UCF

Stands For Opportunity

CDA6530: Performance Models of Computers and Networks
Chapter 6: Elementary Queuing Theory

Definition

- Queuing system:
- a buffer (waiting room),
- service facility (one or more servers)
a a scheduling policy (first come first serve, etc.)
- We are interested in what happens when a stream of customers (jobs) arrive to such a system
- throughput,
- sojourn (response) time,
- Service time + waiting time
- number in system,
a server utilization, etc.

Terminology

- A/B/c/K queue
- A - arrival process, interarrival time distr.
- B - service time distribution
a C - no. of servers
- K - capacity of buffer
- Does not specify scheduling policy

Standard Values for A and B

- M - exponential distribution (M is for Markovian)
- D - deterministic (constant)
- GI; G - general distribution
- $M / M / 1$: most simple queue
- M/D/1: expo. arrival, constant service time
- M/G/1: expo. arrival, general distr. service time

Some Notations

- C_{n} : custmer $n, n=1,2, \cdots$
- a_{n} : arrival time of C_{n}
- d_{n} : departure time of C_{n}
- $\alpha(\mathrm{t})$: no. of arrivals by time t a $\delta(\mathrm{t})$: no. of departure by time t
- $N(t)$: no. in system by time t - $N(t)=\alpha(t)-\delta(t)$

time
- Average arrival rate (from $\mathrm{t}=0$ to now): - $\lambda_{t}=\alpha(\mathrm{t}) / \mathrm{t}$

Little's Law

- $\gamma(\mathrm{t})$: total time spent by all customers in system during interval ($0, \mathrm{t}$)

$$
\gamma(t)=\sum_{n=1}^{\alpha(t)} \min \left\{d_{n}, t\right\}-a_{n}=\int_{0}^{t} N(s) d s
$$

- T_{t} : average time spent in system during ($0, t$) by customers arriving in $(0, \mathrm{t}) \quad \mathrm{T}_{\mathrm{t}}=\gamma(\mathrm{t}) / \alpha(\mathrm{t})$
- N_{t} : average no. of customers in system during $(0, t)$ - $N_{t}=\gamma(\mathrm{t}) / \mathrm{t}$
- For a stable system, $\mathrm{N}_{\mathrm{t}}=\lambda_{t} \mathrm{~T}_{\mathrm{t}}$
- Remmeber $\lambda_{t}=\alpha(\mathrm{t}) / \mathrm{t}$
- For a long time and stable system
a $\quad N=\lambda T$
- Regardless of distributions or scheduling policy

Utilization Law for Single Server Queue

- $\quad X$: service time, mean $T=E[X]$
- Y : server state, $Y=1$ busy, $Y=0$ idle
- $\quad \rho$: server utilization, $\rho=\mathrm{P}(\mathrm{Y}=1)$
- Little's Law: $N=\lambda E[X]$
- While: $\mathrm{N}=\mathrm{P}(\mathrm{Y}=1) \cdot 1+\mathrm{P}(\mathrm{Y}=0) \cdot 0=\rho$
- Thus Utilization Law:

$$
\rho=\lambda \mathbb{E}[\mathrm{X}]
$$

Q: What if the system includes the queue?

Internet Queuing Delay Introduction

- How many packets in the queue?
- How long a packet takes to go through?

The M/M/1 Queue

- An M/M/1 queue has
- Poisson arrivals (with rate λ)
- Exponential time between arrivals
- Exponential service times (with mean $1 / \mu$, so μ is the "service rate").
- One (1) server
- An infinite length buffer
- The $\mathrm{M} / \mathrm{M} / 1$ queue is the most basic and important queuing model for network analysis

State Analysis of M/M/1 Queue

- N : number of customers in the system a (including queue + server)

- Steady state

- π_{n} defined as $\pi_{n}=\mathrm{P}(\mathrm{N}=\mathrm{n})$
- $\rho=\lambda / \mu$: Traffic rate (traffic intensity)

State transition diagram

$$
Q=\left[\begin{array}{cccc}
-\lambda & \lambda & 0 & \cdots \\
\mu & -(\lambda+\mu) & \lambda & \cdots \\
0 & \mu & -(\lambda+\mu) & \cdots \\
\vdots & \vdots & \vdots &
\end{array}\right.
$$

- we can use $\pi \mathrm{Q}=0$ and $\sum \pi_{i}=1$ \square We can also use balance equation

State Analysis of M/M/1 Queue

- \# of transitions $\rightarrow \stackrel{1}{=}$ \# of transitions \leftarrow

$$
\begin{array}{rc}
\pi_{0} \lambda=\pi_{1} \mu & \Rightarrow \pi_{1}=\rho \pi_{0} \\
\pi_{1} \lambda=\pi_{2} \mu & \Rightarrow \pi_{2}=\rho^{2} \pi_{0} \\
\vdots & \vdots \\
\pi_{n-1} \lambda=\pi_{n} \mu & \Rightarrow \pi_{n}=\rho^{n} \pi_{0}
\end{array}
$$

