
CAP6135: Malware and Software
Vulnerability Analysis

The Next Generation Peer-to-Peer
Botnet Attacks

Cliff Zou

Spring 2009

2

What Is a Botnet?

� Botnet: bot + network
� Bot: compromised machine installed with

remote controlled code
� Networked bots under a single commander

(botmaster, botherder)

� Botnet is the major threat nowadays
� Large-scale worm attacks are old news
� Profit: motivation for most attackers

� Spam, phishing, ID theft, DoS blackmail
� Botmaster with thousands of machines at

command has attack power

3

Current Botnet Command & Control
Architecture

bot bot

C&C

botmaster

bot

C&C

� Bot periodically connects to one/some of C&C servers to
obtain command
� Hard-coded IPs or DNS names of C2 servers

� C&C: usually Internet Relay Chat (IRC) based

4

Motivation

� Most works target current botnets only
� Rely on current botnet’s architecture,

infection methods, and control network
� Study current botnets is important, but not

enough

� May not work if botmasters upgrade their

future botnets
� E.g., recent Peacomm and Storm botnet --- basic

P2P botnets

� We must study one step ahead
� How botnets will evolve?

� How to defend future botnets?

5

Three Possible Moves of Future Botnets

� Peer-to-peer structured botnets
� More robust C2 architecture

� We present a hybrid P2P botnet

� Honeypot-aware botnets
� Honeypot is popular in malware defense
� A general principle to remove inside honeypot spies

� Stealthy botnets
� Keep bots as long as possible

� We study “rootkit” techniques

6

Peer-to-Peer Botnet

7

Peer-to-Peer (P2P) based
Control Architecture?

� Weakness of C&C botnets
� A captured bot (e.g., honeypot) could reveal all C2

servers

� The few C2 servers can be shut down at the same
time

� A captured/hijacked C2 server could reveal all

members of the botnet

� C&C centralized � P2P control is a
natural evolution
� P2P-based network is believed to be much harder to

shut down

8

P2P upgrade is not so simple for botnets

� Current P2P protocols are not designed for the

purpose of botnets
� Easy exposure of botnet members

� E.g., query to obtain response, P2P crawlers

� Excess traffic susceptible to detection
� Bootstrap process against the design goal

� The few predefined bootstrap nodes have the same
weakness as C&C servers

� Botmasters need easy control/monitor of their

botnets
� Understand botnet size, distr., bandwidth, etc.

9

Proposed Hybrid P2P Botnet

� Servent bots: static IPs, able to receive incoming

connections
� Static IP ensures a stable, long lifetime control topology

� Each bot connects to its “peer list”
� Only servent bot IPs are in peer lists

Servent bots

Client bots
bot bot

C&C

botmaster

bot

C&C

Dramatically increase the number of C&C servers

10

Botnet Command and Control

� Individualized encryption key
� Servent bot i generates its own symmetric key Ki

� Any bot connecting with bot i uses Ki
� A bot must have (IPi, Ki) in its peer list to conect bot i

� Individualized service port
� Servent bot i chooses its port Pi to accept connections
� A bot must have (IPi, Ki, Pi) in its peer list to connect bot i

� Benefits to botmasters:
� No global exposure if some bots are captured

� Dispersed network traffic
� Go through some firewalls (e.g., HTTP, SMTP, SSH

holes)

11

Botnet Monitor by Botmaster

� Botmasters need to know their weapons
� Botnet size

� bot IPs, types (e.g., DHCP ones used for

spam)
� Distribution, bandwidth, diurnal …

� Monitor via dynamical sensor
� Sensor IP given in a monitor command

� One sensor, one shot, then destroy it
� Use a sensor’s current service to blend incoming

bot traffic

12

P2P Botnet Construction

� Botnet networked by peer list
� Basic procedures

� New infection: pass on peer list

� Reinfection: mix two peer lists
� Ensure balanced connectivity

� Remove the normal P2P bootstrap
� Or, increase entries in bootstrap as botnet

grows

13

P2P Botnet Construction

� OK? No!
� Real botnet is small compared to vulnerable

population
� Most current botnet size ≤ 20,000
� Reinfection happens rarely

� Not balanced topology via new infection only

� Simulation results:
� 500,000 vulnerable population

� Botnet stops infection after reach 20,000
� Peer list = 20, 21 initial servent bots, 5000 bots are

servent bots
� Results:

