Definition

- Queuing system:
 - a buffer (waiting room),
 - service facility (one or more servers)
 - a scheduling policy (first come first serve, etc.)

- We are interested in what happens when a stream of customers (jobs) arrive to such a system
 - throughput,
 - sojourn (response) time,
 - Service time + waiting time
 - number in system,
 - server utilization, etc.
Terminology

- A/B/c/K queue
 - A - arrival process, interarrival time distr.
 - B - service time distribution
 - c - no. of servers
 - K - capacity of buffer

- Does not specify scheduling policy
Standard Values for A and B

- M - exponential distribution (M is for Markovian)
- D - deterministic (constant)
- GI; G - general distribution

- M/M/1: most simple queue
- M/D/1: expo. arrival, constant service time
- M/G/1: expo. arrival, general distr. service time
Some Notations

- C_n: customer n, $n=1,2,\ldots$
- a_n: arrival time of C_n
- d_n: departure time of C_n
- $\alpha(t)$: no. of arrivals by time t
- $\delta(t)$: no. of departures by time t
- $N(t)$: no. in system by time t
 - $N(t)=\alpha(t)-\delta(t)$
Average arrival rate (from t=0 to now):
\[\lambda_t = \frac{\alpha(t)}{t} \]
Little’s Law

- $\gamma(t)$: total time spent by all customers in system during interval $(0, t)$
 \[
 \gamma(t) = \sum_{n=1}^{\alpha(t)} \min\{d_n, t\} - a_n = \int_0^t N(s) ds
 \]

- T_t: average time spent in system during $(0, t)$ by customers arriving in $(0, t)$
 \[T_t = \frac{\gamma(t)}{\alpha(t)}\]

- N_t: average no. of customers in system during $(0, t)$
 - $N_t = \frac{\gamma(t)}{t}$

- For a stable system, $N_t = \lambda_t T_t$
 - Remember $\lambda_t = \frac{\alpha(t)}{t}$

- For a long time and stable system
 \[N = \lambda T\]

- Regardless of distributions or scheduling policy
Utilization Law for Single Server Queue

- \(X \): service time, mean \(T = E[X] \)
- \(Y \): server state, \(Y = 1 \) busy, \(Y = 0 \) idle
- \(\rho \): server utilization, \(\rho = P(Y=1) \)
- Little’s Law: \(N = \lambda E[X] \)
- While: \(N = P(Y=1) \cdot 1 + P(Y=0) \cdot 0 = \rho \)
- Thus Utilization Law:
 \[\rho = \lambda E[X] \]

Q: What if the system includes the queue?
Internet Queuing Delay Introduction

- How many packets in the queue?
- How long a packet takes to go through?
The M/M/1 Queue

- An M/M/1 queue has
 - Poisson arrivals (with rate λ)
 - Exponential time between arrivals
 - Exponential service times (with mean $1/\mu$, so μ is the “service rate”).
 - One (1) server
 - An infinite length buffer

- The M/M/1 queue is the most basic and important queuing model for network analysis
State Analysis of M/M/1 Queue

- N : number of customers in the system
 - (including queue + server)
 - Steady state
- π_n defined as $\pi_n = P(N=n)$
- $\rho = \frac{\lambda}{\mu}$: Traffic rate (traffic intensity)
we can use \(\pi Q = 0 \) and \(\sum \pi_i = 1 \)

We can also use balance equation
State Analysis of M/M/1 Queue

- \# of transitions \rightarrow = \# of transitions \leftarrow

\[\pi_0 \lambda = \pi_1 \mu \Rightarrow \pi_1 = \rho \pi_0 \]
\[\pi_1 \lambda = \pi_2 \mu \Rightarrow \pi_2 = \rho^2 \pi_0 \]
\[\vdots \]
\[\pi_{n-1} \lambda = \pi_n \mu \Rightarrow \pi_n = \rho^n \pi_0 \]

\(\pi_n \) are probabilities:

\[\sum_{i=0}^{\infty} \pi_i = 1 \]

\[\Rightarrow \pi_0 = 1 - \rho \]

\(\rho = 1 - \pi_0 \): prob. the server is working (why \(\rho \) is called "server utilization")
State Analysis of M/M/1 Queue