π_{n} are probabilities:

$$
\sum_{i=0}^{\infty} \pi_{i}=1
$$

$$
\Rightarrow \quad \pi_{0}=1-\rho
$$

$\rho=1-\pi_{0}$: prob. the server is working (why p is called "server utilization")

State Analysis of M/M/1 Queue

- N: avg. \# of customers in the system

$$
E[N]=\sum_{k=1}^{\infty} k \pi_{k}=\pi_{0} \sum_{k=1}^{\infty} k \rho^{k}=\frac{\rho}{1-\rho}
$$

M/M/1 Waiting Time

व X_{n} : service time of n-th customer, $X_{n}=s$ where X is exponential rv

- W_{n} : waiting time of n -th customer
\square Not including the customer's service time
- T_{n} : sojourned time $T_{n}=W_{n}+X_{n}$
a When $\rho<1$, steady state solution exists and $\mathrm{X}_{\mathrm{n}}, \mathrm{W}_{\mathrm{n}}, \mathrm{T}_{\mathrm{n}} \rightarrow \mathrm{X}, \mathrm{W}, \mathrm{T}$
-
- Q: E[W]?

State Analysis of M/M/1 Queue

- W: waiting time for a new arrival

$$
W=X_{1}+X_{2}+\cdots+X_{n-1}+R
$$

X_{i} : service time of i-th customer
$R:$ remaining service time of the customer in service Exponential r.v. with mean $1 / \mu$ due to memoryless property of expo. Distr.

$$
E[W]=E[(N-1) X]+E[R]=E[N] \cdot E[X]
$$

- T: sojourn (response) time

$$
E[T]=\frac{1}{\mu}+E[W]=\frac{1}{\mu-\lambda}
$$

Alternative Way for Sojourn Time Calculation

- We know that $E[N]=\rho /(1-\rho)$
- We know arrival rate λ
- Then based on Little's Law
\square $N=\lambda T$

$$
\rightarrow \quad \mathrm{E}[\mathrm{~T}]=\mathrm{E}[\mathrm{~N}] / \lambda=1 /(\mu-\lambda)
$$

M/M/1 Queue Example

- A router's outgoing bandwidth is 100 kbps
- Arrival packet's number of bits has expo. distr. with mean number of 1 kbits
- Poisson arrival process: 80 packets/sec
- How many packets in router expected by a new arrival?
- What is the expected waiting time for a new arrival?
- What is the expected access delay (response time)?
- What is the prob. that the server is idle?
- What is $P(N>5)$?
- Suppose you can increase router bandwidth, what is the minimum bandwidth to support avg. access delay of 20 ms ?

Sojourn Time Distribution

- T's pdf is denoted as $\mathrm{f}_{\mathrm{T}}(\mathrm{t}), \mathrm{t} \geq 0$
- $T=X_{1}+X_{2}+\cdots+X_{n}+X$
a Given there are $\mathrm{N}=\mathrm{n}$ customers in the system \square Then, T is sum of $n+1$ exponential distr.
$\square \mathrm{T}$ is $(\mathrm{n}+1)$-order Erlang distr.
- When conditioned on n , the pdf of $\mathrm{T}(\mathrm{n}+1$ order Erlang) is denoted as $\mathrm{f}_{\mathrm{T} \mid \mathrm{N}}(\mathrm{t} \mid \mathrm{n})$

$$
f_{T \mid N}(t \mid n)=\frac{\mu(\mu t)^{n} e^{-\mu t}}{n!}
$$

Sojourn Time Distribution

- Remove condition $\mathrm{N}=\mathrm{n}$:
- Remember $\mathrm{P}(\mathrm{N}=\mathrm{n})=\pi_{n}=(1-\rho) \rho^{n}$

$$
\begin{aligned}
f_{T}(t) & =f_{T \mid 0}(t \mid 0) \pi_{0}+f_{T \mid 1}(t \mid 1) \pi_{1}+\cdots \\
f_{T}(t) & =\sum_{n=0}^{\infty}(1-\rho) \rho^{n} \frac{\mu(\mu t)^{n} e^{-\mu t}}{n!} \\
& =(1-\rho) \mu e^{-\mu t} \sum_{n=0}^{\infty}(\rho \mu t)^{n} / n! \\
& =(\mu-\lambda) e^{-\mu t} e^{\lambda t} \\
& =(\mu-\lambda) e^{-(\mu-\lambda) t}
\end{aligned}
$$

Thus, T is exponential distr. with rate $\left(\mu^{-\lambda}\right)$

M/M/1/K Queue

- Arrival: Poisson process with rate λ
- Service: exponential distr. with rate μ
- Finite capacity of K customers
a Customer arrives when queue is full is rejected
- Model as B-D process
${ }_{\square} N(t)$: no. of customers at time t
- State transition diagram

Calculation of π_{o}

- Balance equation:

$$
\therefore \pi_{i}=\rho \pi_{i-1}=\rho^{i} \pi_{0}, \quad \mathrm{i}=1, \cdots, \mathrm{~K}
$$

