) is given by:

ur = u0 +

R∑
x=1

pru(sr, st), ∀r, t ∈ R (12)

where u0 is the initial fitness of every player, and u(sr, st) is
the fitness of selecting hop r in pairwise competition against
adopting hop t.

Let uA and uB denote the average fitness for entire popu-
lation A, and B, respectively, which are given by:

uA =

r∑
y=1

py(qyuy), ∀y ∈ R (13)

uB =

r∑
y=1

qy(pyuy), ∀y ∈ R (14)

For each next time slot, the probability (p̌r, q̌r), of selecting
next hop r of the game is calculated by:

p̌r = pr +
qr(ur − uB)

uB
(15)

q̌r = qr +
pr(ur − uA)

uA
(16)

The proportion of sensors selecting hop r in the next
time slot will be either increased or decreased according to
comparison of the average fitness of selecting that hop to the
overall fitness of the entire sensor population in the current
time slot. According to our evolutionary replicator equations,
the next particular hop will be selected more frequently in
a subsequent time slot if the payoff of selecting that hop is
higher than the average overall fitness of the entire sensor
network.

VI. SIMULATION MODEL AND RESULTS

To demonstrate the effectiveness of the proposed routing
game, we conducted extensive simulation experiments. The
results show the behavior of selecting strategies when sensor
nodes do not cooperate with each other and demonstrate
how our evolutionary routing game converges to ESS. First,
we present the results when there are two hops available to
transmit the data packet for all populations. We consider the
diversity of wireless network conditions that result in different
transmitting costs. For example, a sensor node will fail either
because of an uncontrolled environment, battery issues, or a
communication failure. Thus, in the case of a node failure, the

cost of paths in routing networks will be changed. Mobility
of the nodes in a WSN is another cause for diversity of the
cost paths. In our simulation, we show how the nodes behave
with multiple hops available and converge to ESS. Moreover,
we show the results of experiments under dynamic network
conditions.
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transmitting to hops 1 and 2), Stability of the system occurs
at t = 10.
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Fig. 2: Related average and weighted sum of fitness for both
populations (i.e., A & B). Stability of the system occurs at
t = 10..

Figures 1 and 2 represent the behavior of selecting one of
two available hops for the two populations in order to transmit
the packet during every time slot. We assume different costs of
transmission for different hops, where a transmission through
hop 1 produces a lower cost than a transmission through hop 2.
The figures show how the probabilities of selecting the hop are
modified according to average fitness, which is gained from
strategic interactions. Let us consider the sensor nodes from
population A become greedier and transmit the packet with a
lower cost through hop 1. Thus, the payoff for those nodes
who adopt strategy s1 at time = 1 is less than the payoff for
selecting hop 2, as demonstrated in Figure 2. As a result, the
hop selecting probability of greedy nodes decreases in time =
2 (as shown in Figure 1) and their payoff increases at that
time, which is still less than the average payoffs of the entire
population as shown in Figure 2. In contrast, the nodes that



are less greedy and transmit through hop 2, which costs more
for transmitting, receive a higher payoff at time = 1 than the
nodes transmitting through hop 1. Moreover, this causes the
hop selecting probability to increase in the following time for
the less greedy nodes and decreases their payoffs. In a similar
manner, the hop selecting probability for both populations (i.e.,
population A and B) are modified until the system becomes
stable (i.e., time=10).
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Fig. 3: Convergence probabilities of selecting 3 hops to
equilibrium probabilities at t = 63 when network conditions
change at t = 45 for population (A).
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Fig. 4: Convergence probabilities of selecting 3 hops to
equilibrium probabilities at t = 63 when network conditions
change at t = 45 for population (B).

Figures 3 and 4 present the experimental results of playing
our proposed evolutionary game with multiple hops (i.e., 3
hops) where each one has a different transmitting cost for each
population. The convergence to ESS occurs at time = 20,
which is slower than convergence to ESS with having two
hops, as Figure 1 shows. Moreover, the figure shows the
behavior of nodes when the network conditions changed in our
proposed evolutionary game. Figure (3) shows the convergence
probabilities of selecting 3 hops to ESS by population A.
Figure 4 shows the convergence probabilities of selecting 3
hops to ESS by population B. For example, at the beginning
in Figure 3, the game converges to ESS for population (A)
(i.e., time = 20) when hop 2 is more preferable to be selected

from the nodes and the initial values for utility of selecting
s1, s2, and s3 is 0.2, 0.9 and 0.5, respectively. At time = 45,
the network conditions are changed: Hop 1 becomes more
attractive for the sensors and adopting s1 will produce higher
payoff than selecting s2 or s3. The initial values for utility of
selecting s1, s2, and s3 were changed to 0.5, 0.3 and 0.2,
respectively. Similarly in Figure 4, the network conditions
were changed with different utility values for each strategy
selection. The system reaches stability under new network
conditions and converges to a different ESS for all populations
at time = 63. As a result, the system will be able to reach
stability with multiple hops of different transmitting costs,
even under the changing of network conditions.

VII. CONCLUSIONS

Designing routing protocols that alleviate congestion in
wireless sensor networks is a challenging problem. Absence of
a centralized mechanism to select among available paths will
unavoidably introduce extra collisions, resulting in reduction
of the sensor network lifetime. This paper formulates the con-
gestion routing issue in WSNs to seek equilibrium solutions
and approaches the issue with an evolutionary game theoretical
framework. We derived the equilibrium strategies of selecting
the next hop in the routing game, and we proved that the mixed
strategy Nash Equilibrium that was derived in the game is an
evolutionary stable strategy (ESS). Moreover, we presented the
replicator dynamic model to show how the populations im-
prove their performance and converge their strategy selections
to ESS over time based on payoff comparison as demonstrated
in the experiment results.
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