- N: avg. # of customers in the system

$$E[N] = \sum_{k=1}^{\infty} k\pi_k = \pi_0 \sum_{k=1}^{\infty} k\rho^k = \frac{\rho}{1 - \rho}$$

Graph showing the relationship between ρ and the number of packets in the queue.
M/M/1 Waiting Time

- X_n: service time of n-th customer, $X_n = X$
- W_n: waiting time of n-th customer
 - Not including the customer’s service time
- T_n: sojourned time $T_n = W_n + X_n$
- When $\rho < 1$, steady state solution exists and $X_n, W_n, T_n \to X, W, T$

Q: $E[W]$?
State Analysis of M/M/1 Queue

- **W**: waiting time for a new arrival

\[W = X_1 + X_2 + \cdots + X_{n-1} + R \]

- **X_i**: service time of i-th customer
- **R**: remaining service time of the customer in service
 Exponential r.v. with mean 1/\(\mu \) due to memoryless property of expo. Distr.

\[E[W] = E[(N - 1)X] + E[R] = E[N] \cdot E[X] \]

- **T**: sojourn (response) time

\[E[T] = \frac{1}{\mu} + E[W] = \frac{1}{\mu - \lambda} \]
Alternative Way for Sojourn Time Calculation

- We know that $E[N] = \frac{\rho}{1-\rho}$
- We know arrival rate λ
- Then based on Little’s Law
 $$N = \lambda T$$

 $$\Rightarrow E[T] = \frac{E[N]}{\lambda} = \frac{1}{\mu - \lambda}$$
A router’s outgoing bandwidth is 100 kbps
Arrival packet’s number of bits has expo. distr. with mean number of 1 kbits
Poisson arrival process: 80 packets/sec
How many packets in router expected by a new arrival?
What is the expected waiting time for a new arrival?
What is the expected access delay (response time)?
What is the prob. that the server is idle?
What is P(N > 5)?
Suppose you can increase router bandwidth, what is the minimum bandwidth to support avg. access delay of 20ms?
Sojourn Time Distribution

- T’s pdf is denoted as $f_T(t)$, $t \geq 0$
- $T = X_1 + X_2 + \cdots + X_n + X$
 - Given there are $N=n$ customers in the system
 - Then, T is sum of $n+1$ exponential distr.
 - T is $(n+1)$-order Erlang distr.
 - When conditioned on n, the pdf of X is denoted as $f_{T|N}(t|n)$

$$f_{T|N}(t|n) = \frac{\mu(\mu t)^n e^{-\mu t}}{n!}$$
Sojourn Time Distribution

- Remove condition N=n:
 - Remember \(P(N=n) = \pi_n = (1-\rho)\rho^n \)

 \[
f_T(t) = f_{T|0}(t|0)\pi_0 + f_{T|1}(t|1)\pi_1 + \cdots
 \]

 \[
f_T(t) = \sum_{n=0}^{\infty} (1 - \rho)\rho^n \mu(\mu t)^n e^{-\mu t} \frac{n!}{n!}
 \]

 \[
 = (1 - \rho)\mu e^{-\mu t} \sum_{n=0}^{\infty} (\rho \mu t)^n / n!
 \]

 \[
 = (\mu - \lambda)e^{-\mu t}e^{\lambda t}
 \]

 \[
 = (\mu - \lambda)e^{-(\mu - \lambda)t}
 \]

 Thus, \(T \) is exponential distr. with rate \(\mu - \lambda \)
M/M/1/K Queue

- **Arrival**: Poisson process with rate λ
- **Service**: exponential distribution with rate μ
- **Finite capacity of K customers**
 - Customer arrives when queue is full is rejected
- **Model as B-D process**
 - $N(t)$: no. of customers at time t
 - State transition diagram
Calculation of π_0

- **Balance equation:**
 - $\pi_i = \rho \pi_{i-1} = \rho^i \pi_0, \ i=0,\cdots, K$
 - If $\lambda \neq \mu$:
 \[
 \sum_{i=0}^{K} \pi_i = \pi_0 \sum_{i=0}^{K} \rho^i = \pi_0 \frac{1 - \rho^{K+1}}{1 - \rho}
 \]
 \[
 \sum_{i=0}^{K} \pi_i = 1 \Rightarrow \pi_0 = \frac{1 - \rho}{1 - \rho^{K+1}}
 \]
 - If $\lambda = \mu$:
 \[
 \sum_{i=0}^{K} \pi_i = \pi_0 \sum_{i=0}^{K} \rho^i = (K + 1) \pi_0
 \]
 \[
 \pi_i = 1/(K + 1), \ i = 0, \cdots, K
 \]
\[E[N] \]

