
PwdIP-Hash: A Lightweight solution to Phishing and

Pharming Attacks

Baber Aslam, Lei Wu and Cliff C. Zou

School of Electrical Engineering and Computer Science

University of Central Florida, Orlando, FL, USA

Abstract—Phishing and Pharming, the leading threats to

identity theft, result in losses of millions of dollars each

year. Many solutions have been proposed to guard against

these attacks. Among them, password-based solutions may

require additional hardware and are still vulnerable to

man-in-the-middle attack; multi-challenge/response based

solutions are mostly complicated and may also be

susceptible to denial-of-service attacks; and detection-

based solutions are ineffective if users dismiss warnings

generated by these solutions.

In this paper, we present a novel lightweight password-

based solution that safeguards users from Phishing and

Pharming attacks. The proposed authentication relies on a

hashed password, which is the hash value of the user-typed

password and the authentication server’s IP address. The

solution rests on the fact that the server connected by a

client using TCP connection cannot lie about its IP address.

If a user is unknowingly directed to a malicious server by a

Phishing or Pharming attack, the password obtained by

the malicious server will be the hashed password tied to

the malicious server’s IP address and will not be usable by

the attacker at the real server, and hence, the

Phishing/Pharming attack will be defeated. The proposed

solution does not increase the number of authentication

messages exchanged, nor requires addition hardware

tokens. The solution is also safe against denial-of-service

attacks since no state is maintained on server side during

the authentication process. We have prototyped our design

both as a web browser’s plug-in and as a standalone

application. A comprehensive user study was conducted,

and the results show that around 95% of users think the

proposed solution is easy to use and manage; 79% of users

have shown willingness to use the application to protect

their passwords.

Keywords- design; web security; usability; Phishing;

Pharming; password authenication.

I. INTRODUCTION

Convenience, efficiency, reduced cost and environmental

friendliness have been the major driving forces for the

increases in Internet usage. Today, every user has multiple

online accounts to serve his different needs: email, social

networking, online banking, remote working etc. All these

accounts contain certain personal sensitive information which

if stolen can be used by attackers for monetary or other

purposes. Every year millions of dollars are lost due to Internet

related crimes (or Identity thefts) [1]. Among various identity

thefts attacks, the major threats are Phishing and Pharming.

Both Phishing and Pharming aim at stealing a user’s sensitive

information by directing him to a malicious website; the stolen

credentials are then used for malicious purposes. The utility of

these stolen credentials to attackers depends on their validity,

even if the credentials are one-time and valid for a short time

period, they may still be used for malicious purposes. Phishing

starts with a spam (but seemingly legitimate) email; it uses

social engineering to obtain user’s sensitive information either

using forms within the email or luring a user to a malicious

(but seemingly legitimate) website via a link within the email.

Pharming, on the other hand, uses Internet (DNS servers, DNS

resolvers, web servers etc) vulnerabilities to direct a user to a

malicious (but seemingly legitimate) website where his

credentials are stolen. Pharming is more dangerous since a user

may be unknowingly taken to a malicious website even if

he/she types the correct web address. Challenge/response type

of authentication [8,9] usually safe against these replay attacks,

can still be vulnerable to man-in-the-middle (MITM) attack: an

attacker places himself between a user and the authentication

server, and relays challenges/responses between the user and

the server, thus capturing all the authentication credentials.

SSL/TLS is mostly being used to provide the authentication

and confidentiality on the Internet [2]. It provides a mechanism

to achieve mutual authentication via certificates. Current

implementations use server side certificates to authenticate a

server whereas client side authentication uses user name and

password. The server side authentication is normally defeated

because of human factor [3], e.g., a user may fail to

differentiate between a HTTP and a HTTPS session either due

to his lack of knowledge or due to attack sophistication. Further,

most users are likely to dismiss warnings generated by web

browsers when a server presents an incorrect certificate [3].

These are the major reasons for the success of Phishing and

Pharming attacks.

Many solutions have been proposed to guard against these

attacks. They can be classified as either active or passive.

Active solutions, such as web browser add-ons [4], are not

fully secure since they have false negatives and depend on

 2

users to act on the warnings which users generally ignore [3].

Passive solutions can be password-based [5 - 7] or protocol-

based [8, 9]. Protocol based solutions increase the number of

messages exchanged between server and client, thus

lengthening the authentication process. Further, these solutions

require major modifications in existing authentication

mechanisms. Multi-step authentication schemes may be

vulnerable to denial-of-service (DoS) attacks, since the server

needs to maintain state (thus commit its recourses) for each

authenticating client at least till the completion of

authentication. A number of password based solutions generate

one-time-passwords using either a hardware token (which

increases the cost and complexity) [5, 6] or a trusted

application (that generates passwords or does authentication on

user’s behalf) [7]. These solutions increase the attack

complexity (introducing timing constraints) and cannot

eliminate MITM attack possibilities. Some solutions

incorporate server names to generate server specific passwords,

thus protecting against user behavior of using same passwords

for all accounts. When an attacker steals a password from weak

servers, the stolen password cannot be used to attack the same

user’s other accounts [5 - 7]. However, these solutions are still

vulnerable to MITM or replay attack.