- If $\lambda \neq \mu$:

$$
\sum_{i=0}^{K} \pi_{i}=\pi_{0} \sum_{i=0}^{K} \rho^{i}=\pi_{0} \frac{1-\rho^{K+1}}{1-\rho}
$$

$$
\sum_{i=0}^{K} \pi_{i}=1 \Rightarrow \quad \pi_{0}=\frac{1-\rho}{1-\rho^{K+1}}
$$

- If $\lambda=\mu: \sum_{i=0}^{K} \pi_{i}=\pi_{0} \sum_{i=0}^{K} \rho^{i}=(K+1) \pi_{0}$

$$
\pi_{i}=1 /(K+1), i=0, \cdots, K
$$

$E[N]$

- If $\lambda \neq \mu$:

$$
\begin{aligned}
E[N] & =\sum_{i=0}^{K} i \pi_{i} \\
& =\frac{1-\rho}{1-\rho^{K+1}} \sum_{i=0}^{K} \cdot i \cdot \rho^{i}
\end{aligned}
$$

- If $\lambda=\mu$:

$$
\begin{aligned}
E[N] & =\sum_{i=0}^{K} i \pi_{i}=\frac{1}{K+1} \sum_{i=0}^{K} i \\
& =\frac{1}{K+1} \frac{K(K+1)}{2}=\frac{K}{2}
\end{aligned}
$$

Throughput

- Throughput?
\square When not idle $=\mu$
\square When idle $=0$
- Throughput $=\left(1-\pi_{0}\right) \mu+\pi_{0} \cdot 0$
\square When not full $=\lambda$ (arrive pass)
\square When full $=0$ (arrive drop)
\square Prob. Buffer overflow $=\pi_{\mathrm{K}}$
\square Throughput $=\left(1-\pi_{K}\right) \lambda+\pi_{K^{*}} 0$

Sojourn Time

- One way: $T=X_{1}+X_{2}+\cdots+X_{n}$ if there are n customers in ($\mathrm{n} \leq \mathrm{K}$)
- Doable, but complicated
- Another way: Little's Law
- $\quad N=\lambda T$
- The λ means actual throughput

$$
E[T]=\frac{E[N]}{\text { throughput }}=\frac{E[N]}{\left(1-\pi_{0}\right) \mu}
$$

M/M/c Queue

- c identical servers to provide service
- Model as B-D process, N(t): no. of
customers
- State transition diagram:

- Balance equation:

$$
\begin{cases}\lambda \pi_{i-1} & =i \mu \pi_{i}, i \leq c, \\ \lambda \pi_{i-1} & =c \mu \pi_{i}, i>c\end{cases}
$$

- Solution to balance equation:

$$
\pi_{i}= \begin{cases}\frac{\rho^{i}}{i!} \pi_{0}, & 0 \leq i \leq c \\ \frac{\rho^{i}}{c!c^{i-c}} \pi_{0}, & c<i\end{cases}
$$

- Prob. a customer has to wait (prob. of queuing)

$$
P(\text { queuing })=P(\text { wait })=\sum_{n=c}^{\infty} \pi_{n}
$$

M/M/ ∞ Queue

- Infinite server (delay server)
- Each user gets its own server for service
- No waiting time

- Balance equation:

$$
\begin{aligned}
\lambda \pi_{i-1} & =i \mu \pi_{i}, \quad i=0,1, \cdots \\
\pi_{i} & =\frac{\rho^{i}}{i!} \pi_{0}=\frac{\rho^{i}}{i!} e^{-\rho} \text { why? }
\end{aligned}
$$

$$
\begin{aligned}
E[N] & =\sum_{i=0}^{\infty} i \pi_{i}=\sum_{i=1}^{\infty} \frac{i \rho^{i} e^{-\rho}}{i!} \\
& =\rho e^{-\rho} \sum_{i=1}^{\infty} \frac{\rho^{i-1}}{(i-1)!}=\rho \\
E[T] & =\frac{E[N]}{\lambda}=\frac{1}{\mu} \quad \text { Why? }
\end{aligned}
$$

PASTA property

- PASTA: Poisson Arrivals See Time Average
- Meaning: When a customer arrives, it finds the same situation in the queueing system as an outside observer looking at the system at an arbitrary point in time.
- $N(t)$: system state at time t
- Poisson arrival process with rate λ
- $M(t)$: system at time t given that an arrival occurs in the next moment in $(t, t+\Delta t)$

$$
\begin{aligned}
& P(M(t)=n)=P(N(t)=n \text { arrival in }(t, t+\Delta t)) \\
& =\frac{P(N(t)=n, \text { arrival in }(t, t+\Delta t))}{P(\text { arrival in }(t, t+\Delta t))} \\
& =\frac{P(N(t)=n) P(\text { arrival in }(t, t+\Delta t))}{P(\text { arrival in }(t, t+\Delta t))} \\
& =P(N(t)=n)
\end{aligned}
$$

- If not Poisson arrival, then not correct