- **If \(\lambda \neq \mu \):**
 \[
 E[N] = \sum_{i=0}^{K} i \pi_i = \frac{1 - \rho}{1 - \rho K + 1} \sum_{i=0}^{K} i \cdot \rho^i
 \]

- **If \(\lambda = \mu \):**
 \[
 E[N] = \sum_{i=0}^{K} i \pi_i = \frac{1}{K + 1} \sum_{i=0}^{K} i
 \]
 \[
 = \frac{1}{K + 1} \frac{K(K + 1)}{2} = \frac{K}{2}
 \]
Throughput

- **Throughput?**
 - When not idle = \(\mu \)
 - When idle = 0
 - Throughput = \((1-\pi_0)\mu + \pi_0 \cdot 0 \)

- When not full = \(\lambda \) (arrive pass)
- When full = 0 (arrive drop)
 - Prob. Buffer overflow = \(\pi_K \)
 - Throughput = \((1-\pi_K)\lambda + \pi_K \cdot 0 \)
Sojourn Time

- One way: $T = X_1 + X_2 + \cdots + X_n$ if there are n customers in $(n \leq K)$
 - Doable, but complicated
- Another way: Little’s Law
 - $N = \lambda T$
 - The λ means *actual* throughput

$$E[T] = \frac{E[N]}{\text{throughput}} = \frac{E[N]}{(1 - \pi_0)\mu}$$
M/M/c Queue

- c identical servers to provide service
- Model as B-D process, N(t): no. of customers
- State transition diagram:

Balance equation:

\[
\begin{align*}
\lambda \pi_{i-1} &= i \mu \pi_i, \quad i \leq c, \\
\lambda \pi_{i-1} &= c \mu \pi_i, \quad i > c
\end{align*}
\]
Solution to balance equation:

\[
\pi_i = \begin{cases}
 \frac{\rho^i}{i!} \pi_0, & 0 \leq i \leq c, \\
 \frac{\rho^i}{c!c^{i-c}} \pi_0, & c < i
\end{cases}
\]

Prob. a customer has to wait (prob. of queuing)

\[
P(\text{queuing}) = P(\text{wait}) = \sum_{n=c}^{\infty} \pi_n
\]
$M/M/\infty$ Queue

- Infinite server (delay server)
 - Each user gets its own server for service
 - No waiting time

- Balance equation:
 \[\lambda \pi_{i-1} = i \mu \pi_i, \quad i = 0, 1, \ldots \]
 \[\pi_i = \frac{\rho^i}{i!} \pi_0 = \frac{\rho^i}{i!} e^{-\rho} \quad \text{why?} \]
\[E[N] = \sum_{i=0}^{\infty} i \pi_i = \sum_{i=1}^{\infty} \frac{i \rho^i e^{-\rho}}{i!} = \rho \]

\[E[T] = \frac{E[N]}{\lambda} = \frac{1}{\mu} \quad \text{Why?} \]
PASTA property

- **PASTA**: Poisson Arrivals See Time Average
- **Meaning**: When a customer arrives, it finds the same situation in the queueing system as an outside observer looking at the system at an arbitrary point in time.
- **N(t)**: system state at time t
- **Poisson arrival process with rate** λ
- **M(t)**: system at time t given that an arrival occurs in the next moment in $(t, t+\Delta t)$
\[P(M(t) = n) = P(N(t) = n | \text{arrival in } (t, t + \Delta t)) \]
\[= \frac{P(N(t) = n, \text{arrival in } (t, t + \Delta t))}{P(\text{arrival in } (t, t + \Delta t))} \]
\[= \frac{P(N(t) = n) P(\text{arrival in } (t, t + \Delta t))}{P(\text{arrival in } (t, t + \Delta t))} \]
\[= P(N(t) = n) \]

- If not Poisson arrival, then not correct