In this paper we present a new passive password-based

solution. The proposed authentication relies on a hashed

password, which is the hash value of user-typed password and

the authentication server’s IP-address. The solution rests on the

fact that the server connected by a client using TCP connection

cannot lie about its IP address. In case of MITM, it will be the

attacker’s IP address since it will be acting as authentication

server to the client. Thus the hashed password tied to attacker’s

IP address will not be usable by the attacker on the actual

authentication server. In this way, the solution not only

prevents exposure of a user’s real password to a malicious

server, but also prevents man-in-the-middle attack even if users

dismiss browser’s security warnings. The proposed solution

does not increase the number of authentication messages

exchanged, nor requires addition hardware tokens. The solution

is also safe against denial-of-service attacks since no state is

maintained on server side during the authentication process.

We have prototyped our design both as a web browser

plug-in and as a standalone application. We also carried out a

comprehensive user study of our implementation. The study

has shown that the design is easy to use and users have shown

their strong willingness to use the design if a version for their

favorite browser is available.

The rest of the paper is organized as follows. Section II

discusses the related work, section III presents the proposed

solution, section IV gives the implementation details of our

solution, section V presents the user study methodology/results

and finally section VI presents conclusion and future work.

II. RELATED WORK

Active or detection based solutions, such as web browser

add-ons or toolbars, detect the malicious websites based on

either the black lists or the web content [11, 4]. The tools that

use black list are vulnerable to an attacker’s malicious website

until the malicious site has been added in black list. Further

these can also be countered by obfuscating the URL, e.g.,

routing through another domain, for example using content

distribution networks [12, 13]. The tools which analyze the

web content normally wait for entire page to load, if the web

page takes too long to load then the tools decision will also be

delayed and in this time a user may navigate away using some

link on the malicious page. The delay can easily be introduced

through loading of an invisible image etc [13]. Further, these

are not very secure as they depend on user to act on warning

and these also have high false negatives [13].

A class of solutions transfers part of initial registration and

login onto portable smart devices (PDA, mobile phones etc).

Smart mobile device is used to initially register the website;

storing some identifying information about website and also

the user’s credentials. Later, when user wants to login, the

smart device first confirms validity of the website and then fills

in the user’s credentials via Bluetooth etc [14- 16]. These

solutions reset on the assumption that the mobile devices will

not be compromised, however this assumption is not valid

since PDA/smart phones are increasingly being used for

browsing the Internet and these normally do not have elaborate

protection systems such as antivirus, anti-malware etc. There

are also many solutions which use smart cards/tokens to store

and process the shared secrets to generate login credentials [5,

6, 17, 18]. The solutions using smart cards or other hardware

tokens are expensive and are usually only implemented by high

risk or financial institutions. The user may have to carry one

device for each of his account. These may also be lost or stolen.

The home user has no incentives to use this for all of his

accounts. Further, smart card readers are considered as an add-

on and are not included in basic configurations of computers

which means these are not available everywhere especially on

public computers/kiosks (where one needs most security).

A class of solutions resets authentication on server’s

identification such as domain name or IP address [7-9, 19]. [7,

8, 19] generate server specific passwords from one master

password. These solutions address the user’s tendency to use

same password across several accounts [28], the attacker, in

this case, can capture a password from less secure server and

use it to access other high security accounts. These solutions do

not address Pharming attacks and reply attacks. In replay

attacks the password captured from same server is used for a

later access to same server and also Pharming attacks. Sharifi et

al. have presented a multi-step challenge response

authentication mechanism to guard against Phishing [9]. The

solution resets on SPEKE and incorporates server’s IP address

to guard against Phishing [20]. However, the solution increases

number of authentication steps thus increasing complexity and

also inherits SPEKE’s vulnerabilities [21, 22].

Our work comes closer to PwdHash by Ross et al. [7]. They

have used server names to generate server specific passwords

from one master password. The hashing function uses domain

 3

name and the master password to generate server specific

password. It does not defend against Pharming attacks since the

hashed password is directly used by a server. We are using

server’s IP address to hash the password, but we do not use one

master password thus if the password is compromised through

other social engineering methods then only one or a few

accounts (which share the same password) will be at risk.

Further our solution also guards users against Pharming attacks

in addition to Phishing attacks. The one time nature of

passwords also protects the user against replay attacks.

Our solution differs in a number of ways from above

described solutions. Our solution provides safeguard against

both the Phishing and Pharming attacks without any additional

devices or hardware tokens. We do not assume that user takes

care of browsers warnings. Our solution do not require multiple

challenge response steps and also does not require the server to

maintain state, this also makes the solution immune to DoS

attacks.

III. ATTACK MODELS

In this paper, our focus is on the attacks that are targeted at

user’s login credentials i.e. username and password. An

attacker can use these stolen login credentials to either

masquerade the user (and steal user’s personal sensitive data

stored in the account) or initiate transactions on user’s behalf.

