
CDA6530: Performance Models of Computers and Networks

Chapter 9: Discrete Event Simulation

Example --- Three callers problem

Problem Description
 Two lines services three callers. Each caller makes calls that are

exponentially distributed in length, with mean 1/¹. If both lines are
in service by two callers and the third one requests service, the
third caller will be blocked. A caller whose previous attempt to make
a call was successful has an exponentially distributed time before
attempting the next call, with rate ¸. A caller whose previous call
attempt was blocked is impatient and tries to call again at twice that
rate (2¸), also according to exponential distribution. The callers
make their calls independent of one another.

 Question: considering callers’ state changes. How to
model it?

2

Analysis Results
 Steady state prob: ¼

 Matlab code:
Q = [………];
Pi = zeros(1, 6);
Q_m = [Q(:, 1:5) ones(6,1)];
B = [0 0 0 0 0 1];
Pi = B * inv(Q_m);

3

¼Q = 0

¼1 = 1

Simulation based on
Markov Model

4

Pre Simulation
 Strictly refer to the state transition diagram

 Remember current state: currentState
 Determine next state: nextState

 This is a continuous-time Markov Chain
 Method #1:

 State duration time (for the transition node in the
right):
 Exp. distr. with rate (¸ + ¹)
 Determine the next transition event time

 At the time of transition event:
 Use discrete r.v. simulation method to determine nextState:

 Transit first path with prob. of ¸/(¸+¹)
 Transit second path with prob. of ¹/(¸+¹)

5

¸

¹

Pre Simulation
 Each node in the Markov chain has different # of

outgoing jumps, how to find the combined
outgoing rate? (¸ + ¹) in the right graph

 This combined rate is the diagonal entry value in Q matrix,
check the three caller example:

6

¸

¹

Pre Simulation
 Method #2:

 Should jump to 1 by exp. distr. Time with rate
¸ find jump time t1

 Should jump to 2 by exp. distr. Time with rate
¹ find jump time t2

 If t1 < t2, the actual jump is to 1 at even time t1
 If t2 < t1, the actual jump is to 2 at even time t2

7

¸

¹

1

2

Pre Simulation
 Events:

 Transition out from currentState to nextState
 Event List:

 EL ={ ttran }: time of the next transition event
 Simpler than queuing systems

 Output:
 Tran(i): event time of the i-th transition
 State(i): system’s state after i-th transition

8

Pre Simulation
 Termination condition:

 N: # of transitions we simulate
 You can use various termination conditions

 Simulation end time
 Minimum # of times each state has gone through
 ….

9

Simulation
Set stateN, initState, N, lambda, mu, Q
currentState = initState; currentTime = 0;
for i=1:N, % simulate N transitions
 % first, simulation currentState during time (next event time)
 % Given that we know the Markov model and the Q matrix

outRate = - Q(currentState, currentState);
Tran(i) = currentTime - log(rand)/outRate; % exp. distr. with rate of outRate
% next, determine which state transits to?
U = rand;
vector = Q(currentState,:); vector(currentState) = 0;
for j=1:stateN,
 if U <= sum(vector(1:j))/sum(vector),
 nextState = j; break;
 end
end
State(i) = nextState;
currentState = nextState; currentTime = Tran(i); % prepare for next round

end

10

Post Simulation Analysis
 Objective:

 Compute Pi based on simulation
 Pi(k) = time spent in state k
 overall simulation time

 Overall simulation time = Tran(N)
 Time spent in state k: Time(k)

Time = zeros(6,1); Time(initState) = Tran(1);
for k=1:6,
 for i=1:N-1,
 if State(i) == k,
 Time(k) = Time(k) + Tran(i+1) - Tran(i);
 end
 end
end

 11

Simulation Results

N=100

12

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Theoretical
Simulation

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Theoretical
Simulation

N=5000
 Shows that our simulation is

consistent with analytical result

Realistic Simulation
With physical meaning

13

Problem for the Simulation Above

 The simulation actually simulates
continuous-time Markov Chain only
 Only based on Markov model
 The simulation does not really simulate the

physical world events
 Three callers? What’s their status?
 Two service lines?

 More accurate & realistic simulation
 Simulate the physical entities

actions/behaviors/events

14

Pre Simulation
 What physical entities should we consider?

