
Static analysis of Android
programs

Étienne Payet
Fausto Spoto

Information and Software Technology 54
(2012) 1192–1201

Salih Safa BACANLI

Abstract
• Our goal is to extend the Julia static analyzer, based on

abstract interpretation, to perform formally correct
analyses of Android programs. This article is an in depth
description of such an extension,of the difficulties that we
faced and of the results that we obtained.

• We have extended the class analysis of the Julia
analyzer, which lies at the heart of many other analyses,
by considering some Android key specific features

• Classcast, dead code, nullness and
termination analysis are done.

• Formally correct results in at most 7 min
and on standard hardware.

• As a language, Android is Java with an
extended library for mobile and interactive
applications, hence based on an event-
driven architecture. (WRONG)

Introduction

• Klocwork is based on Syntactical checks.
• If no applicable pattern is found, bugless (!)

• Julia has AI.
• Semantic Checks.
• If no bugs found, the code is bugless. (?)

Julia fundamentals

• Julia analyzes Java bytecode. Dalvik
different.

• Event Handlers can be seen as dead code.
actionPerformed is problematic. (?)

Android Structure
• Activities (code interacting with user through a

visual interface),
• Services (background operations with no

interaction with the user),
• Content providers (DB)
• broadcast receivers (objects reacting to

broadcast messages).
• Event handlers
• XML manifest file components of an application.
• XMLfiles describe the visual layoutof the

activities

Checks

• Equality (equals vs ==)
• The use of both kinds of checks on the same

class type is hence a symptom of a potential
bug(?)(if AND ed no problem)

• Static update
• The modification of a static field from inside a

constructor or an instance method is legal but
a symptom of a possible bug or, at least, of
bad programming style. For this reason, we
check when that situation occurs.

• Dead Code Check
– Already done by javac. not possible in

bytecode!
• Method redefinition check

– already done by javac. not possible in
bytecode!

• Hashcode and Equals override
– hashcode in Lists...

• Nullness Check
– how to avoid NullPointerException?

• Termination
– Halting problem?
• international competition of termination

analysis for Java bytecode on July 2010
• Classcast
– checked by Eclipse not javac (Possible in

bytecode)

• Julia does these on bytecode.
• Eclipse in source code.
• Why not doing the checks in compile time
rather than doing them after compilation?

Experiment Results
• We have manually checked all the warnings in

Table 1. Most of them look to us as false alarms,
but a definite answer is difficult, since we are not
the authors of those programs

• The most precise analysis is an analysis that
reports only the actual nullness bugs and no
false alarm. This means that its precision
(according to our metrics) is 100% if there is no
actual nullness bugs and slightly below 100%
otherwise.

Simple Checks-Open Sudoku

• Use of note.trim() ==""
– Can be buggy-compile time (equals better)

• not overriding hash function
– Can make lists buggy.
– ıf no list then fine (not specified)

Nullness Check

• If there is no bluetooth device, the objects
will become null and there is no check for
that. No exception handling!!!!

Termination Check

• Most warnings issued by Julia about
possibly diverging methods are false
alarms.

Conclusion

• Can check software in minutes with
standard hardware

• Array of references are problematic as
expected. Everything is pointer in Java!

• The size of the analyzed code is also
problematic. For instance, we could not
perform the nullness and termination
analyses of ApiDemos

• GWT and Play applications in future!

