

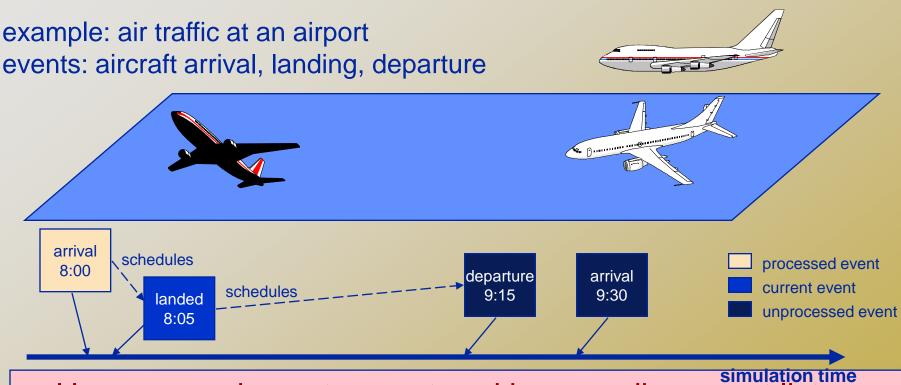
CDA6530: Performance Models of Computers and Networks

Chapter 9: Statistical Simulation ---Discrete Event Simulation (DES)

Time Concept

- physical time: time in the physical system
 - Noon, Oct. 14, 2008 to noon Nov. 1, 2008
- simulation time: representation of physical time within the simulation
 - floating point values in interval [0.0, 17.0]
 - Example: 1.5 represents one and half hour after physical system begins simulation
- wallclock time: time during the execution of the simulation, usually output from a hardware clock
 - 8:00 to 10:23 AM on Oct. 14, 2008

Discrete Event Simulation Computation



Unprocessed events are stored in a pending event list

Events are processed in time stamp order

From: http://www.cc.gatech.edu/classes/AY2004/cs4230_fall/lectures/02-DES.ppt

DES: No Time Loop

- Discrete event simulation has no time loop
 - There are events that are scheduled.
 - At each run step, the next scheduled event with the *lowest* time schedule gets processed.
 - The current time is then that time, the time when that event is supposed to occur.
- Accurate simulation compared to discretetime simulation
- Key: We have to keep the list of scheduled events sorted (in order)

UCF

Variables

- Time variable t
 - Simulation time
 - Add time unit, can represent physical time
- Counter variables
 - Keep a count of times certain events have occurred by time t
- System state (SS) variables
- We focus on queuing systems in introducing DES

Interlude: Simulating non-homogeneous Poisson process for first T time

- Nonhomogeneous Poisson process:
 - □ Arrival rate is a variable $\lambda(t)$
 - □ Bounded: $\lambda(t) < \lambda$ for all t < T
- Thinning Method:
 - 1. t=0, l=0
 - 2. Generate a random number U
 - 3. $t=t-ln(U)/\lambda$. If t>T, stop.
 - 4. Generate a random number U
 - If $U \le \lambda(t)/\lambda$, set I=I+1, S(I)=t
 - 6. Go to step 2
- Final I is the no. of events in time T
- □ S(1), ···, S(I) are the event times
- Remove step 4 and condition in step 5 for homogeneous Poisson

Subroutine for Generating T_s

Nonhomogeneous Poisson arrival

- T_s: the time of the first arrival after time s.
- 1. Let t =s
- Generate U
- 3. Let $t=t-ln(U)/\lambda$
- 4. Generate U
- If $U \le \lambda(t)/\lambda$, set T_s =t and stop
- 6. Go to step 2

Subroutine for Generating T_s

Homogeneous Poisson arrival

- T_s: the time of the first arrival after time s.
- 1. Let t = s
- Generate U
- 3. Let $t=t-ln(U)/\lambda$
- 4. Set T_s=t and stop

M/G/1 Queue

- Variables:
 - Time: t
 - Counters:
 - N_A: no. of arrivals by time t
 - N_D: no. of departures by time t
 - □ System state: n no. of customers in system at t
 - eventNum: counter of # of events happened so far
- Events:
 - Arrival, departure (cause state change)
 - Event list: EL = t_A, t_D
 - t_A: the time of the next arrival after time t
 - T_D: departure time of the customer presently being served

Output:

- A(i): arrival time of customer i
- D(i): departure time of customer I
- SystemState, SystemStateTime vector:
 - SystemStateTime(i): i-th event happening time
 - SystemState(i): the system state, # of customers in system, right after the i-th event.

Initialize:

- \square Set $t=N_A=N_D=0$
- □ Set SS n=0
- □ Generate T_0 , and set $t_A = T_0$, $t_D = \infty$
- Service time is denoted as r.v. Y

$$\Box t_D = Y + T_0$$

- □ If $(t_A \le t_D)$ (Arrival happens next)
 - \Box t=t_A (we move along to time t_A)
 - \square $N_A = N_A + 1$ (one more arrival)
 - □ n= n + 1 (one more customer in system)
 - \Box Generate T_t , reset $t_A = T_t$ (time of next arrival)
 - If (n=1) generate Y and reset t_D=t+Y (system had been empty before without t_D determined so we need to generate the service time of the new customer)

Collect output data:

- \square A(N_A)=t (customer N_A arrived at time t)
- eventNum = eventNum + 1;
- SystemState(eventNum) = n;
- SystemStateTime(eventNum) = t;

```
If (t<sub>D</sub><t<sub>A</sub>) (Departure happens next)
t = t<sub>D</sub>
n = n-1 (one customer leaves)
N<sub>D</sub> = N<sub>D</sub>+1 (departure number increases 1)
If (n=0) t<sub>D</sub>=∞; (empty system, no next departure time)
else, generate Y and t<sub>D</sub>=t+Y (why?)
```

Collect output data:

- $\Box D(N_D)=t$
- eventNum = eventNum + 1;
- SystemState(eventNum) = n;
- SystemStateTime(eventNum) = t;

Summary

- Analyzing physical system description
- Represent system states
- What events?
- Define variables, outputs
- Manage event list
- Deal with each top event one by one