The paper does not solve the attacks where user enters his/her

personal sensitive data (other than username and password) in

form fields within emails or when visiting

malicious/masquerading servers. The paper does not address

Dynamic-pharming attacks in which an attacker dynamically

changes the IP address returned for a particular domain name

and exploits name-based same origin policy to hijack a session

after authentication [10]. Further, the solution does not offer

protection against malwares, spywares, keyloggers etc running

on user’s computer.

A. Password Reuse Attack

It is normal tendency that users share same passwords

among multiple accounts. The attacker captures the password

from a relatively insecure server, which may not be using https

for logins e.g., [25], and then uses it to log in to user’s other

accounts sharing the same password.

B. Replay Attack

The attacker captures the password for a particular account

and later reuses it for the same server. This type of attack may

be used even in case of short-lived passwords within a small

time window. This type of attack is successful against solutions

that generate server specific passwords from a master password

such as the PwdHash solution [7].

C. Server Masquerading Attack

The attacker masquerades a legitimate server; it can use

different Phishing and Pharming techniques to trick the user

into believing that it is real server. This type of attack is

successful even with https and encrypted login credentials.

D. Man-in-the-middle (MITM) Attack

This type of attack is used against multi-step authentication

systems. The attacker places him/herself between the user and

legitimate server; acting as server to the user and user to the

server. In this way, the attacker passes all the

challenges/responses between user/server and gains access to

user’s account.

IV. PROPOSED SOLUTION

A mechanism that is safe from MITM attack can withstand

other attacks mentioned in Section III, therefore we assume

attackers are capable of launching MITM attack. A user/client

may be directed to a MITM (attacker) server via various

Phishing/Pharming techniques. Further, we do not assume any

vigilance on the side of users, i.e., a user may fail to

differentiate between legitimate and malicious servers (e.g.,

between an http and an https session), or may dismiss various

web browsers’ security warnings.

A. Basic Idea

Typically (not going in SSL/TLS details), when a

user/client wants to access his account (e.g., email), he initiates

an http connection (either by entering the URL or clicking on a

link) to the server (e.g., gmail.com). The URL is resolved to an

IP address and a TCP connection request is sent to the server.

The server responds by sending the login page and its

certificate. The client’s web browser authenticates the server

(or generates security warnings in case of facing incorrect

server’s certificate). The user then enters his credentials (e.g.,

username and password) which are then sent to the server

through SSL/TLS tunnel. The server verifies the credentials to

complete the login process.

Therefore, in order to initiate and complete the login, a

client must be able to know the IP address of the authentication

server because of the underlying TCP connection. We can

safely assume that the IP address of authentication server does

not change during the authentication process. That is, any load

balancing etc will not be conducted during the initiation of

authentication process from the server side. That means, for a

given session, we can associate a particular IP to the

authentication server. We use this property to generate the

secure password that is tied to the IP address of the

authentication server. If the user is somehow directed to a

malicious server by a Phishing or Pharming attack, the

password obtained by the malicious server will be tied to the

malicious server’s IP address and will not be usable at the real

server, and hence, the attack will be defeated.

B. Notations and Function Definitions

We define several notations/functions that we will use in

the formal description of our solution (Table I). A server’s

 4

certificate is essentially represented by its public and private

key pair (K
+
, K

-
) where K

+
 is the public key and K

-
 is the

private key. EK
+
{M} defines an encryption function on message

M using the public key K
+
. Public cryptography is very

resource intensive therefore data encryption is usually carried

out using a randomly generated symmetric session key and

only the session key is encrypted using public cryptography

[26]. The encryption function EK
+
{M} defined above employs

similar techniques and we will not show the details for

simplicity and compactness. HK(M)=H(K,M) defines a secure

hash function, such as SHA-1 [27]; it is a one-way function

such that given M, it is easy to compute HK(M) = MH, but it is

computationally infeasible to compute M and K given MH.

TABLE I. NOTATIONS AND DESCRIPTIONS

Notations Descriptions

C Client/User

S Server

IPS Server IP-address

NS Nonce generated by Server

PH Hash value of user-typed password P

CertS Cerificate of server S

(K+, K-) Public and private key pair of server

EK{M} An encryption function on message M using the key K

HK(M) A secure hash function using key K on message M

C. Assumptions

We assume that an attacker does not have access to the real

server’s private key or any other secret that is used to store the

passwords on server machines. We also assume that the client

side is free from any malware such as keyloggers etc. In

addition, we do not assume that a user is able to identify a

legitimate server from a fake server, or will act on browser’s

security warnings.

We also assume that a user has already registered with the

real server and the server knows the user’s login credentials.

The server can employ methods to guard against stolen

credentials attacks such as encrypting the credentials with its

private key etc. The PwdIP-Hash will only be used for login

and will not be used for initial account registration or while

updating the passwords, therefore registration does not require

the PwdIP-Hash.

D. Proposed Solution

The basic process of proposed authentication for a
client/user (C) authenticating with a server (S) is described
below (Fig. 1).

• Client requests the login page by setting up a TCP

connection.

