Chapter 4: Elementary Queuing Theory
Definition

- Queuing system:
 - a buffer (waiting room),
 - service facility (one or more servers)
 - a scheduling policy (first come first serve, etc.)
- We are interested in what happens when a stream of customers (jobs) arrive to such a system
 - throughput,
 - sojourn (response) time,
 - Service time + waiting time
 - number in system,
 - server utilization, etc.
Terminology

- **A/B/c/K queue**
 - A - arrival process, interarrival time distr.
 - B - service time distribution
 - c - no. of servers
 - K - capacity of buffer

- Does not specify scheduling policy
Standard Values for A and B

- M - exponential distribution (M is for Markovian)
- D - deterministic (constant)
- GI; G - general distribution

- M/M/1: most simple queue
- M/D/1: expo. arrival, constant service time
- M/G/1: expo. arrival, general distr. service time
Some Notations

- C_n: customer n, $n=1,2,...$
- a_n: arrival time of C_n
- d_n: departure time of C_n
- $\alpha(t)$: no. of arrivals by time t
- $\delta(t)$: no. of departures by time t
- $N(t)$: no. in system by time t
 - $N(t) = \alpha(t) - \delta(t)$
- Average arrival rate (from t=0 to now):
 - $\lambda_t = \alpha(t)/t$
Little’s Law

- $\gamma(t)$: total time spent by all customers in system during interval $(0, t)$

\[
\gamma(t) = \sum_{n=1}^{\alpha(t)} \min\{d_n, t\} - a_n = \int_0^t N(s)ds
\]

- T_t: average time spent in system during $(0, t)$ by customers arriving in $(0, t)$
 \[T_t = \frac{\gamma(t)}{\alpha(t)}\]

- N_t: average no. of customers in system during $(0, t)$
 \[N_t = \frac{\gamma(t)}{t}\]

- For a stable system, $N_t = \lambda_t T_t$
 \[\text{Remember } \lambda_t = \frac{\alpha(t)}{t}\]

- For a long time and stable system

\[N = \lambda T\]

- Regardless of distributions or scheduling policy
Utilization Law for Single Server Queue

- **X**: service time, mean $T = \text{E}[X]$
- **Y**: server state, $Y=1$ busy, $Y=0$ idle
- **ρ**: server utilization, $\rho = \text{P}(Y=1)$
- **Little’s Law**: $N = \lambda \text{E}[X]$
- **While**: $N = \text{P}(Y=1) \cdot 1 + \text{P}(Y=0) \cdot 0 = \rho$
- **Thus**: Utilization Law: $\rho = \lambda \text{E}[X]$

Q: What if the system includes the queue?
Internet Queuing Delay Introduction

- How many packets in the queue?
- How long a packet takes to go through?
The M/M/1 Queue

- An M/M/1 queue has
 - Poisson arrivals (with rate λ)
 - Exponential time between arrivals
 - Exponential service times (with mean $1/\mu$, so μ is the “service rate”).
 - One (1) server
 - An infinite length buffer

- The M/M/1 queue is the most basic and important queuing model for network analysis
State Analysis of M/M/1 Queue

- N: number of customers in the system
 - (including queue + server)
 - Steady state
- π_n defined as $\pi_n = P(N=n)$
- $\rho = \frac{\lambda}{\mu}$: Traffic rate (traffic intensity)

State transition diagram
we can use $\pi Q = 0$ and $\sum \pi_i = 1$

- We can also use balance equation

\[
Q = \begin{bmatrix}
-\lambda & \lambda & 0 & \cdots \\
\mu & -(\lambda + \mu) & \lambda & \cdots \\
0 & \mu & -(\lambda + \mu) & \cdots \\
\vdots & \vdots & \vdots & \ddots \\
\end{bmatrix}
\]
State Analysis of M/M/1 Queue

- \(\pi_n \) are probabilities:
 \[
 \sum_{i=0}^{\infty} \pi_i = 1 \quad \Rightarrow \quad \pi_0 = 1 - \rho
 \]

\(\rho = 1 - \pi_0 \) : prob. the server is working (why \(\rho \) is called “server utilization”)

\(\pi_0 \lambda = \pi_1 \mu \quad \Rightarrow \quad \pi_1 = \rho \pi_0 \)

\(\pi_1 \lambda = \pi_2 \mu \quad \Rightarrow \quad \pi_2 = \rho^2 \pi_0 \)

\[\vdots \]

\(\pi_{n-1} \lambda = \pi_n \mu \quad \Rightarrow \quad \pi_n = \rho^n \pi_0 \)
State Analysis of M/M/1 Queue

- \(N \): avg. # of customers in the system

\[
E[N] = \sum_{k=1}^{\infty} k\pi_k = \pi_0 \sum_{k=1}^{\infty} k\rho^k = \frac{\rho}{1 - \rho}
\]
M/M/1 Waiting Time

- \(X_n \): service time of n-th customer, \(X_n =_{st} X \)
 where \(X \) is exponential rv
- \(W_n \): waiting time of n-th customer
 - Not including the customer’s service time
- \(T_n \): sojourned time \(T_n = W_n + X_n \)
- When \(\rho < 1 \), steady state solution exists and \(X_n, W_n, T_n \rightarrow X, W, T \)