� < 1000 reinfection events
� Initial servent bots: > 14,000 in-degree
� 80% of servent bots: < 30 in-degree

14

P2P Botnet Construction

� Peer-list updating procedure
� Obtain current servent bots information

� Request every bot connect to a sensor to

obtain a new peer list

� Result: all bots have balanced
connectivity to servent bots used in this
procedure
� Use once is enough for a robust botnet

� Can be used to reconnect a broken botnet

15

Robustness Metrics

� What if top p fraction of servent bots are
removed?
� Removed due to: defense, diurnal, link

failure…

16

Botnet Robustness Study

� 500,000 vulnerable population, botnet = 20,000
� Peer list = 20, 5000 bots are servent bots
� Run peer-list updating once when having 1000 servent bots

17

Defense Against the Botnet

� Shut down a botnet before the first peer-
list updating procedure
� Initial servent bots are the weak points at

beginning

� Honeypot based defense
� Clone a large set of “servent” bots

� But it can survive with only 20% servent bots left

� Obtain peer lists in incoming infections
� Forensic analysis of botmaster’s sensor

� Challenge: Log of unknown port service and
IP beforehand

18

What about Existing P2P Protocols?

� Existed P2P botnets: Peacomm, Storm
� Built on Overnet protocol

� Distributed Hash Table (DHT)-based

� Has a predefined list for initial bootstrap
� Could be centralized point of failure

� Defend by shutting down the list at the early stage

19

Index Poisoning Attack

� A bot queries one of 32 predefined
indexes to find command
� Botmaster publishes command via these

indexes

� Problem: “index poisoning attack”
� Defenders publish many more of these indexes

� Real command indexes are hard to find
� Discussed in a LEET’08 paper

� It is a fundamental problem for

publish/subscribing P2P networks

20

A Simple Solution to Index
Poisoning Attack (ongoing work)

� Observation of P2P botnets:
� Only command index needs to be published;

why allow arbitrary bot to publish?

� Index authentication
� Bot is hard-coded with public key K+

� K- is known only to the botmaster

� A command m is published as K-(m)
� Any bot drops an index announce or query

response if it does not contain K-(m)

� Only a small module addition to existing
P2P protocol/program

21

Honeypot-Aware Botnet

22

Honeypot-Aware Botnet

� Honeypot is widely used by defenders
� Ability to detect unknown attacks

� Ability to monitor attacker actions (e.g., botnet

C&C)

� Botnet attackers will adapt to honeypot
defense
� When they feel the real threat from honeypot

� We need to think one step ahead

23

Honeypot Detection Principles

� Hardware/software specific honeypot detection
� Detect virtual environment via specific code

� E.g., time response, memory address

� Detect faculty honeypot program

� Case by case detection

� Detection based on fundamental difference
� Honeypot defenders are liable for attacks sending out

� Liability law will become mature
� It’s a moral issue as well

� Real attackers bear no liability
� Check whether a bot can send out malicious traffic or not

24

Detection of Honeypot Bot

� Infection traffic
� Real liability to defenders

� No exposure issue: a bot needs to do this regardless

� Other honeypot detection traffic
� Port scanning, email spam, web request (DoS?)

C&C

bot Sensor (secret)1 malicious traffic

2 In
fo

rm
 b

ot’s
 IP3 Authorize

25

Two-stage Reconnaissance to Detect
Honeypot in Constructing P2P Botnets

� Fully distributed
� No central sensor is used
� Could be fooled by double-honeypot

� Counterattack is presented in our paper

� Lightweighted spearhead code
� Infect + honeypot detection
� Speedup UDP-based infection

Host A
spearhead

Host B

request

main-force

spearhead
Host C

1

3

2

26

Defense against
Honeypot-Aware Attacks

� Permit dedicated honeypot detection systems to

send out malicious traffic
� Need law and strict policy

� Redirect outgoing traffic to a second honeypot
� Not effective for sensor-based honeypot detection

� Figure out what outgoing traffic is for honeypot

detection, and then allow it
� It could be very hard

� Neverthless, honeypot is still a valuable

monitoring and detection/defense tool

27

Stealthy Botnet using

Rootkit Techniques

28

Motivation

� Botmaster wants to keep bots as long as
possible
� Require bot code to avoid detection

� Rootkit: Malicious code hiding techniques
� E.g., change running process display

� Make changes to the host OS
� Hooking (Hacker Defender & NT Rootkit)
� Direct Kernel Object Manipulation (FU)

