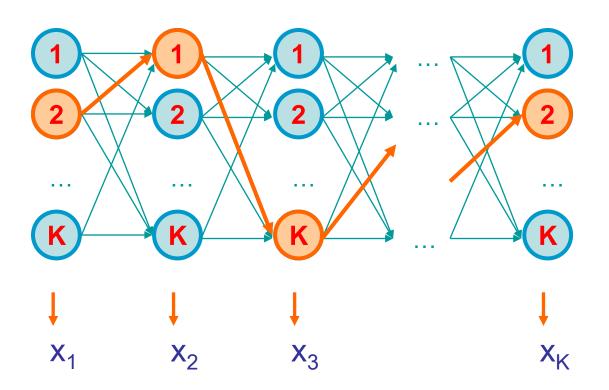
Hidden Markov Model

- Most pages of the slides are from lecture notes from Prof. <u>Serafim Batzoglou</u>'s course in Stanford:
 - CS 262: Computational Genomics (Winter 2004)
 - <u>http://ai.stanford.edu/~serafim/cs262/</u>

Hidden Markov Models



Applications of hidden Markov models

- HMMs can be applied in many fields where the goal is to recover a data sequence that is not immediately observable (but other data that depends on the sequence is).
 - Cryptanalysis
 - Speech recognition
 - Machine translation
 - Partial discharge
 - Gene prediction
 - Alignment of bio-sequences

* reference: wikipiedia.com

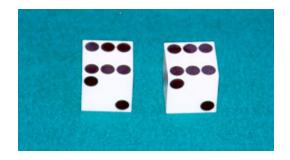
Example: The Dishonest Casino

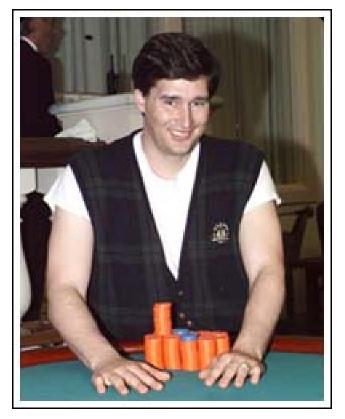
A casino has two dice:

- Fair die
 - P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6
- Loaded die
 P(1) = P(2) = P(3) = P(4) = P(5) = 1/10
 P(6) = 1/2
- Casino player switches back-&-forth between fair and loaded die once roughly around every 20 turns

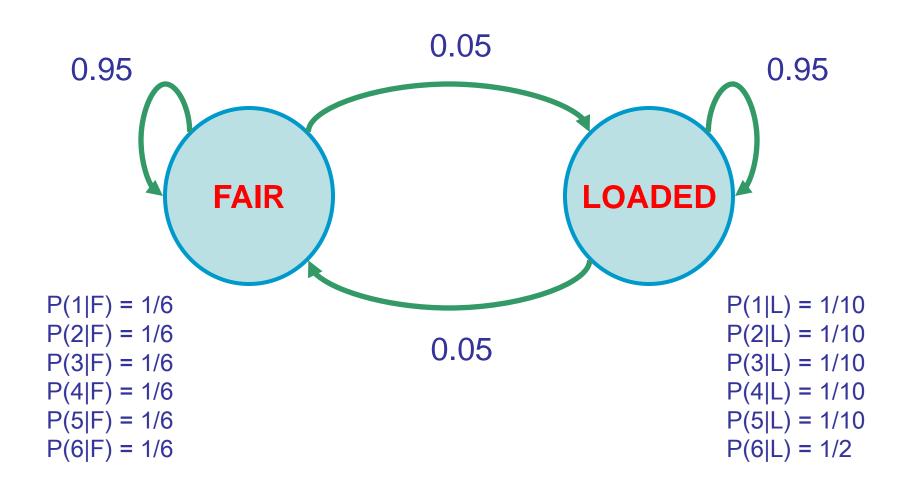
Game:

- 1. You bet \$1
- 2. You roll (always with a fair die)
- 3. Casino player rolls (maybe with fair die, maybe with loaded die)
- 4. Highest number wins \$2





The dishonest casino model



Question #1 – Evaluation

GIVEN

A sequence of rolls by the casino player

QUESTION

How likely is this sequence, given our model of how the casino works?