 Should directly correspond to physical entities
 Should uniquely define system status

 There are two types of entities
 Two service lines
 Three callers

 If we do not care which service line is
working
 We should treat three callers as simulation

nodes

15

Pre Simulation
 Each caller’s data:

 status: ‘patient’, ‘impatient’, ‘calling’
 Caller[3]; each entry = ‘P’ or ‘I’ or ‘C’

 In C programming, you can use ‘enum’ to define such variable

 nextT: event time for its next action
 What “next action” could be?

 Finishing phone call
 When current status is ‘calling’

 Making phone call attempt
 When current status is ‘idle’ or ‘impatient’

16

Pre Simulation
 Event list:

 Each caller only has one next event/action
 Therefore, Event list should be EventList[3]

 Three nodes’ next action time
 We do not really need to save nextT in caller data since it is

saved in EventList

17

Pre Simulation
 Next event: the smallest time in EventList

 Suppose it is EventList[k]
 Means caller k does the next action first

 Update system at this time EventList[k]
 Move simulation time to this event time

 currentTime = EventList(k);
 Check caller k: what’s its action?
 Regenerate the next event time nextT for caller k

 Based on its next status: calling? Patient? Impatient?
 We need to know the availability of those two service

lines in order to determine this
 serveLineNum: # of lines that are using

 Update EventList[k] = nextT

18

Check caller k: what’s its action?
 Based on its current status and availability of those two

service lines:
 Caller(k)= patient waiting, or impatient waiting?

 The event is making phone call
 If serveLineNum <2, caller k jumps to ‘Calling’ status
 EventList(k) = currentTime + expo distr. time with rate ¹
 If serveLineNum =2, caller k jumps to ‘impatient waiting’ status
 EventList(k) = currentTime + expo distr. time with rate 2¸

 Caller(k)= calling?
 The event is finishing phone call
 caller k jumps to ‘patient waiting’ status
 EventList(k) = currentTime + expo distr. time with rate ¸

19

Pre Simulation
 Update output data:

 Tran(i) = EventList[k]
 State(i): system’s state after this node action

 In order to compare with analytical results
 If we care about each caller’s behavior:

 Tran(i) = EventList[k]
 ActCaller(i) = k

 The k-th caller acts at time Tran(i)
 CallerState(i) = Caller(k)

 k-th caller’s state after the i-th event
 The other callers do not change their state after this event

 20

Simulation Pseudo Code
Initialize N, \lambda, \mu, State[], Tran[]
Initialize initState and Caller[3]; currentTime = 0;
Initialize EventList[] (use corresponding distribution to generate)
For i=1:N,
 Find the smallest time tick in Eventlist[] index is k
 % caller k’s action is the event we simulate now
 currentTime = EventList[k];
 Update caller k’s status;
 Update how many phone lines are used
 Generate caller k’s next action time, assign to EventList[k]
 % Update output data
 Tran(i) = currentTime;
 State(i) = ? (case statement to decide based on state definition)
End

21

 State(i) = ? (case statement to decide based on
state definition)

 E.g.:
 [C,C,I] state 3
 [I,C,C] state 3
 [P,C,I] state 4
 …

22

Simulation Compared with Analysis

23

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Theoretical
Simulation

N=1000

Conclusion
 The realistic simulation uses minimal amount of

knowledge of statistical analysis
 Realistic simulation directly simulate real world

entities actions and behaviors
 The model-based simulation is still useful

 Better than no simulation
 Applicable for all systems described by one model
 Can study system’s performance when there is no

analytical results
 Sometime realistic simulation is too complicated or

take too long to do
 We need to decide which simulation to conduct

24

	CDA6530: Performance Models of Computers and Networks��Chapter 9: Discrete Event Simulation Example --- Three callers problem
	Problem Description
	Analysis Results
	Slide Number 4
	Pre Simulation
	Pre Simulation
	Pre Simulation
	Pre Simulation
	Pre Simulation
	Simulation
	Post Simulation Analysis
	Simulation Results
	Slide Number 13
	Problem for the Simulation Above
	Pre Simulation
	Pre Simulation
	Pre Simulation
	Pre Simulation
	Check caller k: what’s its action?
	Pre Simulation
	Simulation Pseudo Code
	Slide Number 22
	Simulation Compared with Analysis
	Conclusion