- Q: \(E[W] \)?
State Analysis of M/M/1 Queue

- **W**: waiting time for a new arrival

\[W = X_1 + X_2 + \cdots + X_{n-1} + R \]

\(X_i \): service time of i-th customer

\(R \): remaining service time of the customer in service

Exponential r.v. with mean 1/\(\mu \) due to **memoryless** property of expo. Distr.

\[E[W] = E[(N - 1)X] + E[R] = E[N] \cdot E[X] \]

- **T**: sojourn (response) time

\[E[T] = \frac{1}{\mu} + E[W] = \frac{1}{\mu - \lambda} \]
Alternative Way for Sojourn Time Calculation

- We know that $E[N] = \rho/(1-\rho)$
- We know arrival rate λ
- Then based on Little’s Law
 \[N = \lambda T \]

\[\Rightarrow E[T] = E[N]/\lambda = 1/(\mu-\lambda) \]
M/M/1 Queue Example

- A router’s outgoing bandwidth is 100 kbps
- Arrival packet’s number of bits has expo. distr. with mean number of 1 kbits
- Poisson arrival process: 80 packets/sec
 - How many packets in router expected by a new arrival?
 - What is the expected waiting time for a new arrival?
 - What is the expected access delay (response time)?
 - What is the prob. that the server is idle?
 - What is $P(N > 5)$?
 - Suppose you can increase router bandwidth, what is the minimum bandwidth to support avg. access delay of 20ms?
T’s pdf is denoted as \(f_T(t), t \geq 0 \)

\[T = X_1 + X_2 + \cdots + X_n + X \]

- Given there are \(N = n \) customers in the system
- Then, \(T \) is sum of \(n+1 \) exponential distr.
 - \(T \) is \((n+1)\)-order Erlang distr.
- When conditioned on \(n \), the pdf of \(X \) is denoted as \(f_{T|N}(t|n) \)

\[
 f_{T|N}(t|n) = \frac{\mu(\mu t)^n e^{-\mu t}}{n!}
\]
Sojourn Time Distribution

- Remove condition $N=n$:
 - Remember $P(N=n) = \pi_n = (1-\rho)\rho^n$
 - $f_T(t) = f_{T|0}(t|0)\pi_0 + f_{T|1}(t|1)\pi_1 + \cdots$
 -
 \[f_T(t) = \sum_{n=0}^{\infty} (1-\rho)\rho^n \frac{\mu(\mu t)^n e^{-\mu t}}{n!} \]

 \[= (1-\rho)\mu e^{-\mu t} \sum_{n=0}^{\infty} (\rho\mu t)^n / n! \]

 \[= (\mu - \lambda) e^{-\mu t} e^{\lambda t} \]

 \[= (\mu - \lambda) e^{-(\mu-\lambda)t} \]

 Thus, T is exponential distr. with rate $(\mu-\lambda)$
M/M/1/K Queue

- Arrival: Poisson process with rate λ
- Service: exponential distr. with rate μ
- Finite capacity of K customers
 - Customer arrives when queue is full is rejected
- Model as B-D process
 - $N(t)$: no. of customers at time t
 - State transition diagram
Calculation of π_0

- Balance equation:
 \[\pi_i = \rho \pi_{i-1} = \rho^i \pi_0, \ i=0, \ldots, K \]

- If $\lambda \neq \mu$:
 \[\sum_{i=0}^{K} \pi_i = \pi_0 \sum_{i=0}^{K} \rho^i = \pi_0 \frac{1 - \rho^{K+1}}{1 - \rho} \]
 \[\sum_{i=0}^{K} \pi_i = 1 \Rightarrow \pi_0 = \frac{1 - \rho}{1 - \rho^{K+1}} \]

- If $\lambda = \mu$:
 \[\sum_{i=0}^{K} \pi_i = \pi_0 \sum_{i=0}^{K} \rho^i = (K + 1) \pi_0 \]
 \[\pi_i = 1/(K + 1), \ i = 0, \ldots, K \]
If $\lambda \neq \mu$:

$$E[N] = \sum_{i=0}^{K} i \pi_i$$

$$= \frac{1 - \rho}{1 - \rho K + 1} \sum_{i=0}^{K} \rho^i$$

If $\lambda = \mu$:

$$E[N] = \sum_{i=0}^{K} i \pi_i = \frac{1}{K + 1} \sum_{i=0}^{K} i$$

$$= \frac{1}{K + 1} \frac{K(K + 1)}{2} = \frac{K}{2}$$
Throughput

- **Throughput?**
 - When not idle $= \mu$
 - When idle $= 0$
 - Throughput $= (1 - \pi_0)\mu + \pi_0 \cdot 0$

- When not full $= \lambda$ (arrive pass)
- When full $= 0$ (arrive drop)
 - Prob. Buffer overflow $= \pi_K$
- Throughput $= (1 - \pi_K)\lambda + \pi_K \cdot 0$
Sojourn Time

