Security Analysis of a Cryptographically-Enabled RFID Device

Authors: Stephen Bono, Matthew Green, Adam Stubblefield, Ari Juels, Aviel Rubin, Michael Szydlo
Published: 14th USENIX Security Symposium
Presenter: Gaelen Hadlett
Main Contributions

- Reverse engineered working details of widely used RFID cryptographic device
- Demonstrated exploit for quickly cracking DST keys and spoofing responses
RFID Basics

• Radio-Frequency Identification
• Small objects containing silicon chips and antennas
 • EEPROM for data
• Powered by incoming RF signal
 • Passive or active
Digital Signature Transponders

- Cryptographic functionality
 - Challenge-response protocol
- Unique key identifies device authenticity
- Complex algorithm increase power consumption
- Useful for electronic payments and entry
Related Work

- Reverse engineering
 - Purple cipher
 - RC4
- Key recovery techniques
 - Hellman time-space tradeoff
 - Deep Crack
Research Progression

- Reverse engineer structure of DST
- Determine hidden key of DST
- Simulate challenge-response authentication
Digital Signature Transponder (3)
400 clocks → 10 rounds

400 / 3 clocks

Digital Signature DST40 Algorithm implementation

Dr. Ulrich Kaiser
Texas Instruments Deutschland GmbH
TI DST40 Overview

- Feedback shift register
 - Shifting and logical operation on input
- 40-bit key and challenge
- 24-bit response
- 200 cycles
- Three layers
 - 16 f-boxes
 - 4 g-boxes
 - 1 h-box
Reverse Engineering DST40

- Obtaining single-round output
 - Key string does not change across rounds
 - Challenge string results in small changes
- Use (C,R) pair to determine changes
 - DST40 works as an oracle
- Observe each round from oracle
 - h-boxes output two bits to rightmost challenge registers
 - Established 200 cycles
Reverse Engineering DST40

- All 0’s limits knowledge
- Recover key schedule
 - Key updates every 3 cycles
 - Determined four XOR’ed bits
- Non-zero keys require more tests
 - Guess consecutive pairs correctly
Reverse Engineering DST40

- Uncover Feistel structure
- Unbalanced Feistel
Uncover Bit Network

- Assume boxes output one value
- Test through observation
 - Fix all but two challenge or key bits
 - Determine where bits are routed
- Build tables of f, g, h-boxes outputs
 - Maps inputs to outputs
Cracking the Key

- Implemented in hardware with FPGA array
 - Low cost, faster than software
- Two challenge-responses required
 - Second one to verify
- Keyspace exhausted in 21 hours
 - Hellman time-space tradeoff decreases to 1 hr
Simulation

- Emulated DST challenge request
 - Send request from spoofed authenticator to real DST
- Emulated DST request response
 - Send response from spoofed DST to real authenticator
Significance of Research

- Off-line systems more vulnerable
- Attacks
 - Actively query transponders
 - short range
 - Passively eavesdrop
 - long range
- Fixes
 - Base on standard, public algorithms
 - Longer key length
 - Faraday shield
Strength

- Presented flaw in popular RFID device
- Clear without explaining full details
- Tested in real world environment
Weaknesses

• DST40 relatively weak to start
• Requires valid keys
Future Work

- Power analysis
 - Study power consumption of DST’s
 - Patterns in power usage
- Adi Shamir (SHA-1)
 - Direction antenna and digital oscilloscope
 - Passive monitoring with cellphone
 - Biggest brands complete unprotected