This is the **EVALUATION** problem in HMMs

Question # 2 – Decoding

GIVEN

A sequence of rolls by the casino player

QUESTION

What portion of the sequence was generated with the fair die, and what portion with the loaded die?

This is the **DECODING** question in HMMs

Question # 3 – Learning

GIVEN

A sequence of rolls by the casino player

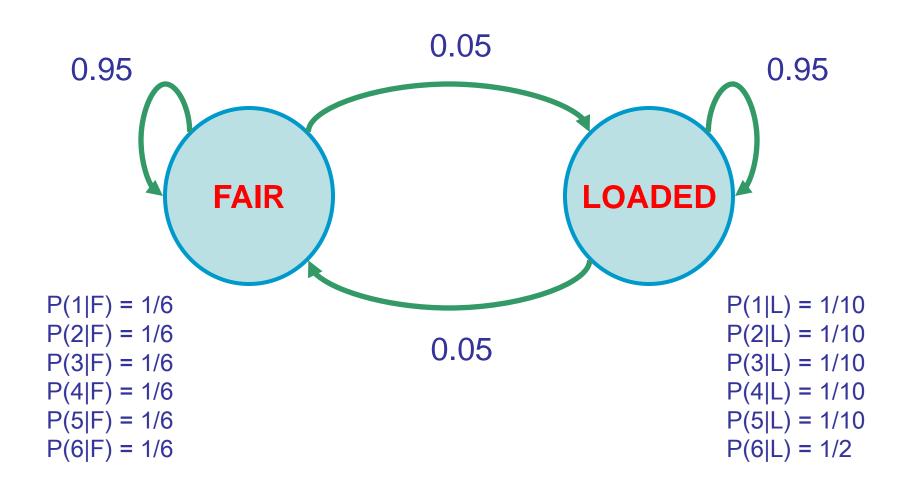
QUESTION

Model parameters:

How "loaded" is the loaded die? How "fair" is the fair die? How often does the casino player change from fair to loaded, and back?

This is the **LEARNING** question in HMMs (build model in training)

The dishonest casino model



Definition of a hidden Markov model

Definition: A hidden Markov model (HMM)

- Alphabet $\Sigma = \{ b_1, b_2, ..., b_M \}$ (observable symbols)
- Set of states Q = { 1, ..., K } (hidden states)
- Transition probabilities between any two states

a_{ii} = transition prob from state i to state j

 $a_{i1} + ... + a_{iK} = 1$, for all states i = 1...K

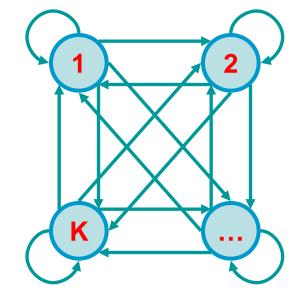
• Start probabilities a_{0i}

 $a_{01} + ... + a_{0K} = 1$

Emission probabilities within each state

$$e_k(b_i) = P(x = b_i \mid \pi = k)$$

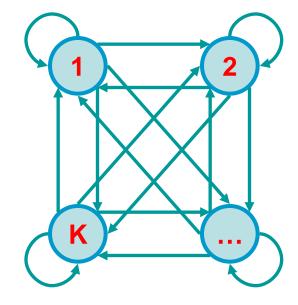
 $e_i(b_1) + ... + e_i(b_M) = 1$, for all states i = 1...K



A Hidden Markov Model is memory-less

At each time step t, the only thing that affects future states is the current state π_t

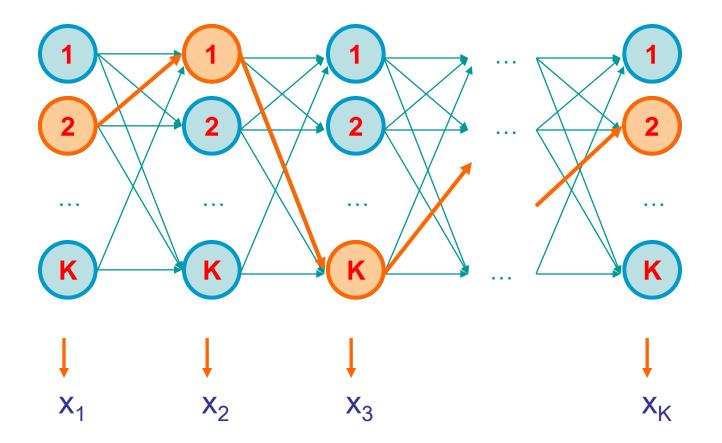
 $P(\pi_{t+1} = k \mid \text{``whatever happened so far''}) = P(\pi_{t+1} = k \mid \pi_1, \pi_2, ..., \pi_t, x_1, x_2, ..., x_t) = P(\pi_{t+1} = k \mid \pi_t)$