• Server sends its certificate (CertS) to client.

• Client, using a secure hash function HK() with key K,

computes hashed password PH = HK(P); where K=

IPS, P is the user-typed password and IPS is server’s IP

address. Client then encrypts PH with server’s public

key (K
+
) - EK

+
{PH}.

• Client sends encrypted PH to server.

• Server also generates hashed password PHS using its

saved Client’s password P and its IP address IPS, then

verifies with the received PH.

1 C Set up TCP connection

2 S → C : CertS

3 C Compute PH = HIPs (P); EK
+
{ PH }

4 C → S : EK
+
{ PH }

5 S Compute K= HK+ (IPS); PHS = HK (P);

Verify (PHS = PH)

Figure 1. Basic Process of Authentication between a client and a server

If the client is connected to a MITM/malicious server (with

IP address IPA) and fails to differentiate it from the actual

server, then the attacker will send CertA to client, client will

send PH based on IPA. In this case when the attacker relays

received PH to the actual server, the authentication will fail

because the actual server has a different IP address from IPA.

The presented authentication scheme generates server

specific passwords, which means the same user-typed

password will be translated into different hash passwords for

different servers. Therefore, this scheme also guards against

attacks password reuse attack targeted at user’s behavior of

using the same password for different accounts [28].

The authentication scheme can easily be modified to

generate server specific one-time passwords. In this case the

server also sends a nonce which is used along with IP address

to generate key. The modified authentication process is

described below:

• Client requests the login page.

• Server generates nonce (NS), encrypts NS with its

private key (K
-
) - EK

-
{NS}.

• Server sends its certificate (CertS) and EK
-
{NS} to client.

• Client, using a secure hash function HK() with key K,

computes hashed password PH = HK(P); where

K=HK+(NS | IPS), P is password, IPS is server’s IP

address, and (x | y) defines concatenation of x and y.

Client then encrypts PH with Server’s public key (K
+
) -

EK
+
{PH}.

• Client sends EK
+
{PH} and EK

-
{NS} to Server.

• Server also generates hashed password PHS using its

saved Client’s password P, nonce NS decrypted from

the received EK
-
{NS}, and its IP address IPS, then

verifies with the received PH.

If the server needs to maintain the state for each
authenticating client by storing NS till completion of
authentication, it may be vulnerable to denial-of-service attacks.
To guard against this vulnerability the proposed solution does
not maintain the state for each authenticating client and lets the
client include NS (encrypted with server’s private key) with its
response in Step 5 (Fig. 2).

 5

1 C Set up TCP connection

2 S Generate NS , compute EK
-
{NS}

3 S → C : EK
-
{NS}, CertS

4 C Compute K= HK+ (NS | IPS); PH = HK (P);

EK
+
{ PH }

5 C → S : EK
+
{ PH }, EK

-
{NS}

6 S Compute K= HK+ (NS | IPS); PHS = HK (P);

Verify (PHS = PH)

Figure 2. Authentication process between a client and a server

The solution will require modifications on both client and

server sides. For server side, a module can be added to handle

necessary generation and computation steps. For client side, a

web browser add-on can be installed to handle authentication.

The solution will also work in case of single-sign-on cases,

where the authentication is done by one central server on

behalf of different servers. In this case, the IP address of

authentication server will be used instead of the server with

which user has an account.

E. Features of the proposed PwdIP-Hash theme

The solution does not require additional hardware tokens,

does not increase the number of authentication steps and does

not require authentication server to maintain any state during

authentication. Therefore, it is economical, light weight and

immune to multi-transaction based denial-of-service attacks.

The solution does not require users to identify malicious

activity or to act on security warnings, thus making it effective

even if a user is unknowledgeable and dismisses all warnings

generated by web browser. In addition, one-time property of

the password guards against password reuse attacks. Time

stamps can also be incorporated to prevent replay attacks, the

server can send time stamp along with the nonce and compare

the timestamp with current time when the hashed password is

received. If it is within some predefined threshold only then the

password is accepted for further verification. This prevent the

attacks where the hashed password and nonce are somehow

captured and are being replayed later to gain access to user’s

account.

V. IMPLEMENTATION

We considered two possible options for implementing the

proposed authentication scheme: as a standalone application

and as a browser plug-in/add-on. Another option studied by

researchers is to modify the login page, but it has a security

drawback that the malicious server can always send a modified

login page and steal the un-hashed password [7]. Therefore we

discarded the login page modification option and implemented

the scheme as a browser plug-in and as a standalone

application. For initial tests/trials we have restricted ourselves

to Microsoft’s browser – Internet Explorer.

The source codes of both implementations can be

downloaded freely from our server [32]. A user must have

necessary permissions to install the plug-in. On the other hand,

the standalone version executable program can work without

installation; this will be useful for situations where a user does

not have necessary permissions/rights to install programs, e.g.,

when she uses a public computer in library or cafe. In these

situations, the user can carry around the standalone program in

a USB key. If a user cannot carry the standalone program

around with her, she can connect to a download server to

download the standalone application wherever she wants to use

it. To guard against DNS attacks against the download server,

users are advised to use the IP address instead of server name

for connecting to the download server.