- One way: \(T = X_1 + X_2 + \cdots + X_n \) if there are \(n \) customers in \((n \leq K) \)
 - Doable, but complicated
- Another way: Little’s Law
 - \(N = \lambda T \)
 - The \(\lambda \) means \textit{actual} throughput

\[
E[T] = \frac{E[N]}{\text{throughput}} = \frac{E[N]}{(1 - \pi_0)\mu}
\]
M/M/c Queue

- c identical servers to provide service
- Model as B-D process, N(t): no. of customers
- State transition diagram:

Balance equation:

\[
\begin{align*}
\lambda \pi_{i-1} &= i \mu \pi_i, \quad i \leq c, \\
\lambda \pi_{i-1} &= c \mu \pi_i, \quad i > c
\end{align*}
\]
Solution to balance equation:

\[\pi_i = \begin{cases} \frac{\rho_i}{i!} \pi_0, & 0 \leq i \leq c, \\ \frac{\rho_i}{c!c^{i-c}} \pi_0, & c < i \end{cases} \]

Prob. a customer has to wait (prob. of queuing)

\[P(\text{queuing}) = P(\text{wait}) = \sum_{n=c}^{\infty} \pi_n \]
M/M/∞ Queue

- **Infinite server (delay server)**
 - Each user gets its own server for service
 - No waiting time

- **Balance equation:**
 \[
 \lambda \pi_{i-1} = i \mu \pi_i, \quad i = 0, 1, \ldots
 \]

 \[
 \pi_i = \frac{\rho^i}{i!} \pi_0 = \frac{\rho^i}{i!} e^{-\rho} \quad \text{why?}
 \]
\[E[N] = \sum_{i=0}^{\infty} i \pi_i = \sum_{i=1}^{\infty} \frac{i \rho^i e^{-\rho}}{i!} = \rho e^{-\rho} \sum_{i=1}^{\infty} \frac{\rho^{i-1}}{(i-1)!} = \rho \]

\[E[T] = \frac{E[N]}{\lambda} = \frac{1}{\mu} \quad \text{Why?} \]
Machine Repairman Model

- c machines
- Each fails at rate λ (expo. distr.)
- Single repairman, repair rate μ (expo. distr.)
- Define: $N(t)$ – no. of machines working
 - $0 \leq N(t) \leq c$
\[\pi_{k-1} \mu = k \lambda \pi_k \]

\[\pi_k = \frac{1}{k!} \left(\frac{\mu}{\lambda} \right)^k \pi_0 \]

\[\sum_{i=0}^{c} \pi_i = 1 \Rightarrow \pi_0^{-1} = \sum_{k=0}^{c} \frac{1}{k!} \left(\frac{\mu}{\lambda} \right)^k \]
- **Utilization rate?**
 - \(\rho = P(\text{repairman busy}) = 1 - \pi_c \)

- **\(E[N] \)?**
 - We can use \(E[N] = \sum_{i=1}^{c} i \pi_i \)
 - Complicated
Little’s law: \(N = \lambda T \)

Here: \(E[N] = \text{arrival} \cdot \text{up-time} \)

- Arrival rate: \(\rho \mu + (1 - \rho) \cdot 0 \)
- Up time: expo. \(E[T] = 1/\lambda \)

Thus

\[
E[N] = \frac{\rho \mu}{\lambda}
\]
E[W]: waiting time in queue

- Y: up-time (working time), exp. λ
- X: repair time, exp. μ
- W: waiting time
- C: cycle time of a customer
 - $C = Y + W + X$
 - $E[C] = E[W] + 1/\lambda + 1/\mu$
- Throughput $\rho \iff C^?$
 - $\rho = c/E[C]$
Thus \[E[W] = \frac{c}{\rho} - \left(\frac{1}{\mu} + \frac{1}{\lambda} \right) \]

Remember \(\rho = P(\text{repairman busy}) = 1 - \pi_c \)

\(N_q \): avg. no. of machines waiting in the queue

Use Little’s Law: \(N = \lambda T \)

\[E[N_q] = \rho E[W] = c - \rho(1/\lambda + 1/\mu) \]
PASTA property

- PASTA: Poisson Arrivals See Time Average
- Meaning: When a customer arrives, it finds the same situation in the queueing system as an outside observer looking at the system at an arbitrary point in time.
 - $N(t)$: system state at time t
 - Poisson arrival process with rate λ
 - $M(t)$: system at time t given that an arrival occurs in the next moment in $(t, t+\Delta t)$
\[P(M(t) = n) = P(N(t) = n | \text{arrival in } (t, t + \Delta t)) \]

\[
= \frac{P(N(t) = n, \text{arrival in } (t, t + \Delta t))}{P(\text{arrival in } (t, t + \Delta t))}
\]

\[
= \frac{P(N(t) = n)P(\text{arrival in } (t, t + \Delta t))}{P(\text{arrival in } (t, t + \Delta t))}
\]

\[
= P(N(t) = n)
\]

- If not Poisson arrival, then not correct