
CAP6135: Programming Assignment 1 (Spring 2016)
University of Central Florida
Cliff C. Zou

Programming assignment 1 required files are in a tar file on webcourse. You need to
work on the department Unix machine: “eustis.eecs.ucf.edu”. If you are in off-campus
network, you need to first connect to UCF using VPN first.

You need to log in to Eustis machine by using SSH. As I explained in class, you are
recommend to use PuTTY for command-line login and WinSCP (if you are using
windows machine) for file transfer between your computer and Eustis.

Delivery:
Submit your source code (exploit.c) and a project report document (in word or PDF
format) through WebCourse homework submission page. Your project report should
contain:

1. Explain how you design the overflowed buffer.
2. Draw the stack memory allocation graph to show the stack memory of the

function foo() in executing target code (before running the line : strcpy(buffer,
arg); in foo() function) You should show the addresses of

a. return address,
b. calling stack pointer,
c. the four local variables buffer, maxlen, var1, var2.

Please refer to the stack memory graph for the example code I drew in
lecture 7.

3. Show how you use Gdb to find out the stack information. You must put the
screen shot image of the SSH shell showing the Gdb running procedure in your
report (if one screenshot is not enough to show the complete procedure, then use
several screen-shot pictures).

4. Show the screen-shot image of your exploit code that successfully creates a shell
in compromise (showing double $ signs), somewhat like my own exploit code
here:

Objective:
You need to complete the coding of the attack program (exploit.c) to obtain a shell by
exploiting stack overflow vulnerability of a given target application (target.c). In reality,

if this target application is running on a server accepting remote user input, you can use
your exploit code to obtain a command shell (most likely to have root privilege) on the
remote server without any password.

This project is modified from the programming project 1 in U. Berkley’s Dr. Dawn
Song’s course “CS161: computer security” in Fall 2008:
http://inst.eecs.berkeley.edu/~cs161/fa08/

Target
The target (target.c) is a simple application which copies the command-line parameter
into its own internal buffer stored on the stack. The source code is provided for your
reference. Of course you can build your own target while working on the assignment, but
the submitted code MUST use the prebuilt target.c.

Exploit
The exploit is the application (exploit.c) which calls the target (executable program) and
passes in an artfully crafted character buffer which causes the target program to give you
a shell.

The compressed file attached to the assignment on WebCourse has two versions:
“cap6135-project1.tar” and “cap6135-project1.zip”. Both files contain the same content
and you can use either one of them. If you download and extract under Eustis machine,
you can download the “.tar” file and use this command:
 tar -xvf cap6135-project1.tar
which will generate two directories: targets/ and exploits/ under current directory.

You need to use “make” command in the targets/ directory to generate executable target
program. What you need to modify is only the exploit.c code under the exploits/ directory
(do not modify the target.c code). You will need to modify “exploit.c” to add your buffer
overflow code. Noted that you will need to modify the line:

#define TARGET "/home/czou/cap6135-project1/targets/target"

to use your own “target” directory.

The following are the suggested steps to complete this assignment:
1. Familiarize yourself with gdb. Be sure to watch my lecture on how I used gdb. You
will need gdb to debug your target/exploit and display memory/stack information. With
its help, you can decide where is the return address to overwrite and how to jump to
execute the provided shellcode. Look up commands: break, run, continue, info f, p/x,
backtrace, attach…
2. Draw the stack (locations of parameters, local variables and registers) of the target
application once execution reaches the first statement of the foo function.
3. Figure out the length of the exploit buffer.
4. Figure out where in the exploit buffer the new RETURN address will go.
5. Compute the new RETURN address.
The code to spawn a shell is provided in the shellcode.h file. You can use testshellcode to
test it.

Important notes:
Eustis.eecs.ucf.edu (the server you’ll be working on) employs a technique called “Stack
address randomization”, which randomizes the beginning of the stack for each new
process. Therefore your SP register will always be different when you start a new process.
This behavior is not desirable for this assignment, because we want the SP to be the same
every time we execute the exploit/target (see the aforementioned tutorial for why this is
so important).

The way around this is by using the wrapper setarch in the following way:
czou@eustis:~/exploits$ setarch i686 -R ./exploit
The –R parameter disables stack address randomization and creates a new process by
executing ./exploit.

In addition, please use the “Makefile” under each directory to generate your executable
code, by simple type command “make” and run under each directory. The Makefile
contains option that will disable “StackGuard” defense used by our Unix server.

Grading:
[+10%] if your program compiles and runs
[+10%] if your program can successfully overflow the buffer
[+10%] for correctly showing how you use gdb to obtain the stack information.
[+10%] for correct drawing of the stack (in the document) with the addresses.
[+60%] if execution of target gives the user a shell