A parse of a sequence

Given a sequence $x = x_1 \dots x_N$,

A <u>parse</u> of x is a sequence of states $\pi = \pi_1, \dots, \pi_N$



Likelihood of a parse

Given a sequence $x = x_1, \dots, x_N$ and a parse $\pi = \pi_1, \dots, \pi_N$,

To find how likely is the parse: (given our HMM)

$$P(\mathbf{x}, \pi) = P(\mathbf{x}_{1}, ..., \mathbf{x}_{N}, \pi_{1}, ..., \pi_{N}) = P(\mathbf{x}_{N}, \pi_{N} \mid \pi_{N-1}) P(\mathbf{x}_{N-1}, \pi_{N-1} \mid \pi_{N-2}) P(\mathbf{x}_{2}, \pi_{2} \mid \pi_{1}) P(\mathbf{x}_{1}, \pi_{1}) = P(\mathbf{x}_{N} \mid \pi_{N}) P(\pi_{N} \mid \pi_{N-1}) P(\mathbf{x}_{2} \mid \pi_{2}) P(\pi_{2} \mid \pi_{1}) P(\mathbf{x}_{1} \mid \pi_{1}) P(\pi_{1}) = a_{0\pi 1} a_{\pi 1 \pi 2} a_{\pi N-1\pi N} e_{\pi 1}(\mathbf{x}_{1}) e_{\pi N}(\mathbf{x}_{N})$$

Example: the dishonest casino

Let the sequence of rolls be:

x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4

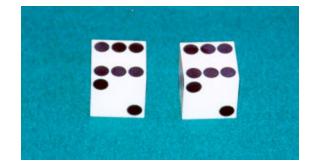
Then, what is the likelihood of

 π = Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair?

(say initial probs $a_{0Fair} = \frac{1}{2}$, $a_{oLoaded} = \frac{1}{2}$)

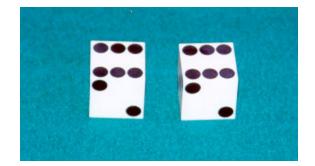
 $\frac{1}{2} \times P(1 | Fair) P(Fair | Fair) P(2 | Fair) P(Fair | Fair) \dots P(4 | Fair) =$

 $\frac{1}{2} \times (1/6)^{10} \times (0.95)^9 = .0000000521158647211 = 5.21 \times 10^{-9}$



Example: the dishonest casino

So, the likelihood the die is fair in all this run is just 5.21×10^{-9}



OK, but what is the likelihood of

 π = Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded?

 $\frac{1}{2} \times P(1 \mid Loaded) P(Loaded \mid Loaded) \dots P(4 \mid Loaded) =$

 $\frac{1}{2} \times (1/10)^8 \times (1/2)^2 (0.95)^9 = .0000000078781176215 = 7.9 \times 10^{-10}$

Therefore, it is after all 6.59 times more likely that the die is fair all the way, than that it is loaded all the way.

Example: the dishonest casino

Let the sequence of rolls be:

x = 1, 6, 6, 5, 6, 2, 6, 6, 3, 6

Now, what is the likelihood $\pi = F, F, ..., F$?

 $\frac{1}{2} \times (1/6)^{10} \times (0.95)^9 = 0.5 \times 10^{-9}$, same as before

What is the likelihood

 $\pi = L, L, ..., L?$

 $\frac{1}{2} \times (1/10)^4 \times (1/2)^6 (0.95)^9 = .00000049238235134735 = 0.5 \times 10^{-7}$

So, it is 100 times more likely the die is loaded

The three main questions on HMMs

- Evaluation

 GIVEN a HMM M, and a sequence x, FIND Prob[x | M]
 Decoding
 GIVEN a HMM M, and a sequence x,
 - FIND the sequence π of states that maximizes P[x, π | M]

3. Learning

- GIVEN a HMM M, with unspecified transition/emission probs., and a sequence x,
- FIND parameters $\theta = (e_i(.), a_{ij})$ that maximize P[x | θ]