Our solution requires modification on both server and client

side. The server side modification means that the solution will

only be used by servers who have opted to implement the

necessary modifications. For this reason, a user should

somehow remember which of his accounts are protected by the

solution and only use the standalone application /plug-in for

those accounts. This could be a big challenge for a user if she

has many accounts.

We considered two options to resolve this challenge; server

registration and bookmarking. In the first option, all servers

supporting the solution should register themselves with the

company who releases the standalone program and the plug-in;

the standalone program and the plug-in code contain the list of

all those registered servers, and contact the company’s server

to periodically update the list in the similar way as current anti-

virus software. The second bookmarking option can be done by

each user. When a user registers with a server that supports the

application, the server can prompt the user to bookmark the

server with the PwdIP-Hash plug-in/standalone application.

Later, the user can log in using PwdIP-Hash if a server is in the

bookmark. This option has portability issues since user’s

bookmarks will be only present at his/her own system. This can

be resolved if a user uses online bookmarking services or

carries the bookmark file with him.

The solutions that do not require server side modification

may seem easy to deploy, such as the PwdHash [7], but they

may not be compatible with each and every server since servers

have different passwords rules such as length and composition

of passwords. The generated password may not meet the

specification, one possible solution is to add configuration file

[7], but with a large and ever increasing number of servers,

each having its own password rules, it may become impossible

to keep the configuration file updated.

Visual feedbacks or cues are a very important feature of

any application; they help users to make a mental model of

how an application works and also improve the chance of

correct operation of any application [23]. For this reason we

used the activation button similar to [7], this turned into a

check-mark sign (over green circle) when the application was

active and remained a cross sign (over red circle) otherwise

(Fig. 3 & 4). We also asked the users in our user study to give

there preferences on the applications visual cues etc. 79% of

users preferred a password application that gives feedback or

strong visual cues.

 6

A. Browser Plug-in/Add-on

A user friendly implementation should automatically detect

the password fields and activate the hashing process. However,

if an attacker presents a login page with normal text field

instead of password/protected fields then password hashing

will not take place [7]. Because of this and many other security

issues, covered in detail by Ross et al. [7], we decided to build

our plug-in based on PwdHash model developed in [7]. In this

case, the user activates the application (pressing F2 after

clicking in the password field) before typing the password. The

activation by a user also solves the issues of incompatible

design of login pages among different websites; each website

has its own design and it may become difficult to automatically

detect and populate the password.

We reused the basic key-hook framework of [7] and

replaced some functions according to our own needs. We

implemented our hash class, which accepts password and IP

address (gets it from gethostbyname function) as parameters

and generates the hashed password. For convenience, here we

used MD5 as the hash function. In the real world application,

of course, we might apply other hash functions. We also

replace the icons in toolbar to make them more noticeable (Fig.

3, Fig. 4).

Figure 3. Inactive status

Figure 4. Active status

B. Standalone Application

The standalone application is illustrated in Fig. 5. It has two

inputs; the domain name of the authentication server and the

password. The user can first load the authentication server’s

login page either by typing the URL or using bookmarks or

clicking a hyperlink. Next the user activates the standalone

application, which will present URLs of all currently loaded

web pages in a dropdown list (as Fig. 6 shows). The user

selects the URL of the desired login server, enters the password,

and then clicks the “Generate Password and Copy to

ClipBoard” button. The standalone application will generate

the hashed password and copy it to clipboard (see Fig. 7). After

that the user can manually paste the hashed password to the

relevant password field in the login page and log in.

The standalone application is a dialog-based program. Its

automatic URL detection feature is currently compatible with

IE only, for other browsers, users need to type-in the

domain/URL themselves.

Figure 5. PwdIP-Hash standalone application

Figure 6. PwdIP-Hash detects current loaded IE pages and presents the

corresponding URLs in its drop-down list.

Figure 7. PwdIPHash copies hashed password to clipboard

Compared with the plug-in code, the standalone application

has the advantage of browser independent. Currently the

number of web browsers is continuously increasing and each of

them is also frequently updated with new versions. Therefore,

it becomes increasingly difficult for the plug-in program to

support all the browsers and new releases may make the plug-

in incompatible. In addition, the browsers for handheld devices

generally do not support plug-ins. Another advantage is that the

standalone application can be carried around by a user to be

conveniently used on public computers.

 7

C. Fallback Mechanism

We also considered the options for users to log in from a

computer where neither the plug-in nor the standalone

application can be used. Obviously, one possible solution could

be to use server components [29] to detect the plug-in and if it

is not present then ask user to install it. This type of solution

can easily be defeated if the login page is modified by

attacker/malicious-server. The second option could be to

always prompt the user, before login, to confirm that the plug-

in or standalone application has been installed and if not install

it. This solution relies on user’s vigilance and may fail if a user

fails to detect the absence of plug-in/standalone application or

if the user does not have sufficient privileges to install the plug-

in such as on kiosks/public access computers at airports etc.

