
Automated Worm
Fingerprinting

Paper By: Sumeet Singh, Cristian Estan, George Varghese and Stefan Savage
Department of Computer Science and Engineering

University of California, San Diego

Published: Operating Systems Design and Implementation ’04 (OSDI’04)

Presented By: Dan DeBlasio for CAP 6133 Spring 2008

Overview

• Developed a system called Earlybird at UCSD

• Implemented for 8 months.

• Able to detect, and create signatures for major
outbreaks during this period
‣ Blaster
‣ MyDoom
‣ Kibuv.B

2

Motivation

• Need to be able to identify a worm quickly and with
regularity with some low tolerance for false
positives.

• Need to be able to quickly extract a signature to
effectively combat the spread of the worm.
‣ Slow Moving: (Code Red): 60 Min
‣ Fast Moving: (Slammer): 5 Min - 60 Sec

• Need to be able to contain the worm once it is
identified.

3

Background/Observations

• Code Invariance
‣ Some part of the worm code will be static across

all copies.

• Content Prevalence
‣ Due to worm dynamics, many copies of the worm

will be floating around on the network.

• Address Dispersion
‣ As the worm infects more host, there will be more

host/destination combinations for the same data.

4

Content Sifting

• Idealized would track
the exact matches for
every packet.

• Keep track of all
source and
destinations.

• Analyzes packets
above certain
thresholds to identify
them as worms.

5

ProcessTraffic(payload,srcIP,dstIP)
1 prevalence[payload]++
2 Insert(srcIP,dispersion[payload].sources)
3 Insert(dstIP,dispersion[payload].dests)
4 if (prevalence[payload]> T1
5 and size(dispersion[payload].sources)> T2
6 and size(dispersion[payload].dests)> T3
7 if (payload in knownSignatures)
8 return
9 endif
10 Insert(payload,knownSignatures)
11 NewSignatureAlarm(payload)
12 endif

Content Sifting

• Memory and processing requirements would be too
high.

• Hashing provides a solution but too many collisions.

• Multi-stage filters provide the answer.
‣ Each packet is hashed multiple times.
‣ A counter is kept at each hashing stage.
‣ Kept if hash count for all is above a threshold.