� Memory Subversion (Shadow Walker)

� Changes in OS can be detected

29

OS Independent Rootkits

� Subvert system without making changes to the

host OS
� Hardware Virtualization Rootkits

� Bluepill (AMD) – Joanna Rutkowska
� Vitriol (Intel) – Dino A. Dai Zovi

� BIOS Rootkits
� Proof of concept ACPI BIOS Rootkit – John Heasman

� Chipset level Network Backdoor [AsiaCCS’09]
� Interacts directly with network card

� SMM Rootkits [Securecomm’08]
� SMM: System Management Model (Intel processors)

� Both are possible for high-valued botnets

30

Chipset Level Network Backdoor

KERNEL MODE

TDI Filter Driver

Network Driver Interface

Specification (NDIS) �

ndis.sys

NDIS Filter

Transport Driver interface

(TDI) � tcpip.sys

Rootkit

“Deepdoor”

“Peligroso”

Proposed

Network

Backdoor

Figure 1: Windows Network Architecture

31

Network Backdoor

� Surprisingly easy… We just need to write to a few
registers on the network card (also located in the PCI
configuration space)

� Developed for Intel 8255X Chipset
� Tested on Intel Pro 100B and Intel Pro 100S cards
� Lots of other cards compatible with the 8255X chipset
� Open documentation for Intel 8255X chipset

32

Data Exfiltration – Sending data out

1. Build A Transmit Command
Block (TCB)

2. Build the data packet
3. Check that the LAN

Controller is idle
4. Load the physical address of

the Transmit Command
Block into the System
Control Block

5. Write CU_start into the
System Control Block to
initiate packet transmission

TCB

COMMAND BLOCK LIST
(shared system memory)

SCB

UDP
Packet

33

Why is SMM attractive to rootkits?

� SMM: originally for managing low-level hardware
operations

� Isolated memory space and execution environment that
can be made invisible to code executing in other
processor modes (i.e. Windows Protected Mode)

� No concept of “protection”
� Can access all of physical memory
� Can execute all instructions, including privileged instructions

� Chipset level control over peripheral hardware
� Intercept interrupts without changing processor data structures

like the IDT
� Communicate directly with hardware on the PCI bus

34

SMRAM Isolation

� SMRAM isolation is enforced by D_OPEN bit in SMM RAM control
register (SRAMC)
� D_OPEN=0, access VGA; D_OPEN=1, access SMRAM

� If D_LCK bit in SRAMC is set, this register becomes read only
� After installing, SMM rootkit set D_LCK to prevent others to access

SMRAM

D_OPEN

0xA0000

0

1 SMRAM

VGA

0xBFFFF

0xA0000

Memory Access to

SMRAM Space

SMM RAM control register

Phys Mem

Res. D_OPEN D_CLS D_LCK GLOBAL

SMRAME

0 1 0

35

� Rootkit Installation Procedure
� Make SMM visible (D_OPEN=1)

� Opening SMRAM for Writing

� Writing in a new SMM handler

� Make SMM invisible (D_OPEN=0)

� Lock SMM (D_LCK=1)

� Only documented way to clear D_LCK is
via a reset

36

Chipset Level Keylogger

37

Sending out Key Logs

� Using network backdoor
� Rootkit in SMM directly interact with

network card to send out data
� Network backdoor can also receive data for

possible botmaster’s command

� Details see our paper

38

Summary

� We have to be well prepared for future
botnets
� Only studying current botnets is not enough

� It is an ongoing war between botnet
attacks and defenses

39

References on P2P Botnet Research

� Ping Wang, Sherri Sparks, and Cliff C. Zou, An Advanced Hybrid Peer-to-Peer

Botnet, HotBots, 2007.

� R. Vogt, J. Aycock, and M. Jacobson, Jr. Army of Botnets, NDSS, 2007.

� G. Starnberger, C. Kruegel, and E. Kirda. Overbot - a botnet protocol based on

kademlia. SecureComm, 2008.

� J. B. Grizzard, V. Sharma, C. Nunnery, B. B. Kang, and D. Dagon. Peer-to-peer

botnets: Overview and case study, HotBots, 2007.

� T. Holz, M. Steiner, F. Dahl, E. W. Biersack, and F. Freiling. Measurements and

mitigation of peer-to-peer-based botnets: A case study on storm worm. LEET, 2008.