Further, it also has the same vulnerability that exists in the first

option. The third option is to have an online password hashing

server that behaves equivalent to the standalone application; a

user can access the server to generate the hashed password [7].

This solution is though easy to implement but may become a

single point of failure especially if an attacker launches a fake

online password hashing server. Further, if a login server uses

multiple IP addresses, the online password hashing server may

use an IP address different from the one to which the user is

currently connected to, and hence, cannot provide a correct

hashed password.

The other two options are: deny a user from logging in or

let the user log in without the added security offered by our

application. In the second case we can modify the server to first

check the hashed password and if that does not match then

proceed to standard authentication procedure. The security of

this will not be worse than the existing authentication schemes.

We added a question in user study to ascertain users’

preferences as to whether they would like to be logged-in

without the additional security or would like to be denied login

if the plug-in/standalone application cannot be used. 73.5%

users preferred to be able to log in even if the added security is

not available to them. This highlights a very important

preference of users: a security product, no matter how good

and secure it is, must be user-friendly in order to be widely

accepted and used by the general population. Security

providers should keep this in mind while designing security

solutions.

VI. USABILITY STUDY

A comprehensive user study was carried out to check the

usability of the proposed solutions. For this a total of 34 users

were recruited, this number is 1.7 times of the number required

for a decent usability study as Faulkner has shown that twenty

users can find more than 98% of usability problems [24]. To

help readers to understand our user study, we have posted our

user study questionnaires on our server [32].

A. Study Design Considerations and Settings

Users were briefed at the beginning to ensure that all users

get the same information. The briefing covered basic purpose

of our application, the components of the user study and how to

use the application. Each user was also given a brief manual

which contained the stages of study and usage of the

application as a ready reference.

All tests were conducted in a single location on the same

computer; this was especially done to control the computer

performance and the environment variation. Further, all users

were asked to perform the tests on our own developed web

server. This ensured that all users were presented with the same

interface. Care was taken, so that the login page does not

resemble any of the famous login pages such as email or social

networking sites, since this similarity may produce bias in

results between users who are familiar with the websites and

those who are not familiar.

B. Stages

The user study was divided into four stages: pre-trial

questionnaire, short Internet/computer security tutorial,

application trial and post-trial questionnaire.

1) Pre-trial questionnaire: After initial briefing a user was

given a pre-trial questionnaire which besides demographic

information also collected some data regarding the user’s

familiarity with Internet/security etc.

2) Internet/computer security tutorial: Next a user was

asked to go through a brief tutorial on Phishing and Pharming.

This was incorporated to educate the user on these topics since

the user may not be aware of the threat for which we have

designed the solution. The tutorial was based on the material

from [30, 31].

3) Application trial: Our prototype is used only for login

and not during signup or password update/change operations,

therefore in order to check user’s response on the difference

between password entering mechanisms the trial besides login

also included the signup and password change operations. The

trial consisted of four steps.

a) Step 1: Create a user account on the server, users

were free to write their usernames and passwords on provided

sheet since a new username and password may be difficult to

remember and users were encouraged to use some new

usernames other than their normal ones to ensure privacy.

Users were not required to use the application in the account

signup stage.

b) Step 2: Log in to the account. Users were required to

use the plug-in for filling up the password field.

c) Step 3: Change the password and log out. Changing

password does not require the activation of application.

d) Step 4: Again log in the server this time using new

password. Users were asked to use the standalone version, this

time, for login.

 8

4) Post-trial questionnaire: The final stage was a post-trial

survey which asked for users’ experience and

recommendations.

C. Participant Recruitment and Demographics

The study was advertised via flyers which were posted in

different departments of our university. The participants were

required to be familiar with computer/Internet and login based

accounts such as web emails etc. Interested participants were

given the consent form, and those who agreed were recruited

for the study. To facilitate the recruitment, each participant was

given a small amount of compensation money. Overall we

recruited 34 users for this user study. The 34 participants

ranged in age from 18 to 37 (Mean=23.6). In gender

distribution 56% were male and 44% were female.

In terms of educational level, 41% had a high school

diploma, 21% had Associate, 10% had a Bachelors degree and

28% had a Masters degree. In terms of their majors, 52% were

from non-technical disciplines (such as Accounting,

Psychology, Business, Art, Film, Elementary education,

Writing, Teaching, Music, etc) and the rest 48% were from

technical disciplines (such as Computer Science,

Mechanical/Electrical/Computer/Civil Engineering, Physics,

Biology/Microbiology, etc).

D. Participants’ awareness to computer/Internet/security

In terms of familiarity with computer/Internet, on average

each user spent 6 ~ 7 hrs on Internet daily and 94% of users

reported that they have used Internet for online banking, bill

pay or purchases. On average each user had 10 ~ 11 online

accounts (min=3, max=25) and was using 4 ~ 5 different

passwords for these accounts (min=1, max=10). Average

length of the longest password among users was 11 ~ 12

characters (min=8, max=21) and that of shortest password was

6 ~ 7 characters (min=3, max=10). The password shared by

most of a user’s accounts had an average length of 8 ~ 9

characters and was shared among 5 ~ 6 different accounts

(min=1, max=20).