6

2 5 7 3 ... 9

7 2 8 4 ... 6

4 3 9 1 ... 2

3 9 2 8 ... 0

Multi-Stage Filtering

7

2 5 7 3 ... 9

7 2 8 4 ... 6

4 3 9 1 ... 2

3 9 2 8 ... 0

Multi-Stage Filtering

7

Packet

2 5 7 3 ... 9

7 2 8 4 ... 6

4 3 9 1 ... 2

3 9 2 8 ... 0

Multi-Stage Filtering

7

Packet

2 5 7 3 ... 9

7 2 8 4 ... 6

4 3 9 1 ... 2

3 9 2 8 ... 0

10

Multi-Stage Filtering

7

Packet

2 5 7 3 ... 9

7 2 8 4 ... 6

4 3 9 1 ... 2

3 9 2 8 ... 0

10

Multi-Stage Filtering

7

Packet

2 5 7 3 ... 9

7 2 8 4 ... 6

4 3 9 1 ... 2

3 9 2 8 ... 0

10

8

Multi-Stage Filtering

7

Packet

2 5 7 3 ... 9

7 2 8 4 ... 6

4 3 9 1 ... 2

3 9 2 8 ... 0

10

8

Multi-Stage Filtering

7

Packet

2 5 7 3 ... 9

7 2 8 4 ... 6

4 3 9 1 ... 2

3 9 2 8 ... 0

10

8

10

Multi-Stage Filtering

7

Packet

2 5 7 3 ... 9

7 2 8 4 ... 6

4 3 9 1 ... 2

3 9 2 8 ... 0

10

8

10

Multi-Stage Filtering

7

Packet

2 5 7 3 ... 9

7 2 8 4 ... 6

4 3 9 1 ... 2

3 9 2 8 ... 0

10

8

10

9

Multi-Stage Filtering

7

Packet

2 5 7 3 ... 9

7 2 8 4 ... 6

4 3 9 1 ... 2

3 9 2 8 ... 0

10

8

10

9

Multi-Stage Filtering

7

Packet

2 5 7 3 ... 9

7 2 8 4 ... 6

4 3 9 1 ... 2

3 9 2 8 ... 0

10

8

10

9

Multi-Stage Filtering

7

Packet

2 5 7 3 ... 9

7 2 8 4 ... 6

4 3 9 1 ... 2

3 9 2 8 ... 0

10

8

10

9

Multi-Stage Filtering

7

Packet

2 5 7 3 ... 9

7 2 8 4 ... 6

4 3 9 1 ... 2

3 9 2 8 ... 0

10

8

10

9

Multi-Stage Filtering

7

Packet

2 5 7 3 ... 9

7 2 8 4 ... 6

4 3 9 1 ... 2

3 9 2 8 ... 0

10

8

10

9

Multi-Stage Filtering

7

Packet All Above
Threshold?

2 5 7 3 ... 9

7 2 8 4 ... 6

4 3 9 1 ... 2

3 9 2 8 ... 0

10

8

10

9

Multi-Stage Filtering

7

Packet All Above
Threshold?

Yes

2 5 7 3 ... 9

7 2 8 4 ... 6

4 3 9 1 ... 2

3 9 2 8 ... 0

10

8

10

9

Multi-Stage Filtering

7

Packet All Above
Threshold?

Yes

2 5 7 3 ... 9

7 2 8 4 ... 6

4 3 9 1 ... 2

3 9 2 8 ... 0

10

8

10

9

Multi-Stage Filtering

7

Packet All Above
Threshold?

Follow
Previous

Algorithm

Yes

Rabin Fingerprints

• Worms may shift code though several packets or
within a packet to disguse it.

• Use a fingerprint smaller than a whole packet, thus
many in one packet.

• Analise a while stream, not just a single packet.

• Use a fingerprint of size β, thus a stream of s bytes
would have s-β+1 fingerprints.

8

IP-Address Bit-mapping

• Storing all IP addresses after the preveleance
thresholds are met would be memory intensive.

• Use a constant size maping of IP address hashes to
keep track of the number and extrapilate a count of
IP addresses.

• Not robust enough to get granularity as the number
of infected machines and prevelance of packets
increases.

• Use a multi-level bit mapping to keep track at a
higher granularity.

9

IP-Address Bit-mapping

10

IP-Address Bit-mapping

10

IP-Address Bit-mapping

10

IP-Address Bit-mapping

10

IP-Address Bit-mapping

10

IP-Address Bit-mapping

10

IP-Address Bit-mapping

10

IP-Address Bit-mapping

10

IP-Address Bit-mapping

10

IP-Address Bit-mapping

10

IP-Address Bit-mapping

10

IP-Address Bit-mapping

10

IP-Address Bit-mapping

10

IP-Address Bit-mapping

10

IP-Address Bit-mapping

10

IP-Address Bit-mapping

10

IP-Address Bit-mapping

10

IP-Address Bit-mapping

10

IP-Address Bit-mapping

10

IP-Address Bit-mapping

10

IP-Address Bit-mapping

10

IP-Address Bit-mapping

10

IP-Address Bit-mapping

10

IP-Address Bit-mapping

10

IP-Address Bit-mapping

10

IP-Address Bit-mapping

10

IP-Address Bit-mapping

10

IP-Address Bit-mapping

10

IP-Address Bit-mapping

10

IP-Address Bit-mapping

10

IP-Address Bit-mapping

10

IP-Address Bit-mapping

10

IP-Address Bit-mapping

10

Summary

• Track network traffic, if a lot of traffic looks very
similar (maps to the same hash) pay attention to it.

• Keep track of how many unique paths the data that
is being observed, if the traffic is suspicious analise
it.

• Extract the key of the worm if it shows all the signs
of a worm.

11

Contributions

• Proof of concept that a system can be created to
identify worms on a reliable basis.

• Was able to identify all worms that appeared in the
sampling time, much faster than then the rest of the
industry.

• Later arguments in the paper show how it can be
expanded to a larger system.

12

Weaknesses

• If there is a invariant that is smaller than β then
this system would not catch it.

• Reassembling worms might evade the system.

• Encrypted code, (SSL, SSH, or VPN).

• Has a hard time filtering BitTorrent.

13

How to Improve

• Test on hardware, or router level detection.

• Be able to dynamically change thresholds depending
on traffic fluctuations.

14