Participants were also asked to report their familiarity with

terms such as Phishing, Pharming, https, digital certificates, etc.

26% reported that they were not familiar with at least half of

the terms. 32% were not familiar with Phishing, 79% were not

familiar with Pharming. Only 18% were familiar with both

Phishing and Pharming. These statistics show that a large

portion of people, even among college students, are not

familiar with the potential threat introduced by Phishing and

Pharming.

The large number of online accounts per user, password

reuse habits and lack of awareness to security further highlights

the threat which people are facing from Phishing and Pharming

attacks.

E. Discussion

All 34 participants successfully completed the user

registration step (step 1) of the trial; a few took more than one

attempt. During the login phase using plug-in (step 2) some

users forgot to activate the application and thus encountered the

login failure error. Most of the users recovered from the error

by consulting the user’s guide and repeating the login again

successfully after activating the application. Password change

step (step 3) was also successfully completed by most of the

users. Most of the users successfully completed login using

standalone application in first attempt, though some users

indicated the inconvenience of additional steps; but these

additional steps also helped users to successfully log in. The

detailed results are discussed in succeeding paragraphs.

The tutorial was aimed at increasing the participants’

awareness to Internet security especially Phishing and

Pharming. 91% of users agreed/strongly-agreed that they have

learned something new from the tutorial, this also highlights

the strong need of user education/awareness to Internet security,

even for the young generation. 76% of participants

agreed/strongly-agreed to consider improving their password

habits so that their passwords are strong and distinct.

In response to the usability of PwdIP-Hash, 94%

agreed/strongly-agreed that the task was easy, 97%

agreed/strongly-agreed that the task was manageable, 85%

showed their satisfaction with the user interface and

functionality. 79% considered using the application if a version

was available for their favorite browser. These statistics

demonstrate that our solution is user-friendly and practical. In

addition, 56% preferred plug-in version over standalone

version.

All participants successfully completed the entire

application trial, though some had to repeat certain steps more

than once to complete the task. Fig. 8 gives detailed account of

application trial attempts. 74% were able to complete all four

application trial steps in first attempt, 27% failed to complete

the step 2 (login using plug-in) in first attempt whereas 17%

failed to complete step 4 (login using standalone) in first

attempt. In case of login using plug-in the users forgot to

activate the plug-in (pressing F2 after clicking in the password

field) and in case of standalone users pressed enter-key after

entering the password (which closed the application) instead of

clicking the “Generate Password and Copy to ClipBoard”

button. We have modified the standalone application so that

pressing enter-key acts same as clicking the “Generate

Password and Copy to ClipBoard” button.

For fallback mechanism, in case the application is not

installed and cannot be installed at a public or a friend’s

computer, we asked the user whether they prefer not being able

to log in to their accounts or allowed to log in to their accounts

without the added protection of PwdIP-hash. Only 26.5% of

users preferred to not being allowed to login if added

protection of PwdIP-hash in not available to them.

 9

0

20

40

60

80

100

1 2 3 4

P
er

ce
n

ta
g
e

 o
f
 u

se
rs

Number of attempts

Step 1: Creating User account

Step 2: Login using plug-in

Step 3: Changing password

Step 4: Login using standalone

Figure 8. Number of attempts made by users to complete each step of

application trial

VII. CONCLUSION AND FUTURE WORK

In this paper we have presented a lightweight solution that

can effectively defend against both attacks. Our solution does

not require any hardware tokens and does not assume that a

user is able to differentiate between a fake and a legitimate

website. We have prototyped the solution as a web browser

plug-in and as a standalone application. The usability trials

have shown that our prototypes are easy to use and most of the

users have shown their willingness to use the solution if made

available as a standalone (44%) or as a plug-in (56%) for their

favorite browser.

PwdIP-Hash may generate incorrect password if the

browser’s and operating system’s DNS caches are incoherent

where the authentication server’s domain name maps to two

different IP addresses. One possible solution for PwdIP-Hash

to obtain the same authentication server’s IP address as the

browser does is to do reverse DNS lookup on all established

TCP connections (on http or https ports). We have tried this

solution successfully on our prototype, but presently the

reverse DNS lookup will introduce noticeable delay to our

prototype. In future work, we intend to find a compatible and

fast solution to resolve this issue.

We also intend to develop PwdIP-Hash for other famous

web browsers such as Firefox, Chrome, Safari, etc and to

compare their performance. Furthermore, a user study

involving different solutions and involving more general

participants than college students can give us more insight in

how users see security and what are their preferences.

REFERNCES

[1] Internet crime report, 2008, Internet Crime Complaint Center.

[2] T. Dierks and E. Rescorla, “The TLS protocol version 1.2”, RFC 5246,
Aug. 2008.

[3] C. K. Karlof, “Human factors in web authuntication”, PhD Thesis,
University of California at Berkeley, Feb 2009.

[4] N. Chou, R. Ledesma, Y. Teraguchi, and J. Mitchell, “Client-side
defense against web-based identity theft”, In Proceedings of the 11th
Annual Network and Distributed Systems Security (NDSS), 2004.

[5] Z.-C. Chai, Z.-F. Cao, and R.-X. Lu, “Effcient password-based
authentication and key exchange scheme preserving user privacy”,
Lecture Notes in Computer Science, 4138:467-477, 2006.

[6] I-E. Liao, C.C. Lee, and M.S. Hwang, “A password authentication
scheme over insecure networks,” Journal of Computer and System
Sciences, 72 (4) (2006), pp. 727–740.

[7] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C. Mitchell, “Stronger
password authentication using browser extensions”, In 14th Usenix
Security, 2005.

[8] M. G. Gouda, A. X. Liu, L. M. Leung, M. A. Alam, “SPP: An anti-
phishing single password protocol”, Computer Networks 51 (2007)
3715-3726.

[9] M. Sharifi, A. Saberi, M. Vahidi, and M. Zorufi, “A zero knowledge
password proof mutual authentication technique against real-time
phishing attacks. Information systems security”, In 3rd International
conference, ICISS, December 2007.

[10] C. Karlof, U. Shankar, J.D. Tygar, D. Wagner, “Dynamic pharming
attacks and locked same-origin policies for web browsers”, In
Proceedings of the 14th ACM conference on Computer and
communications security, October 28-31, 2007.

[11] PhishGuard. http://www.phishguard.com.

[12] The Coral Content Distribution Network. http://www.coralcdn.org/.

[13] Y. Zhang, S. Egelman, L.F. Cranor, and J. Hong, “Phinding phish:
Evaluating anti-phishing tools”, In Proceedings of the 14th Annual
Network and Distributed System Security Symposium (NDSS 2007),
February 2007.

[14] W. Han, Y. Wang, Y. Cao, J. Zhou, L. Wang, “Anti-Phishing by Smart
Mobile Device”, IFIP International Conference on Network and Parallel
Computing, 2007.

[15] B. Parno, C. Kuo, and A. Perrig. “Phoolproof phishing prevention”, In
Proceedings of Financial Cryptography (FC’06), February 2006.

[16] M. Mannan and P.C.V. Oorschot, “Using a Personal Device to
Strengthen Password Authentication from an Untrusted Computer”, FC
2007 and USEC 2007, LNCS 4886, pp. 88–103, 2007.

[17] M. Lei, Y. Xiao, S. V. Vrbsky, C.-C. Li, and L. Liu, ”A Virtual
Password Scheme to Protoct Passwords,” In Proc. of the IEEE
International Conference on Communications, IEEE ICC 2008.

[18] R. Oppliger, R. Hauser, and D. Basin, “SSL/TLS session-aware user
authentication”, IEEE Computer, 41(3):78–84, March 2008.

[19] J. A. Halderman, B.Waters, and E. Felten, “A convenient method for
securely managing passwords”, In Proceedings of the 14th International
World Wide Web Conference (WWW 2005), May 2005.

[20] D. Jablon, “Strong password-only authenticated key exchange”, ACM
Computer Commununication Review., ACM SIG- COMM, vol. 26, no.
5, pp. 5-26, Oct. 1996.

[21] Q. Tang and C. J. Mitchell, “On the security of some password-based
key agreement schemes”, In CIS 2005, Part II, LNAI 3802, pp. 149-154,
2005.

[22] M. Zhang, “Analysis of the SPEKE password- authenticated key
exchange protocol”, IEEE Com munications Letters, vol. 8, no.1, pp. 63-
65, Jan. 2004.

[23] S. Chiasson and P.C. V. Oorschot, “A Usability Study and Critique of
Two Password Managers”, In Proceedings of the 15th conference on
USENIX Security Symposium, Security ’06, August 2006.

[24] L. Faulker, “Beyond the five – user assumption: Benefits of increased
sample sizes in usability testing”, Behavior Research Methods,
Instrumets, & Computers, 35(3):379-383, 2003.

[25] EDAS Conference Services, http://edas.info/.

[26] Schneier, Bruce, “Applied Cryptography”, 2nd, New York: John Wiley
& Sons, 1996.

[27] FIPS 180-1 “Secure Hash Standard”, Federal Information Processing
Standard (FIPS), Publication 180-1, National Institute of Standards and
Technology, US Dept. of Commerce, Washington D.C., April 1995.

[28] D. Florencio, C. Herley, “A large-scale study of web password habits”,
In Proceedings of the 16th intl. conf. on World Wide Web, May 2007.

[29] BrowserObject™ .NET, http://www.browserobject.com/.

[30] Protect yourself from phishing scams, The PhishGuru, Carnegie Mellon,
http://phishguru.org/designs/all_phishguru_designs.pdf.

[31] S. Srikwan and M. Jakobsson, Security Cartoons,
http://www.SecurityCartoon.com.

[32] PwdIP-Hash. http://www.cs.ucf.edu/~czou/PwdIP-Hash/.

 10

 11

